

SN54174, SN54175, SN54LS174, SN54LS175, SN54S174, SN54S175 SN74174, SN74175, SN74LS174, SN74LS175, SN74S174, SN74S175

Hex/Quadruple D-Type Flip-Flops with Clear

These monolithic, positive-edge-triggered flip-flops utilize TTL circuitry to implement D-type flip-flop logic. All have a direct clear input, and the '175, 'LS175, and 'S175 feature complementary outputs from each flip-flop.

Information at the D inputs meeting the setup time requirements is transferred to the Q outputs on the positive-going edge of the clock pulse. Clock triggering occurs at a particular voltage level and is not directly related to the transition time of the positive-going pulse. When the clock input is at either the high or low level, the D input signal has no effect at the output.

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - · Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
 - Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

SN54174, SN54175, SN54LS174, SN54LS175, SN54S174, SN54S175, SN74174, SN74175, SN74LS174, SN74LS175, SN74S174, SN74S175 HEX/QUADRUPLE D-TYPE FLIP-FLOPS WITH CLEAR

DECEMBER 1972-REVISED MARCH 1988

'174, 'LS174, 'S174 . . . HEX D-TYPE FLIP-FLOPS '175, 'LS175, 'S175 . . . QUADRUPLE D-TYPE FLIP-FLOPS

- '174, 'LS174, 'S174 Contain Six Flip-Flops with Single-Rail Outputs
- '175, 'LS175, 'S175 Contain Four Flip-Flops with Double-Rail Outputs
- Three Performance Ranges Offered: See Table Lower Right
- Buffered Clock and Direct Clear Inputs
- Individual Data Input to Each Flip-Flop
- Applications include:

 Buffer/Storage Registers
 Shift Registers
 Pattern Generators

description

These monolithic, positive-edge-triggered flip-flops utilize TTL circuitry to implement D-type flip-flop logic. All have a direct clear input, and the '175, 'LS175, and 'S175 feature complementary outputs from each flip-flop.

Information at the D inputs meeting the setup time requirements is transferred to the Q outputs on the positive-going edge of the clock pulse. Clock triggering occurs at a particular voltage level and is not directly related to the transition time of the positive-going pulse. When the clock input is at either the high or low level, the D input signal has no effect at the output.

These circuits are fully compatible for use with most TTL circuits.

FUNCTION TABLE

	NPUTS	OUTPUTS					
ÇLEAR	CLOCK	D	a	Q+			
L	X	×	L	н			
н	Ť	н	н	L			
н	t	L	L	н			
н	L	Х	₫0	$\bar{\alpha}_0$			

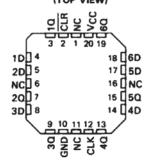
H = high level (steady state)

L = low level (steady state)

X = irrelevant

↑ = transition from low to high level

Q₀ = the level of Q before the indicated steady-state input conditions were established.

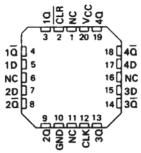

† = '175, 'LS175, and 'S175 only

	TYPICAL	TYPICAL
TYPES	MAXIMUM	POWER
ITPES	CLOCK	DISSIPATION
	FREQUENCY	PER FLIP-FLOP
174, 175	35 MHz	38 mW
'LS174, 'LS175	40 MHz	14 mW
'S174, 'S175	110 MHz	75 mW

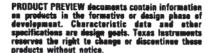
SN54174, SN54LS174, SN54S174 . . . J OR W PACKAGE SN74174 . . . N PACKAGE SN74LS174, SN74S174 . . . D OR N PACKAGE

(T	OP VIEW)
CLR [1 U16 VCC
10 🏻	2 15 60
10 □	3 14 D 6D
2D 📮	4 13 D 5D
20 🔲	5 12 50
3D 🔲	6 11 4D
30 🗆	7 10 40
GND 🛛	<u>8</u> 9 CLK

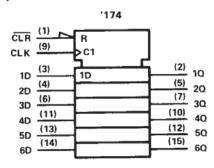
SN54LS174, SN54S174 . . . FK PACKAGE (TOP VIEW)

