WIMA SMD-PEN

Metallized Polyethylene-Naphthalate (PEN) SMD Film Capacitors with Box Encapsulation. Capacitances from 0.01 μ F to 1.0 μ F. Rated Voltages from 63 VDC to 400 VDC. Size Codes from 1812 to 2824.

Special Features

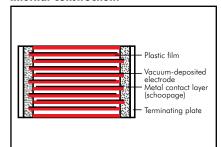
- Size codes 1812, 2220 and 2824, with PEN and encapsulated
- Operating temperature up to 125° C
- Self-healing
- Suitable for lead-free soldering
- According to RoHS 2011/65/EU

Typical Applications

For general DC-applications e.g.

- By-pass
- Blocking
- Coupling and decoupling
- Timing

Construction


Dielectric:

Polyethylene-Naphthalate (PEN) film

Capacitor electrodes:

Vacuum-deposited

Internal construction:

Encapsulation:

Solvent-resistant, flame-retardant plastic case, UL 94 V-0

Terminations:

Tinned plates.

Marking:

Colour: Black.

Electrical Data

Capacitance range:

0.01 µF to 1.0 µF

Rated voltages:

63 VDC, 100 VDC, 250 VDC, 400 VDC

Capacitance tolerances:

 $\pm 20\%$, $\pm 10\%$ ($\pm 5\%$ available subject to special enquiry)

Operating temperature range:

-55° C to +125° C

Climatic test category:

55/125/21 according to IEC

Insulation resistance at +20° C:

Test voltag	: 1.6 U _r , 2 sec.
Valtana da	atina.

A voltage derating factor of 1.25 % per K must be applied from +100° C for DC voltages and from +90° C for AC voltages

Reliability:

Operational life $> 300\,000$ hours Failure rate < 2 fit (0.5 x U_r and 40° C)

U _r	U _{test}	C ≤ 0.33 µF	0.33 µF < C ≤ 1.0 µF
63 VDC 100 VDC	50 V 100 V		\geq 1250 sec (M Ω x μ F) (mean value: 3000 sec)
≥ 250 VDC	100 V	\geq 1 x 10 ⁴ M Ω (mean value: 5 x 10 ⁴ M Ω)	≥ 3000 sec (MΩ x µF) (mean value: 10 000 sec)

Measuring time: 1 min.

Dissipation factors at $+20^{\circ}$ C: tan δ

at f	C ≤ 0.1 µ F	0.1 µF < C ≤ 1.0 µF
1 kHz 10 kHz 100 kHz	≤ 8 x 10 ⁻³ ≤ 15 x 10 ⁻³ ≤ 30 x 10 ⁻³	≤ 8 x 10 ⁻³ ≤ 15 x 10 ⁻³

Maximum pulse rise time: for pulses equal to the rated voltage

Capacitance µF	(2)/00	Pulse rise time V/µsec max. operation/test 63 VDC 100 VDC 250 VDC 400 VDC										
·	63 VDC	100 VDC	250 VDC	400 VDC								
0.01 0.022	30/300	35/350	40/400	35/350								
0.033 0.068	20/200	20/200	40/400	21/210								
0.1 0.22	10/100	10/100	12/120	-								
0.33 0.68	8/80	6/60	-	-								
1.0	3,5/35	4/40	-	-								

Dip Solder Test/Processing

Resistance to soldering heat:

Test Tb in accordance with DIN IEC 60068-2-58/DIN EN 60384-23. Soldering bath temperature max. 260° C. Soldering duration max. 5 sec. Change in capacitance Δ C/C < 5%.

Soldering process:

Re-flow soldering (see temperature/time graphs page 13).

Packing

Available taped and reeled in blister pack.

Detailed taping information and graphs at the end of the catalogue.

For further details and graphs please refer to Technical Information.

