

High Current Density Surface Mount Schottky Barrier Rectifiers

eSMP™ Series

DO-220AA (SMP)

FEATURES

- Very low profile - typical height of 1.0 mm
- Ideal for automated placement
- Low forward voltage drop, low power losses
- High efficiency
- Low thermal resistance
- Meets MSL level 1, per J-STD-020C, LF max peak of 260 °C
- Component in accordance to RoHS 2002/95/EC and WEEE 2002/96/EC

TYPICAL APPLICATIONS

For use in low voltage high frequency inverters, free-wheeling, dc-to-dc converters and polarity protection applications.

MECHANICAL DATA

Case: DO-220AA (SMP)

Epoxy meets UL 94V-0 flammability rating

Terminals: Matte tin plated leads, solderable per J-STD-002B and JESD22-B102D

E3 suffix for commercial grade, HE3 suffix for high reliability grade (AEC Q101 qualified)

Polarity: Color band denotes the cathode end

MAJOR RATINGS AND CHARACTERISTICS	
$I_{F(AV)}$	3 A
V_{RRM}	30 V
I_{FSM}	50 A
E_{AS}	11.25 mJ
V_F	0.43 V
T_j max.	150 °C

MAXIMUM RATINGS ($T_A = 25$ °C unless otherwise noted)					
PARAMETER		SYMBOL	SS3P3	UNIT	
Device marking code			33		
Maximum repetitive peak reverse voltage		V_{RRM}	30	V	
Maximum average forward rectified current (see Fig. 1)		$I_{F(AV)}$	3.0	A	
Peak forward surge current 8.3 ms single half sine-wave superimposed on rated load		I_{FSM}	50	A	
Non-repetitive avalanche energy at $T_j = 25$ °C, $I_{AS} = 1.5$ A, $L = 10$ mH		E_{AS}	11.25	mJ	
Voltage rate of change (rated V_R)		dv/dt	10000	V/μs	
Operating junction and storage temperature range		T_j, T_{STG}	- 55 to + 150	°C	

ELECTRICAL CHARACTERISTICS ($T_A = 25$ °C unless otherwise noted)					
PARAMETER	TEST CONDITIONS	SYMBOL	TYP	MAX.	UNIT
Maximum instantaneous forward voltage ⁽¹⁾	at $I_F = 3$ A, $T_j = 25$ °C at $I_F = 3$ A, $T_j = 125$ °C	V_F	0.52 0.43	0.58 0.48	V
Maximum reverse current at rated V_R ⁽¹⁾	$T_j = 25$ °C $T_j = 125$ °C	I_R	- 9.0	200 20	μA mA
Typical junction capacitance	at 4.0 V, 1 MHz	C_J		130	pF

Note:

(1) Pulse test: 300 μs pulse width, 1 % duty cycle

SS3P3

Vishay General Semiconductor

THERMAL CHARACTERISTICS ($T_A = 25^\circ\text{C}$ unless otherwise noted)

PARAMETER	SYMBOL	SS3P3	UNIT
Typical thermal resistance ⁽¹⁾	$R_{\theta JA}$	95	
	$R_{\theta JL}$	15	
	R_{eJC}	20	°C/W

Note:

(1) Thermal resistance from junction to ambient and junction to lead mounted on P.C.B. with 15 x 15 mm copper pad areas.

 $R_{\theta JL}$ is measured at the terminal of cathode band. R_{eJC} is measured at the top centre of the body**ORDERING INFORMATION** (Example)

PREFERRED P/N	UNIT WEIGHT (g)	PREFERRED PACKAGE CODE	BASE QUANTITY	DELIVERY MODE
SS3P3-E3/84A	0.024	84A	3000	7" Diameter Plastic Tape & Reel
SS3P3-E3/85A	0.024	85A	10000	13" Diameter Plastic Tape & Reel
SS3P3HE3/84A ⁽¹⁾	0.024	84A	3000	7" Diameter Plastic Tape & Reel
SS3P3HE3/85A ⁽¹⁾	0.024	85A	10000	13" Diameter Plastic Tape & Reel

Note:

(1) Automotive grade AEC Q101 qualified

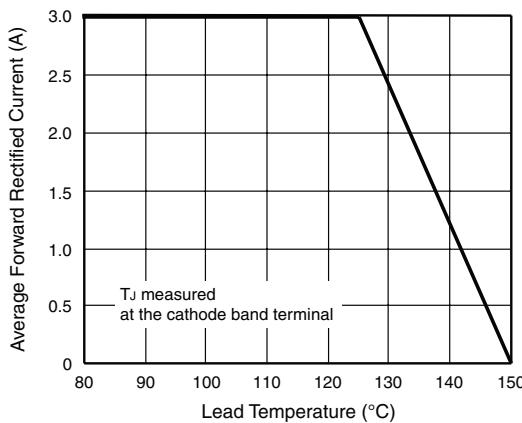

RATINGS AND CHARACTERISTICS CURVES $(T_A = 25^\circ\text{C}$ unless otherwise noted)