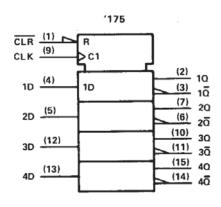


SN54175, SN54LS175, SN54S175...J OR W PACKAGE SN74175...N PACKAGE SN74LS175, SN74S175...D OR N PACKAGE

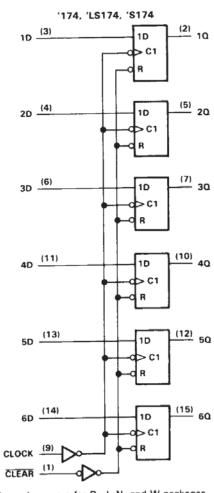

(TOP VIEW)

_		
CLR 1	U ₁₆	D vcc
10 🔲 2	15	□40
1₫ 🏻 3	14	4 0
10 🛛 4	13]4D
2D 🗆 5	12	30
20 □6	11	30
20 □ 7	10]30
GND □8	9	CLK


SN54LS175, SN54S175 . . . FK PACKAGE (TOP VIEW)



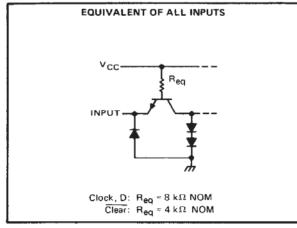
NC ~ No internal connection

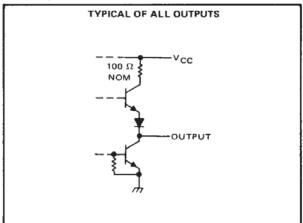


[†]These symbols are in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12. Pin numbers shown are for D, J, N, and W packages.

logic diagrams (positive logic)

TTL Devices


'175, 'LS175, 'S175 1D -(4) (2) 1D (3) <u>1</u>0 R (7) 20 2D (5) 1D (6) 2<u>0</u> 3D (12) (10) 1D (11) 30 4D (13) 1D (14) 40 CLOCK (9) CLEAR (1)


Pin numbers shown are for D, J, N, and W packages.

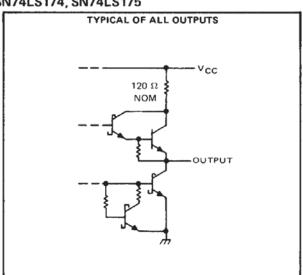
SN54174, SN54175, SN54LS174, SN54LS175, SN54S174, SN54S175, SN74174, SN74LS175, SN54S174, SN54S175, SN54S174, SN54LS175, SN74LS175, SN54S174, SN54LS175, SN74LS175, SN54S174, SN54S175, SN54S174, SN54S175, SN54S174, SN54LS175, SN54S174, SN54S175, SN54S175, SN54S174, SN54S175, SN54S175, SN54S175, SN54S174, SN54S175, SN54S

schematics of inputs and outputs

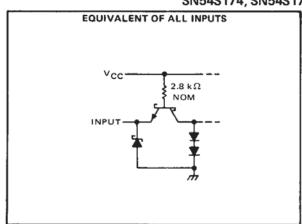
SN54174, SN54175, SN74174, SN74175

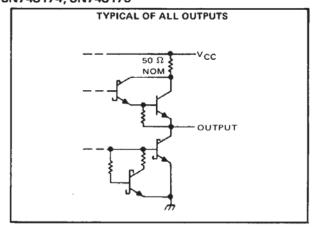
SN54LS174, SN54LS175, SN74LS174, SN74LS175

SN54LS174, SN54LS1


EQUIVALENT OF ALL INPUTS

VCC


INPUT


Clock: Req = 23 kΩ NOM

Clear, D: Req = 28 kΩ NOM

SN54S174, SN54S175, SN74S174, SN74S175

SN54174, SN54175, SN74174, SN74175 HEX/QUADRUPLE D-TYPE FLIP-FLOPS WITH CLEAR

absolute maximum ratings over operating free-air temperature ra	ing	e (ur	ıle	SS	ot	he	۲V	/is	e r	101	tec	I)			
Supply voltage Voc (see Note 1)																7 V
Input voltage		•										:	•	_55°C	to	125°C
SN74174 SN74175 Circuits														. 0	C	0 /0 0
Storage temperature range		•		•	•	•	•	•		•		•		-65 C	, 10	150 C