WIMA SMD-PEN

Continuation

General Data

			63 VDC/40 VAC*		100 VDC/63 VAC*					
Capacitance	Size code	H ± 0.3	Part number	Size code	H ± 0.3	Part number				
0.01 µ F	1812	3.0	SMDNC02100KA00	1812	3.0	SMDND02100KA00				
	2220	3.5	SMDNC02100QA00	2220	3.5	SMDND02100QA00				
	2824	3.0	SMDNC02100TA00	2824	3.0	SMDND02100TA00				
0.015 "	1812	3.0	SMDNC02150KA00	1812	3.0	SMDND02150KA00				
	2220	3.5	SMDNC02150QA00	2220	3.5	SMDND02150QA00				
	2824	3.0	SMDNC02150TA00	2824	3.0	SMDND02150TA00				
0.022 "	1812	3.0	SMDNC02220KA00	1812	3.0	SMDND02220KA00				
	2220	3.5	SMDNC02220QA00	2220	3.5	SMDND02220QA00				
	2824	3.0	SMDNC02220TA00	2824	3.0	SMDND02220TA00				
0.033 "	1812	3.0	SMDNC02330KA00	1812	3.0	SMDND02330KA00				
	2220	3.5	SMDNC02330QA00	2220	3.5	SMDND02330QA00				
	2824	3.0	SMDNC02330TA00	2824	3.0	SMDND02330TA00				
0.047 "	1812	3.0	SMDNC02470KA00	1812	3.0	SMDND02470KA00				
	2220	3.5	SMDNC02470QA00	2220	3.5	SMDND02470QA00				
	2824	3.0	SMDNC02470TA00	2824	3.0	SMDND02470TA00				
0.068 "	1812	3.0	SMDNC02680KA00	1812	3.0	SMDND02680KA00				
	2220	3.5	SMDNC02680QA00	2220	3.5	SMDND02680QA00				
	2824	3.0	SMDNC02680TA00	2824	3.0	SMDND02680TA00				
0.1 μ F	1812	4.0	SMDNC03100KB00	1812	4.0	SMDND03100KB00				
	2220	3.5	SMDNC03100QA00	2220	3.5	SMDND03100QA00				
	2824	3.0	SMDNC03100TA00	2824	3.0	SMDND03100TA00				
0.15 "	1812	4.0	SMDNC03150KB00	1812	4.0	SMDND03150KB00				
	2220	3.5	SMDNC03150QA00	2220	3.5	SMDND03150QA00				
	2824	3.0	SMDNC03150TA00	2824	3.0	SMDND03150TA00				
0.22 "	2220	3.5	SMDNC03220QA00	2220	3.5	SMDND03220QA00				
	2824	3.0	SMDNC03220TA00	2824	3.0	SMDND03220TA00				
0.33 "	2220	4.5	SMDNC03330QB00	2220	4.5	SMDND03330QB00				
	2824	5.0	SMDNC03330TB00	2824	5.0	SMDND03330TB00				
0.47 "	2220	4.5	SMDNC03470QB00	2220	4.5	SMDND03470QB00				
	2824	5.0	SMDNC03470TB00	2824	5.0	SMDND03470TB00				
0.68 "	2824	5.0	SMDNC03680TB00	2824	5.0	SMDND03680TB00				
1.0 µ F	2824	5.0	SMDNC04100TB00	2824	5.0	SMDND04100TB00				

^{*} AC voltage: f = 50 Hz; 1.4 x $U_{rms} + UDC \le U_{r}$

Dims in mm.

Part number completion:

Tolerance: 20 % = M

10% = K

5% = J

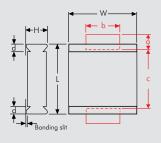
Packing: bulk = SPin length: none = 00

Taped version see page 144.

Rights reserved to amend design data without prior notification.

Continuation page 22

WIMA SMD-PEN


Continuation

General Data

		2	250 VDC/160 VAC*			400 VDC/200 VAC*
Capacitance	Size code	H ± 0.3	Part number	Size code	H ± 0.3	Part number
0.01 µ F	2220 2824	3.5 3.0	SMDNF02100QA00 SMDNF02100TA00	2824	3.0	SMDNG02100TA00
0.015 "	2220 2824	3.5 3.0	SMDNF02150QA00 SMDNF02150TA00	2824	3.0	SMDNG02150TA00
0.022 "	2220 2824	3.5 3.0	SMDNF02220QA00 SMDNF02220TA00	2824	5.0	SMDNG02220TB00
0.033 "	2220 2824	3.5 3.0	SMDNF02330QA00 SMDNF02330TA00	2824	5.0	SMDNG02330TB00
0.047 "	2220 2824	3.5 3.0	SMDNF02470QA00 SMDNF02470TA00	2824	5.0	SMDNG02470TB00
0.068 "	2220 2824	4.5 3.0	SMDNF02680QB00 SMDNF02680TA00			
0.1 µ F	2220 2824	4.5 5.0	SMDNF03100QB00 SMDNF03100TB00			
0.15 "	2824	5.0	SMDNF03150TB00			

