

STA541SA

2x 20 W dual bridge amplifier

Preliminary data

Features

- High output power capability
 - 2x 20 W into 8 Ω at 17 V with 10% THD
 - 2x 18 W into 4 Ω at 12 V with 10% THD
- Minimum external components count:
 - No bootstrap capacitors
 - No Boucherot cells
 - Internally fixed gain 26 dB
- Standby function (CMOS compatible)
- No audible pop during standby operations
- Diagnostic facilities:
 - Clip detector
 - Output to ground short-circuit detector
 - Output to supply short-circuit detector
 - Soft short-circuit check at turn-on
 - Thermal shutdown warning

Protection

- Output AC/DC short circuit
- Soft short-circuit check at turn-on
- Thermal cutoff/limiter to prevent chip from overheating
- High inductive loads
- ESD

Clipwa	tt15

Description

The STA541SA is a dual bridge, class AB audio amplifier designed for high quality sound applications.

The amplifiers have outputs with integrated short-circuit protection, thermal protection and diagnostic functions.

The chip is housed in the 15-pin Clipwatt, environmentally friendly, ECOPACK® package.

Order code	Operating temp. range	Package	Packaging
STA541SA	0 to 70 °C	Clipwatt15	Tube

January 2010 Doc ID 16988 Rev 1 1/26

Contents STA541SA

Contents

1	Bloc	k diagra	am and pin description	6
	1.1	Block o	diagram	6
	1.2	Pin des	scription	7
2	Elec	trical sp	pecifications	8
	2.1	Absolu	ute maximum ratings	8
	2.2	Therma	al data	8
	2.3	Recom	nmended operating conditions	9
	2.4	Electric	cal characteristics	9
3	Cha	racteriza	ation curves	11
	3.1	For 4-9	Ω loads $\ldots \ldots$	11
	3.2	For 8-9	Ω loads \dots	12
4	Арр	lications	s	13
5	Dem	nonstrati	ion board	14
6	Thei	rmal info	ormation	16
	6.1	Heatsii	nk specification examples	16
		6.1.1	R _{th HS} calculation	16
		6.1.2	Calculations using music power	16
7	Prac	ctical inf	formation	17
	7.1	Interna	ally fixed gain	17
	7.2	Silent t	turn on/off and muting/standby function	17
	7.3	Driving	g circuit for standby mode	17
	7.4	Built–ir	n protection	18
		7.4.1	Diagnostic facilities (pin 10)	18
		7.4.2	Short-circuit protection	
		7.4.3	Clipping detection	18
		7.4.4	Thermal shutdown	19
	7.5	Handliı	ng the diagnostic information	20

STA541SA	.	Contents
	7.6	PCB ground layout
	7.7	Mute function
8	Pack	kage mechanical data
9	Revi	sion history

List of figures STA541SA

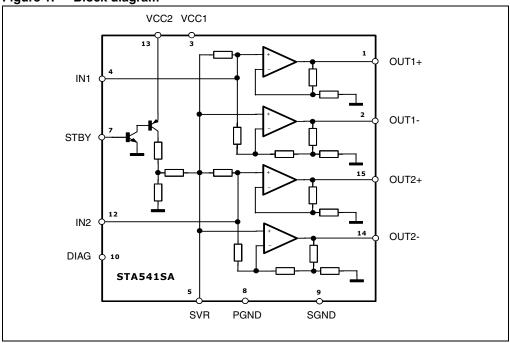
List of figures

Figure 1.	Block diagram	. 6
Figure 2.	Pin connection (top view)	. 7
Figure 3.	Output power vs supply voltage	
Figure 4.	Quiescent current vs supply voltage	11
Figure 5.	Efficiency, device dissipation vs output power	11
Figure 6.	Total harmonic distortion vs output power	11
Figure 7.	Crosstalk vs frequency	11
Figure 8.	Output power vs supply voltage	12
Figure 9.	Quiescent current vs supply voltage	12
Figure 10.	Efficiency, device dissipation vs output power	12
Figure 11.	Total harmonic distortion vs output power	12
Figure 12.	Crosstalk vs frequency	
Figure 13.	Power supply rejection ratio vs frequency	12
Figure 14.	Applications circuit	13
Figure 15.	Demo-board schematic	14
Figure 16.	PCB layout	
Figure 17.	Clipping detection waveforms	
Figure 18.	Configuration of pin DIAG	19
Figure 19.	Fault waveforms on pin DIAG	19
Figure 20.	Waveforms	20
Figure 21.	Interface circuit diagram	20
Figure 22.	Optional mute function circuit	
Figure 23.	Package outline	22