recommended operating conditions

		SN54	174, SN	54175	SN74	UNIT		
		MIN	NOM	MAX	MIN	NOM	MAX	Citi
Supply voltage, VCC		4.5	-5	5.5	4.75	5	5.25	V
High-level output current, IOH				-800			-800	μА
Low-level output current, IOL				16				mA
Clock frequency, fclock		0		25	0		25	MHz
Width of clock or clear pulse, tw		20			20			ns
	Data input	20			20			ns
Setup time, t _{su}	Clear inactive-state	25			25		5.25 -800	ns
Data hold time, th		5			5			ns
Operating free-air temperature, TA		-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST (CONDITIONS	Ť	MIN	TYP‡	MAX	UNIT
V	High-level input voltage				2			V
VIH					\Box		8.0	V
VIL	Low-level input voltage	V _{CC} = MIN,	I ₁ = -12 mA				-1.5	V
VIK	Input clamp voltage	VCC = MIN,						
VOH	High-level output voltage	V _{IL} = 0.8 V,	I _{OH} = -800	2.4	3.4		\ \ \	
VOL	Low-level output voltage	V _{CC} = MIN, V _{IL} = 0.8 V,		0.2	0.4	٧		
l ₁	Input current at maximum input voltage	V _{CC} = MAX,	I _{OL} = 16 m/ V _I = 5.5 V				1	mA
ЧН	High-level input current	V _{CC} = MAX,	V _I = 2.4 V				40	μΑ
	Low-level input current	V _{CC} = MAX,	V _I = 0.4 V				-1.6	mA
1 _L	Low-level input current			SN54'	-20		57	mA
Ios	Short-circuit output current §	V _{CC} = MAX	SN74'		-18		-57	
			S N S	′174		45	65	mA
tcc	Supply current	V _{CC} = MAX,	See Note 2	175	T	30	45] <u></u>

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.

switching characteristics, VCC = 5 V, $T_A = 25^{\circ}C$

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f _{max} M	faximum clock frequency		25	35		MHz
P	ropagation delay time, low-to-high-level output from clear SN54175, SN74175 only)	C _L = 15 pF,		16	25	ns
	ropagation delay time, high-to-low-level output from clear	R _L = 400 Ω, See Note 3		23	35	ns
tPLH P	ropagation delay time, low-to-high-level output from clock			20	30	ns
tPHL P	ropagation delay time, high-to-low-level output from clock			24	35	ns

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

[‡]All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ} \text{C}$.

[§] Not more than one output should be shorted at a time.

NOTE 2: With all outputs open and 4.5 V applied to all data and clear inputs, I_{CC} is measured after a momentary ground, then 4.5 V, is

SN54LS174, SN54LS175, SN74LS174, SN74LS175 HEX/QUADRUPLE D-TYPE FLIP-FLOPS WITH CLEAR

absolute maximum ratings over operating free-air temperature range	(unless otherwise noted)
Supply voltage, VCC (see Note 1)	,
Input voltage	
Operating free-air temperature range: SN54LS174, SN54LS175 Circuits	
SN74LS174, SN74LS175 Circuits	0°C to 70°C
Storage temperature range	
NOTE 1: Voltage values are with respect to network ground terminal.	

recommended operating conditions

		SN54LS174 SN54LS175			SN74LS174			UNIT
					SI			
		MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, VCC		4.5	5	5.5	4.75	5	5.25	٧
High-level output current, IOH				400			-400	μА
Low-level output current, IOL				4			8	mA
Clock frequency, f _{clock}		0		30	0		30	MHz
Width of clock or clear pulse, t _W		20			20			ns
Carrie	Data input	20			20			пs
Setup time, t _{su}	Clear inactive-state	25			25			ns
Data hold time, th		5			5			ns
Operating free-air temperature, TA		-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS†			SN54LS174 SN54LS175			S	UNIT		
					MIN	TYP‡	MAX	MIN	TYP‡	MAX	
VIH	High-level input voltage				2			2			V
VIL	Low-level input voltage						0.7			0.8	٧
VIK	Input clamp voltage	V _{CC} = MIN,	I _I = -18 mA				-1.5			-1.5	٧
VOH	High-level output voltage	V _{CC} = MIN, V _{IL} = V _{IL} max,	V _{IH} = 2 V, , I _{OH} = -400 μA		2.5	3.5		2.7	3.5		v
VOL	Low-level output voltage	V _{CC} = MIN, V _{IL} = V _{IL} max	,	I _{OL} = 4 mA		0.25	0.4		0.25	0.4	l v l
Ц	Input current at maximum input voltage	V _{CC} = MAX,	V _I = 7 V				0.1			0.1	mA
Ън	High-level input current	V _{CC} = MAX,	V _I = 2.7 V				20			20	μА
IL.	Low-level input current	VCC = MAX,	V _I = 0.4 V				0.4			-0.4	mA
los	Short-circuit output current §	V _{CC} = MAX			-20		-100	-20		-100	mA
¹cc	Supply current	VCC = MAX,	See Note 2	'LS174 'LS175		16	26 18		16 11	26 18	mA