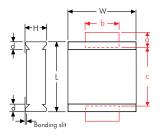
^{*} AC voltage: f = 50 Hz; $1.4 \times U_{rms} + UDC \leq U_{r}$

Dims in mm.

Part number	completion:
Tolerance:	20 % = M 10 % = K
	5% = 1
Packing:	bulk = S
Pin length:	none = 00
Taped version	on see page 144.

Size code	L ±0.3	W ±0.3	d	a min.	b min.	c max.
1812	4.8	3.3	0.5	1.2	3.5	3.5
2220	5.7	5.1	0.5	1.2	4	4.5
2824	7.2	6.1	0.5	1.2	4	6.5

Rights reserved to amend design data without prior notification.


Recommendation for Processing — and Application of SMD Capacitors

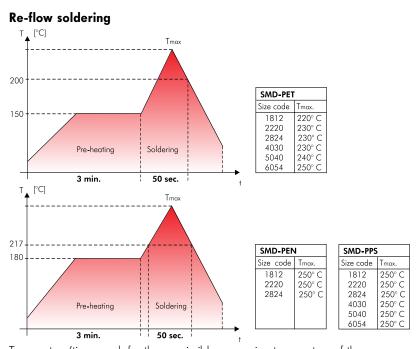
Layout Form

The components can generally be positioned on the carrier material as desired. In order to prevent soldering shadows or ensure regular temperature distribution, extreme concentration of the components should be avoided. In practice, it has proven best to keep a minimum distance of the soldering surfaces between two WIMA SMDs of twice the height of the components.

Solder Pad Recommendation

Size	L	W	d	а	b	С
code	± 0.3	± 0.3		min.	min.	max.
1812	4.8	3.3	0.5	1.2	3.5	3.5
2220	5.7	5.1	0.5	1.2	4	4.5
2824	7.2	6.1	0.5	1.2	4	6.5
4030	10.2	7.6	0.5	2.5	6	9
5040	12.7	10.2	0.7	2.5	6	11.5
6054	15.3	13.7	0.7	2.5	6	14

The solder pad size recommendations given for each individual series are to be understood as minimum dimensions which can at any time be adjusted to the layout form.


Processing

The processing of SMD components

- assembling
- soldering
- electrical final inspection/calibrating

must be regarded as a complete process. The soldering of the printed circuit board, for example, can constitute considerable stress on all the electronic components. The manufacturer's instructions on the processing of the components are mandatory.

Soldering Process

Temperature/time graph for the permissible processing temperature of the WIMA SMD film capacitor for typical convection soldering processes.

Due to versatile procedures exact processing parameters for re-flow soldering processes cannot be specified. The graph depicted is to be understood as a recommendation to help establishing a suitable soldering profile fulfilling the requirements in practice at the user. During processing a max. temperature of $T=210^{\circ}$ C inside the component should not be exceeded. Due to the differing heat absorption the length of the soldering process should be kept as short as possible for smaller size codes.

SMD Handsoldering

WIMA SMD capacitors with plastic film dielectric are generally suitable for hand-soldering, e.g. for lab purposes, with a soldering iron where, however, similar to automated soldering processes, a certain duration and temperature should not be exceeded. These parameters are dependent on the physical size of the components and the relevant heat absorption involved.

The below data are to be regarded as guideline values and should serve to avoid damage to the dielectric caused by excessive heat during the soldering process. The soldering quality depends on the tool used and on the skill and experience of the person with the soldering iron in hand.