577

STA541SA List of tables

List of tables


Table 1.	Device summary
	Pin description
Table 3.	Absolute maximum ratings
Table 4.	Thermal data
Table 5.	Recommended operating condition
Table 6.	Electrical characteristics
Table 7.	Package dimensions23
Table 8.	Document revision history

1 Block diagram and pin description

1.1 Block diagram

Figure 1. Block diagram

1.2 Pin description

Figure 2. Pin connection (top view)

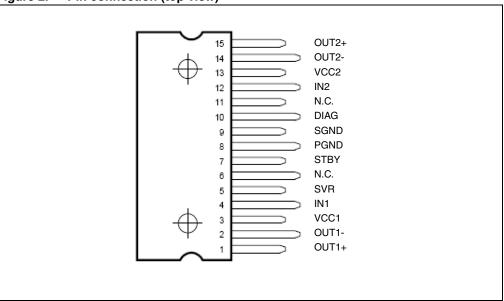


Table 2. Pin description

Pin	Name	Туре	Function
1	OUT1+	OUT	Channel 1 non-inverting output
2	OUT1 -	OUT	Channel 1 inverting output
3	VCC1	PWR	Power supply
4	IN1	IN	Channel 1 input
5	SVR	IN	Supply voltage rejection
6	N.C.	-	No internal connection
7	STBY	IN	Standby control
8	PGND	PWR	Power ground
9	SGND	PWR	Signal ground
10	DIAG	OUT	Diagnostics output
11	N.C.	-	No internal connection
12	IN2	IN	Channel 2 input
13	VCC2	PWR	Power supply
14	OUT2-	OUT	Channel 2 inverting output
15	OUT2+	OUT	Channel 2 non-inverting output

2 Electrical specifications

2.1 Absolute maximum ratings

Table 3. Absolute maximum ratings

Symbol	Parameter		Тур	Max	Unit
	Supply voltage idle mode (no signal)		-	24	V
V _S	Supply voltage operating		-	22	V
	Supply voltage AC-DC short safe	-	-	20	V
P _{tot}	Total power dissipation (T _{case} = 85 °C)		-	32	W
Tj	Junction temperature		-	150	°C
T _{stg}	Storage temperature		-	150	°C
T _{amb}	Ambient temperature	0	-	70	°C

Warning:

Stresses beyond those listed in *Table 3* above may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended operating conditions" are not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. In the real application, power supplies with nominal values rated within the recommended operating conditions, may experience some rising beyond the maximum operating conditions for a short time when no or very low current is being sinked (amplifier in mute state). In this case the reliability of the device is guaranteed, provided that the absolute maximum ratings are not exceeded.

2.2 Thermal data

Table 4. Thermal data

Symbol	Parameter		Тур	Max	Unit
R _{th j-case}	Thermal resistance junction-case	-	-	2.5	°C/W
R _{th j-amb}	Thermal resistance junction-ambient	-	-	45	°C/W

577

8/26

2.3 Recommended operating conditions

Table 5. Recommended operating condition

Symbol	Parameter		Тур	Max	Unit
V _S	Power supply voltage (VCC1, VCC2)	8	-	22	V
T _{amb}	Ambient temperature	0	-	70	°C

2.4 Electrical characteristics

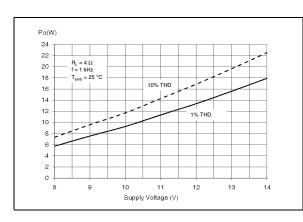
The test conditions are V_S = 17 V, R_L = 8 Ω , f = 1 kHz, T_{amb} = 25 °C unless otherwise specified.