Figure 1. Forward Current Derating Curve

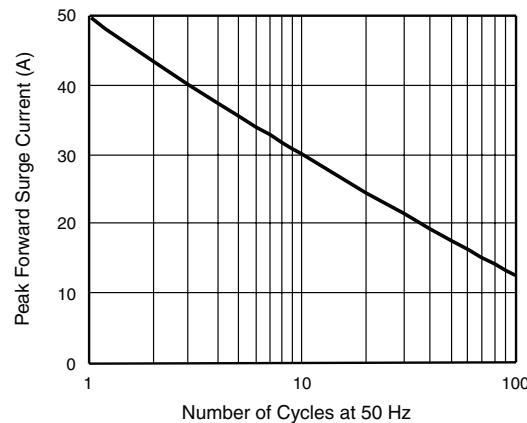


Figure 2. Maximum Non-Repetitive Peak Forward Surge Current

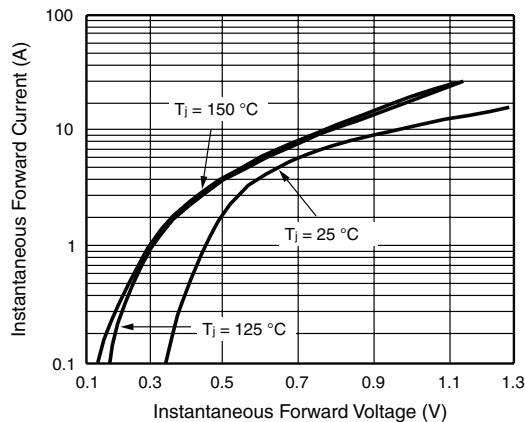


Figure 3. Typical Instantaneous Forward Characteristics

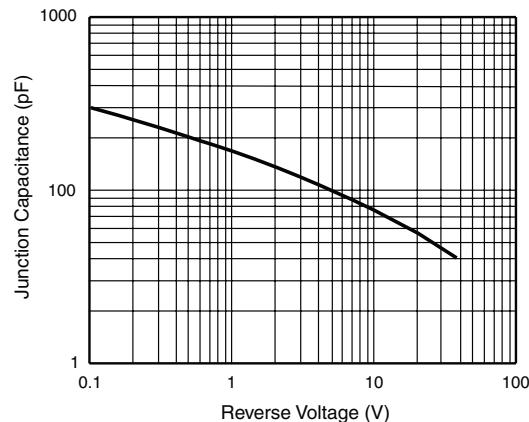


Figure 5. Typical Junction Capacitance

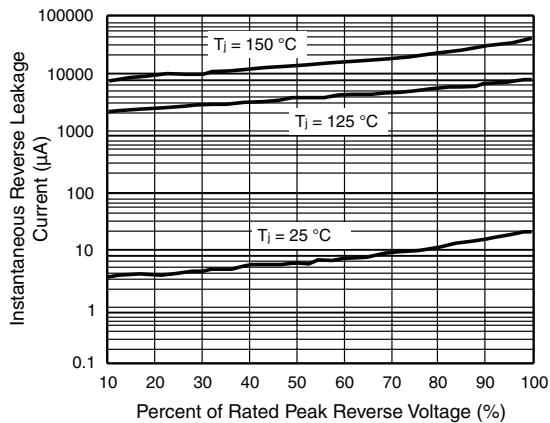


Figure 4. Typical Reverse Leakage Characteristics

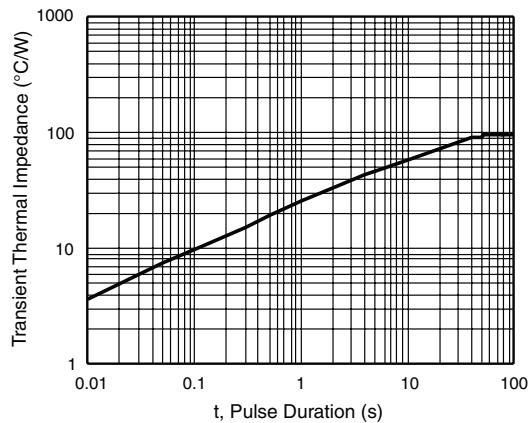
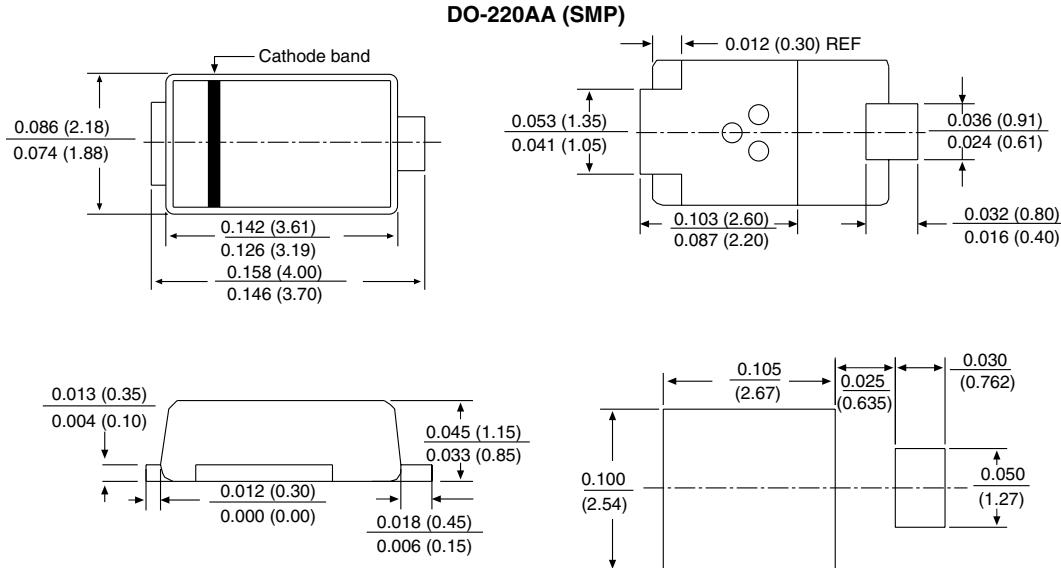



Figure 6. Typical Transient Thermal Impedance

PACKAGE OUTLINE DIMENSIONS in inches (millimeters)

Notice

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.