Size code	Temperature °C / °F	Time duration
1812	250 / 482	2 sec plate 1 / 5 sec off / 2 sec plate 2
2220	250 / 482	3 sec plate 1 / 5 sec off / 3 sec plate 2
2824	260 / 500	3 sec plate 1 / 5 sec off / 3 sec plate 2
4030	260 / 500	5 sec plate 1 / 5 sec off / 5 sec plate 2
5040	260 / 500	5 sec plate 1 / 5 sec off / 5 sec plate 2
6054	260 / 500	5 sec plate 1 / 5 sec off / 5 sec plate 2

Recommendation for Processing — and Application of SMD Capacitors (Continuation)

Solder Paste

To achieve reliable soldering results one of the following solder alloys have from case to case proven being workable:

Lead free solder paste

Sn - Bi

Sn - Zn (Bi)

Sn - Ag - Cu Isuitable for SMD-PET 5040/6054, SMD-PEN and SMD-PPS)

Solder paste with lead

Sn - Pb - Ag (Sn60-Pb40-A, Sn63-Pb37-A)

Washing

WIMA SMD components with plastic encapsulation - like all other components of similar construction irrespective of the make - cannot be regarded as hermetically sealed. Due to today's common washing substances, e. g. on aqueous basis instead of the formerly used halogenated hydrocarbons, with enhanced washing efficiency it became obvious that assembled SMD capacitors may show an impermissibly high deviation of the electrical parameters after a corresponding washing process. Hence it is recommended to refrain from applying industrial washing processes for WIMA SMD capacitors in order to avoid possible damages.

Initial Operation/Calibration

Due to the stress which the components are subjected to during processing, reversible parameter changes occur in almost all electronic components. The capacitance recovery accuracy to be expected with careful processing is within a scope of

 $|\Delta C/C| \le 5 \%$.

For the initial operation of the device a minimum storage time of

 $t \ge 24 \text{ hours}$

is to be taken into account. With calibrated devices or when the application is largely dependent on capacitance it is advisable to prolong the storage time to

t ≥ 10 days

In this way ageing effects of the capacitor structure can be anticipated. Parameter changes due to processing are not to be expected after this period of time

Humidity Protection Bags

Taped WIMA SMD capacitors are shipped in humidity protection bags according to JEDEC standard (ESD/EMI-shield/water-vapour proof).

Under controlled conditions the components can be stored two years and more in the originally sealed bag. Opened packing units should immediately be used up for processing. If storage is necessary the opened packing units should be stored air-tight in the original plastic bag.

Reliability

Taking account of the manufacturer's guidelines and compatible processing, the WIMA SMD stand out for the same high quality and reliability as the analogous through-hole WIMA series. The technology of metallized film capacitors used e.g. in WIMA SMD-PET achieves the best values for all fields of application. The expected value is about:

 $\lambda_0 \leqslant 2$ fit

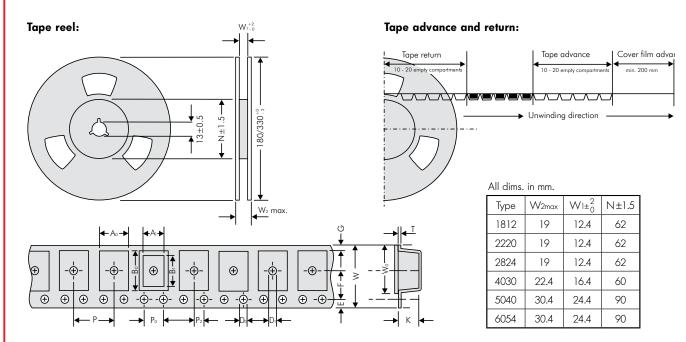
Furthermore the production of all WIMA components is subject to the regulations laid down by ISO 9001:2008 as well as the guidelines for component specifications set out by IEC quality assessment system (IECQ) for electronic components.