Table 6. Electrical characteristics

Symbol	Parameter	Test condition	Min	Тур	Max	Unit
I _d	Total quiescent drain current	-	-	80	150	mA
V _{os}	Output offset voltage	-	-150	-	150	mV
_	Output power	THD = 10% THD = 1%	-	20 15.6	-	W
P _o	Output power	THD = 10%, R _L = 4 Ω , V _S = 12 V	-	18	-	W
THD	Total harmonic distortion	P _o = 0.1 to 4 W	-	0.02	-	%
I _{SC}	Short-circuit output current	-	3.0	3.5		Α
C _T	Crosstalk	f = 1 kHz f = 10 kHz	55 -	70 60	-	dB
R _{in}	Input impedance	-	10	15	-	kΩ
G _v	Voltage gain	-	25	26	27	dB
G _v	Voltage gain match	-	-	-	0.5	dB
E _N	Input noise voltage	R _{gen} = 0, f = 22 Hz to 22 kHz	-	3.5	-	μV
SVR	Supply voltage rejection	$R_{gen} = 0$, $f = 300 \text{ Hz}$, $C_{SVR} = 470 \mu\text{F}$	50	-	-	dB
A _{STBY}	Standby attenuation	P _o = 1 W	80	90	-	dB
I _{STBY}	Current consumption in standby	V _{STBY} = 0 to 1.5 V	-	-	100	μΑ
	Pin STBY voltage for play	-	-	-	1.5	٧
V _{STBY}	Pin STBY voltage for standby	-	3.5	-	-	V

Table 6. Electrical characteristics (continued)

Symbol	Parameter	Test condition	Min	Тур	Max	Unit
I _{STBY}	Pin ST-BY current	Play mode, V _{STBY} = 5 V	-	-	50	μΑ
		Max driving current under fault	-	-	5	mA
I _{cd_off}	Clipping detector output average current	THD = 1%	-	90	-	μΑ
I _{cd_on}	Clipping detector output average current	THD = 5%	-	160	-	μΑ
V _{DIAG}	Saturation voltage on pin DIAG	I _{DIAG} = 1 mA sinking	-	-	0.7	٧
T _W	Thermal warning	-	-	140	-	°C
T _M	Thermal muting	-	-	150	-	°C
T _S	Thermal shutdown	-	-	160	-	°C


STA541SA Characterization curves

3 Characterization curves

3.1 For 4- Ω loads

Figure 3. Output power vs supply voltage

Figure 4. Quiescent current vs supply voltage

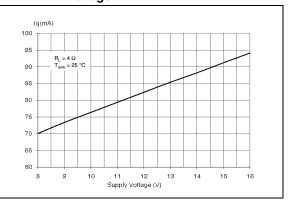


Figure 5. Efficiency, device dissipation vs output power

Figure 6. Total harmonic distortion vs output power

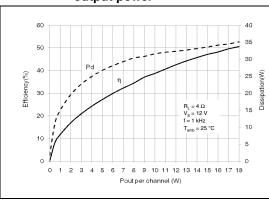
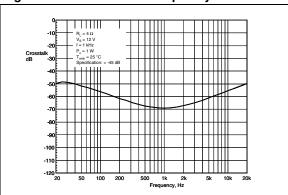
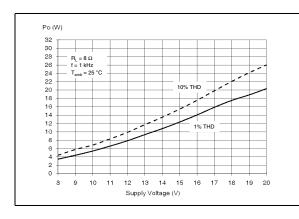



Figure 7. Crosstalk vs frequency

577

Doc ID 16988 Rev 1


11/26

Characterization curves STA541SA

3.2 For 8- Ω loads

Figure 8. Output power vs supply voltage

Figure 9. Quiescent current vs supply voltage

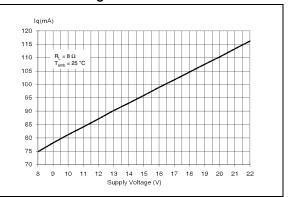
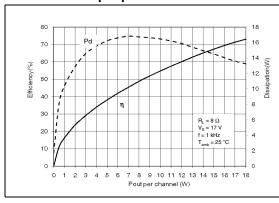