For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

DADAMETER	TEST COMPLETIONS		'LS174	,				
PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
f _{max} Maximum clock frequency		30	40		30	40		MHz
tp_H Propagation delay time, low-to-high-level output from clear	C _L = 15 pF,					20	30	ns
tpHL Propagation delay time, high-to-low-level output from clear	$R_L = 2 k\Omega$,		23	35		20	30	ns
tpLH Propagation delay time, low-to-high-level output from clock	See Note 3		20	30		13	25	ns
tPHL Propagation delay time, high-to-low-level output from clock			21	30		16	25	ns

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

[#]All typical values are at V_{CC} 5 V. T_A 25 C.

Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

NOTE 2: With all outputs open and 4.5 V applied to all data and clear inputs, I_{CC} is measured after a momentary ground, then 4.5 V, is applied to clock

SN54S174, SN54S175, SN74S174, SN74S175 HEX/QUADRUPLE D-TYPE FLIP-FLOPS WITH CLEAR

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)												
Supply voltage, VCC (see Note 1)			,									7 V
Langua voltago												5.5 V
Operating free air temperature range: SN54S174 SN54S175 Circuits												-55 6 10 125 6
SN74S174 SN74S175 Circuits												, 000000
Storage temperature range		•	•	•		•	•			٠		-65 C to 150 C
NOTE 1: Voltage values are with respect to network ground terminal.												

recommended operating conditions

		SN545	174, SN	54\$175	SN74S	174, SN	74S175	UNIT
		MIN	NOM	MAX	MIN	NOM	MAX	Civit
Supply voltage Vcc		4.5	5	5.5	4.75	5	5.25	V
				-1			-1	mA
Low-level output current, IQL				20			20	mA
Clock frequency, f _{clock}		0		75	0		75	MHz
	Clock	7			7			ns
Clock frequency, f _{clock} Pulse width, t _W	Clear	10			10			
	Data input	5			5			ns
Clock frequency, f _{clock}	Clear inactive-state	5			5			
Data hold time, th	· · · · · · · · · · · · · · · · · · ·	3			3			ns
		65		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	1	MIN	TYP‡	MAX	UNIT
ViH	High-level input voltage			2			V
VIL	Low-level input voltage					0.8	V
VIK	Input clamp voltage	V _{CC} = MIN, I _I = -18 mA				-1.2	V
·IK	mpa clamp vortage	V _{CC} = MIN, V _{IH} = 2 V,	SN54S'	2.5	3.4		V
۷он	High-level output voltage	V _{IL} = 0.8 V, I _{OH} = -1 mA	SN74S'	2.7	3.4		ľ
VOL Low-le		VCC = MIN, VIH = 2 V,		ľ		0.5	l v
	Low-level output voltage	V _{IL} = 0.8 V, I _{OL} = 20 mA					
I _L	Input current at maximum input voltage	V _{CC} = MAX, V _I = 5.5 V				1	mA
ΊΗ	High-level input current	V _{CC} = MAX, V _I = 2.7 V		<u> </u>	_	50	μΑ
IL	Low-level input current	V _{CC} = MAX, V ₁ = 0.5 V				-2	mA
los	Short-circuit output current §	V _{CC} = MAX		40		100	mA
.05			′174		90	144	mA
Icc	Supply current	V _{CC} = MAX, See Note 2	′175		60	96	,,,,

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device

‡All typical values are at V_{CC} = 5 V, T_A = 25°C.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
fmax	Maximum clock frequency		75	110		MHz
tPLH	Propagation delay time, low-to-high-level Q output from clear	C _L = 15 pF, R _L = 280 Ω, See Note 3		10	15	ns
	(SN54S175, SN74S175 only) Propagation delay time, high-to-low-level Q output from clear			13	22	ns
tPLH	Propagation delay time, low-to-high-level output from clock			8	12	ns
tpui	Propagation time, high-to-low-level output from clock		<u> </u>	11.5	17	ns

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

NOTE 2: With all outputs open and 4.5 V applied to all data and clear inputs, I_{CC} is measured after a momentary ground, then 4.5 V, is