Electrical Characteristics and Fields of Application

Basically the WIMA SMD series have the same electrical characteristics as the analogous through-hole WIMA capacitors. Compared to ceramic or tantalum dielectrics WIMA SMD capacitors have a

number of other outstanding qualities:

- favourable pulse rise time
- low ESR
- low dielectric absorption
- available in high voltage series
- large capacitance spectrum
- stand up to high mechanical stress
- good long-term stability


As regards technical performance as well as quality and reliability, the WIMA SMD series offer the possibility to cover nearly all applications of conventionally through-hole film capacitors with SMD components. Furthermore, the WIMA SMD series can now be used for all the demanding capacitor applications for which, in the past, the use of through-hole components was mandatory:

- measuring techniques
- oscillator circuits
- differentiating and integrating circuits
- A/D or D/A transformers
- sample and hold circuits
- automotive electronics

With the WIMA SMD programme available today, the major part of all plastic film capacitors can be replaced by WIMA SMD components. The field of application ranges from standard coupling capacitors to use in switch-mode power supplies as filter or charging capacitors with high voltage and capacitance values, as well as in telecommunications e.g. the well-known telephone capacitor $1\,\mu\text{F}/250\text{VDC}.$

Blister Tape Packaging and Packing Units of the WIMA SMD Capacitors

Size Code	1812	A0 ±0.1	Αı	Bo ±0.1	Ві	Do +0.1	D ₁	P ±0.1	Po*	P ₂ ±0.05	E +0.1	F +0.05	G	W ±0.3	₩0 ±0,2	K ±0.1	T ±0.1
Box size	Code			20.1		-0	-0	20.1	20.1	10.00	20.1	20.00		20.0	10.2	20.1	20.1
4.8×3.3×3	KA	3.55	3.3	5.1	4.8	Ø1.5	Ø1.5	8	4	2	1.75	5.5	2.2	12	9.5	3.4	0.3
4.8 x 3.3 x 4	KB	3.55	3.3	5.1	4.8	Ø1.5	Ø1.5	8	4	2	1.75	5.5	2.2	12	9.5	4.4	0.3

Size Code	2220	Ao ±0.1	Αı	Bo ±0.1	Ві	Do +0.1	D1 +0.1	P ±0.1	Po*	P ₂ ±0.05	E +0.1	F +0.05	G	W +03	₩0 ±0,2	K +0.1	T ±0.1
Box size	Code			±0.1		-0	-0	±0.1	±0.1	±0.00	±0.1	±0.00		±0.0	±0.2	±0.1	±0.1
5.7×5.1×3.5	QA	6.3	5.7	5.6	5.1	Ø1.5	Ø1.5	8	4	2	1.75	5.5	1.95	12	9.5	3.7	0.3
5.7×5.1×4.5	QB	6.3	5.7	5.6	5.1	Ø1.5	Ø1.5	8	4	2	1.75	5.5	1.95	12	9.5	4.7	0.3

Size Code	2824	A0 ±0.1	Αı	Bo ±0.1	Ві	Do +0.1	D1 +0.1	P +0.1	Po*	P ₂ ±0.05	E +0.1	F +0.05	G	W ±0.3	₩0 ±0,2	K ±0.1	T ±0.1
Box size	Code	20.1		20.1		-0	-0	20.1	20.1	±0.00	20.1	±0.00		20.0	±0.2	20.1	20.1
7.2×6.1×3	TA	6.6	6.1	7.7	7.2	Ø1.5	Ø1.5	12	4	2	1.75	5.5	0.9	12	9.5	3.4	0.3
7.2×6.1×5	ТВ	6.6	6.1	7.7	7.2	Ø1.5	Ø1.5	12	4	2	1.75	5.5	0.9	12	9.5	5.4	0.4

	Code	A0 ±0.1	Αı	Bo ±0.1	Ві	Do +0.1 -0	D1 +0.1 -0		Po* ±0.1		E ±0.1	F ±0.05	G		W ₀ ±0.2		T ±0.1
Size Code 4030	VA	10.7	10.2	8.1	9.1	Ø1.5	Ø1.5	16	4	2	1.75	7.5	1.9	16	13.3	5.5	0.3
Size Code 5040	XA	13.5	12.7	11	11.5	Ø1.5	Ø1.5	16	4	2	1.75	11.5	4.7	24	21.3	6.5	0.3
Size Code 6054	YA	17.0	16.5	15.6	15.0	ø1.5	Ø1.5	20	4	2	1.75	11.5	2.95	24	21.3	7.5	0.3

^{*} cumulative after 10 steps \pm 0.2 mm max. Samples and pre-production needs on request or 1 Reel minimum.