Figure 10. Efficiency, device dissipation vs output power

Figure 11. Total harmonic distortion vs output power

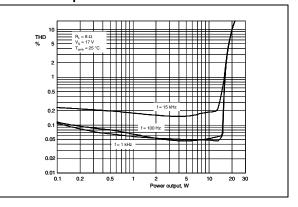
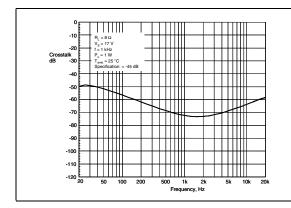
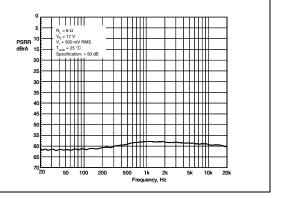
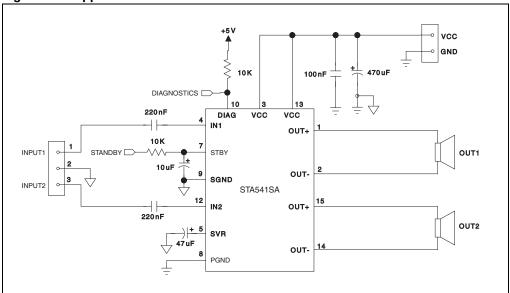




Figure 12. Crosstalk vs frequency

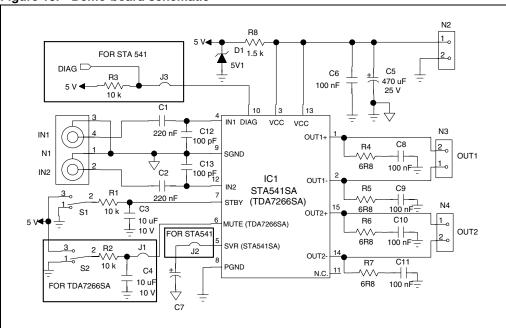
Figure 13. Power supply rejection ratio vs frequency



12/26 Doc ID 16988 Rev 1

STA541SA Applications

4 Applications



Demonstration board STA541SA

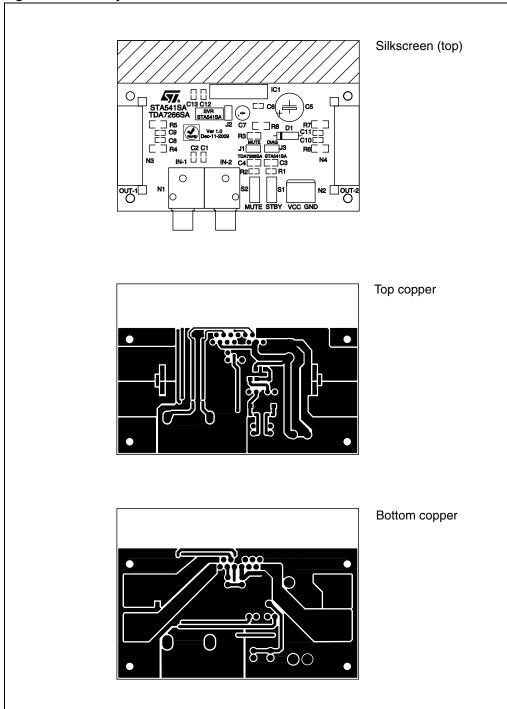

5 Demonstration board

Figure 15. Demo-board schematic

STA541SA Demonstration board

Figure 16. PCB layout

477

Doc ID 16988 Rev 1

15/26

Thermal information STA541SA

6 Thermal information

In order to avoid the premature onset of the thermal protection, see *Figure 6: Electrical characteristics on page 9*, it is necessary to calculate the required thermal resistance, $R_{th\ HS}$, for the heatsink.

