

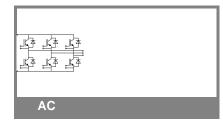
MiniSKiiP^{®3}

3-phase bridge inverter

SKiiP 38AC12T4V1

Features

- Trench 4 IGBT's
- · Robust and soft freewheeling diodes in CAL technology
- Highly reliable spring contacts for electrical connections
- UL recognised file no. E63532


Typical Applications

Remarks

- Product reliability valid for $T_j \le$ 150°C
- For short circuit: Soft R $_{Goff}$ recommended R $_{Goff}$ > 20 Ω

Absolute Maximum Ratings T _s = 25 °C, unless otherwise specified					
Symbol	Conditions			Values	Units
IGBT					
V _{CES}	T _j = 25 °C			1200	V
I _C	T _j = 175 °C	T _c = 25 °C		115	Α
		T _c = 70 °C		93	Α
I _{CRM}	$I_{CRM} = 3xI_{Cnom}$			300	Α
V _{GES}				±20	V
t _{psc}	V_{CC} = 800 V; $V_{GE} \le 15$ V; $V_{CES} < 1200$ V	T _j = 150 °C		10	μs
Inverse D	iode				
I _F	T _j = 175 °C	$T_c = 25 ^{\circ}C$		99	Α
		T _c = 70 °C		79	Α
I _{FRM}	$I_{CRM} = 3xI_{Cnom}$			300	Α
I _{FSM}	$t_p = 10 \text{ ms}; \sin$	T _j = 150 °C		548	Α
Module					
I _{t(RMS)}				160	Α
T_{vj}				-40+150	°C
T _{stg}				-40+125	°C
V _{isol}	AC, 1 min.	•		2500	V

Characteristics $T_s =$			25 °C, unless otherwise specified			
Symbol	Conditions		min.	typ.	max.	Units
IGBT						•
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_{C} = 4 \text{ mA}$		5	5,8	6,5	V
I _{CES}	$V_{GE} = 0 V, V_{CE} = V_{CES}$	T _j = 25 °C			0,3	mA
V _{CE0}		T _j = 25 °C		0,8	0,9	V
		T _j = 150 °C		0,7	0,8	V
r _{CE}	V _{GE} = 15 V	T _j = 25°C		10	11	mΩ
		$T_{j} = 150^{\circ}C$		15	16	mΩ
V _{CE(sat)}	I _{Cnom} = 100 A, V _{GE} = 15 V			1,8	2	V
		$T_j = 150^{\circ}C_{chiplev.}$		2,2	2,4	V
C _{ies}				6,2		nF
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		0,41		nF
C _{res}				0,35		nF
Q_G	V _{GE} = -8+15V			565		nC
R_{Gint}	T _j = 25 °C			7,5		Ω
t _{d(on)}				160		ns
t _r	$R_{Gon} = 1 \Omega$	V _{CC} = 600V		45		ns
Ė _{on}	di/dt = 2080 A/µs	I _C = 100A		13,7		mJ
t _{d(off)}	$R_{Goff} = 1 \Omega$	T _j = 150 °C		395		ns
t _f	di/dt = 1240 A/µs	V _{GE} = ±15V		73		ns
E _{off}				9,7		mJ
$R_{th(j-s)}$	per IGBT			0,48		K/W

MiniSKiiP^{®3}

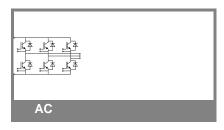
3-phase bridge inverter

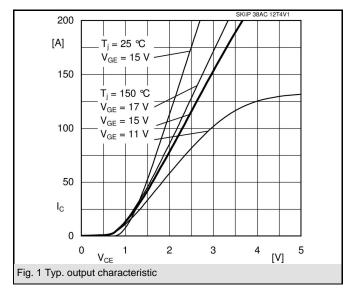
SKiiP 38AC12T4V1

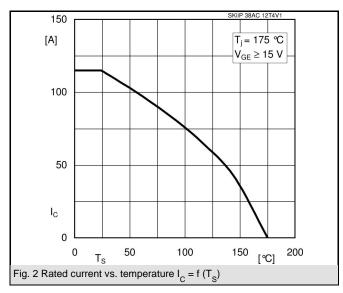
Feat	tures
-------------	-------

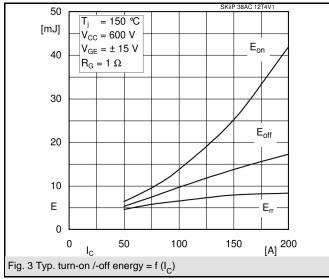
- Trench 4 IGBT's
- Robust and soft freewheeling diodes in CAL technology
- Highly reliable spring contacts for electrical connections
- UL recognised file no. E63532

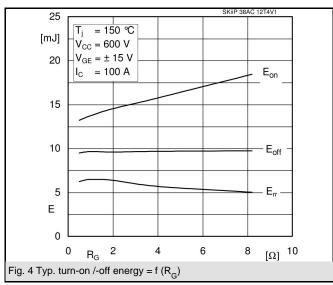
Typical Applications


Remarks


- Product reliability valid for $T_j \le 150^{\circ}C$
- For short circuit: Soft R $_{\rm Goff}$ recommended R $_{\rm Goff}$ > 20 Ω


Characteristics							
Symbol	Conditions		min.	typ.	max.	Units	
Inverse Diode							
$V_F = V_{EC}$	I _{Fnom} = 100 A; V _{GE} = 15 V	T _j = 25 °C _{chiplev.}		2,2	2,5	V	
		$T_j = 150 ^{\circ}C_{chiplev.}$		2,1	2,45	V	
V_{F0}		T _j = 25 °C		1,3	1,5	V	
		T _j = 150 °C		0,9	1,1	V	
r _F		T _j = 25 °C		9	10	mΩ	
		T _j = 150 °C		12	13,5	$m\Omega$	
I _{RRM}	I _F = 100 A	T _i = 125 °C		112		Α	
Q_{rr}	di/dt = 2680 A/μs	,		16		μC	
E _{rr}	V _{GE} = ±15V			6,5		mJ	
R _{th(j-s)}	per diode			0,66		K/W	
M _s	to heat sink		2		2,5	Nm	
w				95		g	
Temperature sensor							
R _{ts}	3%, Tr = 25°C			1000		Ω	
R _{ts}	3%, Tr = 100°C			1670		Ω	


This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.


This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