Packing units

taped Reel 180 mm Ø	taped Reel 330 mm Ø	bulk Standard
700	2500	3000
500	2000	3000

taped Reel 180 mm Ø	taped Reel 330 mm Ø	bulk Standard			
500	1800	3000			
400	1500	3000			

taped Reel 330 mm Ø	bulk Standard			
1500	2000			
750	2000			

taped Reel	bulk
330 mm Ø	Standard
775	2000
600	1000
450	500

Part number codes for SMD packing

W (Blister)	Ø in mm	Code
12	180	P
12	330	Q
16	330	R
24	330	T

Bulk Standard	S

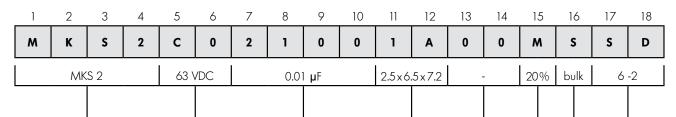
-WIMA Part Number System

A WIMA part number consists of 18 digits and is composed as follows:

Field 1 - 4: Type description

Field 5 - 6: Rated voltage

Field 7 - 10: Capacitance


Field 11 - 12: Size and PCM

Field 13 - 14: Version code (e.g. Snubber versions)

Field 15: Capacitance tolerance

Packing Field 16:

Field 17 - 18: Pin length (untaped)