The parameters that influence the calculation are:

- maximum power dissipated in the device (P_{dMAX})
- maximum thermal resistance junction to case (R_{th j-case})
- maximum ambient temperature T_{ambMAX}

There is also an additional term that depends on the quiescent current, I_q .

6.1 Heatsink specification examples

6.1.1 R_{th HS} calculation

Downloaded from **Elcodis.com** electronic components distributor

Given that $V_S = 17 \text{ V}$, $R_L = 2x \ 8 \ \Omega$, $P_{outMAX} = 2 \ x \ 20 \ W$

then the maximum power dissipated in the device is:

$$P_{dMAX} = 2 * (2 * V_S / (\pi^2 * R_L)) = 2 * 7.32 = 14.6 W$$

Using this value the required thermal resistance of the heatsink can be determined:

$$R_{th_HS} = (150 - T_{ambMAX}) / P_{dMAX} - R_{th_j\text{-case}} = (150 - 70) / 14.6 - 2.5 = 3.0 °C/W$$

6.1.2 Calculations using music power

The thermal resistance value calculated in the above example specifies a heatsink capable of sustaining the maximum dissipated power. Realistically, however, and as explained in the Applications note (AN1965), the heatsink can be smaller when the application is musical content.

When music power is considered the resulting dissipation is about 40% less than the calculated maximum. Thus, a smaller or cheaper heatsink can be employed.

Using the values in the previous example, the maximum dissipated power reduces to:

$$P_{dMAX} = 14.6 - 40\% = 8.8 W$$

leading to a heatsink thermal resistance of R_{th_HS} = 6.6 °C/W.

16/26 Doc ID 16988 Rev 1

STA541SA Practical information

7 Practical information

7.1 Internally fixed gain

The advantages in internally fixing the gain to 26 dB are:

- components and space saving
- output noise, supply voltage rejection and distortion optimization.

7.2 Silent turn on/off and muting/standby function

The standby mode can be easily activated by means of a CMOS logic level applied to pin STBY through a RC filter.

In standby, the device is turned of, drawing typically 1 mA from the supply and the output attenuation is 80 dB minimum.

All switch-on and switch-off operations are virtually pop-free. Furthermore, at turn-on the device stays muted for a time determined by the value of the capacitor on pin SVR. This prevents transients coming from previous stages which otherwise could produce unpleasant acoustic effects at the speakers.

7.3 Driving circuit for standby mode

Some precautions need to be taken when designing the driving circuit for pin 7, STBY. For instance, the pin cannot be directly driven by a voltage source having a current capability higher than 5 mA. In practical cases a series resistor must be inserted, giving it the double purpose of limiting the current at pin 7 and to smooth down the standby on/off transitions. When done in combination with a capacitor it prevents output pop.

A capacitor of at least 100 nF from pin 7 to SGND is necessary to ensure correct turn-on (see also *Figure 14: Applications circuit on page 13*).

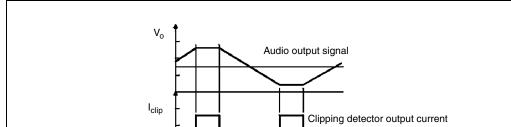
Practical information STA541SA

7.4 Built-in protection

7.4.1 Diagnostic facilities (pin 10)

The STA541SA is equipped with diagnostic circuitry that is able to detect the following events:

- clipping of the output signal
- thermal shutdown
- output fault:
 - short circuit to ground
 - short circuit to supply
 - soft short circuit at turn-on.


The event is signalled when the open collector output of pin 10 (DIAG) begins to sink current.

7.4.2 Short-circuit protection

Reliable and safe operation in the presence of all kinds of output short circuit is assured by the built-in protection. As well as the AC/DC short circuit to GND and to V_S, and across the speaker, there is a soft short-circuit condition which is signalled on pin DIAG during the turn-on phase to verify output circuit integrity in order to ensure correct amplifier operation.