Type descript	ion:	Rated voltage:	Capacitance:	Size:	Tolerance:
SMD-PET	= SMDT	50 VDC = B0	22 pF = 0022	$4.8 \times 3.3 \times 3$ Size 1812 = KA	$\pm 20\% = M$
SMD-PEN	= SMDN	63 VDC = C0	47 pF = 0047	$4.8 \times 3.3 \times 4$ Size 1812 = KB	$\pm 10\% = K$
SMD-PPS	= SMDI	100 VDC = D0	100 pF = 0100	$5.7 \times 5.1 \times 3.5$ Size $2220 = QA$	$\pm 5\% = J$
FKP 02	= FKPO	250 VDC = FO	150 pF = 0150	$5.7 \times 5.1 \times 4.5$ Size $2220 = QB$	$\pm 2.5\% = H$
MKS 02	=MKS0	400 VDC = G0	220 pF = 0220	$7.2 \times 6.1 \times 3$ Size $2824 = TA$	$\pm 1\% = E$
FKS 2	= FKS2	450 VDC = H0	330 pF = 0330	$7.2 \times 6.1 \times 5$ Size 2824 = TB	
FKP 2	= FKP2	520 VDC = H2	470 pF = 0470	$10.2 \times 7.6 \times 5$ Size $4030 = VA$	
FKS 3	= FKS3	600 VDC = 10	680 pF = 0680	$12.7 \times 10.2 \times 6$ Size $5040 = XA$	
FKP 3	= FKP 3	630 VDC = J0	1000 pF = 1100	$15.3 \times 13.7 \times 7$ Size $6054 = YA$	Packing:
MKS 2	=MKS2	700 VDC = KO	1500 pF = 1150	$2.5 \times 7 \times 4.6 \text{ PCM } 2.5 = 0B$	AMMO H16.5 $340 \times 340 = A$
MKP 2	=MKP2	800 VDC = L0	2200 pF = 1220	$3 \times 7.5 \times 4.6 \text{ PCM } 2.5 = 0 \text{C}$	AMMO H16.5 $490 \times 370 = B$
MKS 4	= MKS4	850 VDC = M0	3300 pF = 1330	$2.5 \times 6.5 \times 7.2 \text{ PCM5} = 1 \text{A}$	AMMO H18.5 $340 \times 340 = C$
MKP 4C	= MKPC	900 VDC = N0	4700 pF = 1470	$3 \times 7.5 \times 7.2 \text{ PCM} 5 = 1B$	AMMO H18.5 $490 \times 370 = D$
MKP 4	=MKP4	1000 VDC = 01	6800 pF = 1680	$2.5 \times 7 \times 10 \text{ PCM} 7.5 = 2A$	REEL H16.5 360 = F
MKP 10	=MKP1	1100 VDC = P0	$0.01 \mu F = 2100$	$3 \times 8.5 \times 10 \text{ PCM} 7.5 = 2B$	REEL H16.5 500 = H
FKP 1	= FKP1	1200 VDC = Q0	$0.022 \mu F = 2220$	$3 \times 9 \times 13 \text{ PCM } 10 = 3A$	REEL H18.5 360 = I
MKP-X2	=MKX2	1250 VDC = RO	$0.047 \mu F = 2470$	$4 \times 9 \times 13 \text{ PCM } 10 = 3C$	REEL H18.5 500 = J
MKP-X1 R	=MKX1	1500 VDC = S0	$0.1 \mu F = 3100$	$5 \times 11 \times 18 \text{ PCM } 15 = 4B$	ROLL H16.5 $= N$
MKP-Y2	=MKY2	1600 VDC = T0	$0.22 \mu F = 3220$	$6 \times 12.5 \times 18 \text{ PCM } 15 = 4 \text{ C}$	ROLL H18.5 = O
MP 3-X2	=MPX2	2000 VDC = U0	$0.47 \mu F = 3470$	$5 \times 14 \times 26.5 \text{ PCM } 22.5 = 5A$	BLISTER W12 180 $= P$
MP 3-X1	=MPX1	2500 VDC = V0	$1 \mu F = 4100$	$6 \times 15 \times 26.5 \text{ PCM } 22.5 = 5B$	BLISTER W12 330 $= Q$
MP 3-Y2	=MPY2	3000 VDC = W0	$2.2 \mu F = 4220$	$9 \times 19 \times 31.5 \text{ PCM } 27.5 = 6A$	BLISTER W16 330 $=$ R
MP 3R-Y2	=MPRY	4000 VDC = X0	$4.7 \mu F = 4470$	$11 \times 21 \times 31.5 \text{ PCM} 27.5 = 6B$	BLISTER W24 330 $=$ T
MKP 4F	=MKPF	6000 VDC = Y0	$10 \mu F = 5100$	$9 \times 19 \times 41.5 \text{ PCM} 37.5 = 7A$	Bulk/TPS Standard = S
Snubber MKP	= SNMP	250 VAC = 0 VV	$22 \mu F = 5220$	$11 \times 22 \times 41.5 \text{ PCM} 37.5 = 7B$	
Snubber FKP	= SNFP	275 VAC = 1 W	$47 \mu F = 5470$	$19 \times 31 \times 56$ PCM $48.5 = 8D$	
GTO MKP	= GTOM	300 VAC = 2VV	$100 \mu F = 6100$	$25 \times 45 \times 57 \text{ PCM } 52.5 = 9D$	
DC-LINK MKP		305 VAC = AVV	$220 \mu F = 6220$		I
DC-LINK MKP		350 VAC = BW	$1000 \mu F = 7100$		
DC-LINK MKP4		$\begin{array}{ccc} 440 \text{ VAC} &= 4W \\ 500 \text{ VAC} &= 5W \end{array}$	$1500 \mu F = 7150$	Version code:	Pin length (untaped)
DC-LINK MKP		500 VAC = 5W	•••		$3.5 \pm 0.5 = C9$
DC-LINK MKP	o = DCro			Standard = 00	3.3 ±0.3 = C9

The data on this page is not complete and serves only to explain the part number system. Part number information is listed on the pages of the respective WIMA range.

Version A1

Version A1.1.1 = 1BVersion A2

= 1A

=2A

DC-LINK HC

DC-LINK HY

= DCHC

= DCHY

6 - 2 = SD $16 \pm 1 = P1$

Pin length (taped)

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

WIMA:

<u>SMDNC02470QA00KP00</u> <u>SMDNC04100TB00KQ00</u> <u>SMDNC03680TB00KQ00</u> <u>SMDNC033330TB00KQ00</u> SMDNC03470TB00KQ00 SMDNF02470QA00KP00 SMDNC03330TB00KS00