As mentioned previously, it is important to limit the external current driving pin STBY to 5 mA, the reason being that the associated circuitry is normally disabled with currents greater than 5 mA.

7.4.3 Clipping detection

--- Time

Figure 17. Clipping detection waveforms

A gain-compression function is initiated whenever the amplifier is overdriven. When a certain distortion level is reached at each output, pin 10 starts to sink current.

18/26 Doc ID 16988 Rev 1

STA541SA Practical information

7.4.4 Thermal shutdown

With the thermal shutdown feature the diagnostics output on pin 10 signals the closeness of the junction temperature to the shutdown threshold. Typically, current sinking at pin 10 starts approximately $10\,^{\circ}\text{C}$ before the shutdown temperature is reached.

Figure 18. Configuration of pin DIAG

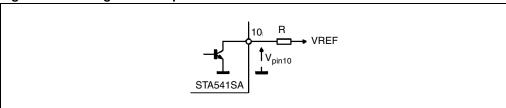
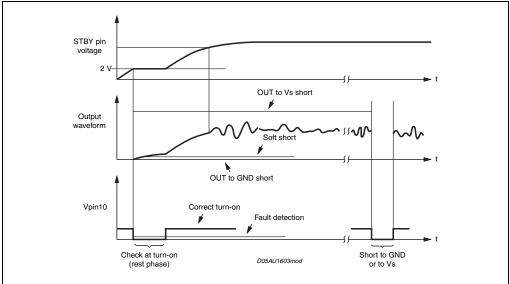



Figure 19. Fault waveforms on pin DIAG

Practical information STA541SA

Handling the diagnostic information 7.5

As different diagnostic information (clipping detection, output fault, approaching thermal shutdown) becomes available at pin 10 so the behavior of the signal at this pin changes.

In order to discriminate the event the signal on pin 10 must be interpreted correctly. Figure 20 shows a combination of events on the output waveform and the corresponding output on pin 10.

These events could be diagnosed based on the timing of the output signal on pin 10. For example, the clip-detector signalling under fault conditions could produce a low level for a short time. On the other hand, an output short circuit would probably produce a low level for a much longer time. With these assumptions, an interface circuit based on the one shown in Figure 21 could differentiate the information and flag the appropriate circuits.

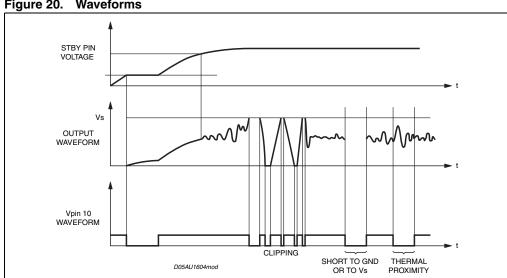
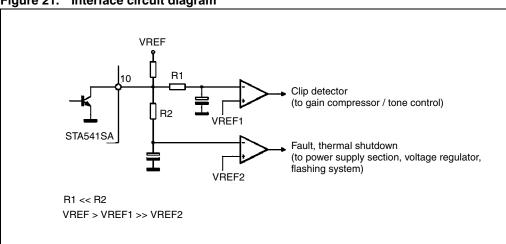



Figure 20. Waveforms

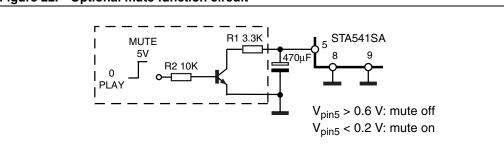
Figure 21. Interface circuit diagram

20/26 Doc ID 16988 Rev 1 STA541SA Practical information

7.6 PCB ground layout

The device has two distinct ground pins, PGND (power ground) and SGND (signal ground) which are disconnected from each other at chip level. For superior performance the pins PGND and SGND must be connected together on the PCB by low-resistance tracks.

For the PCB ground configuration, a star-like arrangement, where the center is represented by the supply-filtering electrolytic capacitor ground, is recommended. In an arrangement such as this at least two separate paths must be provided, one for PGND and one for SGND.

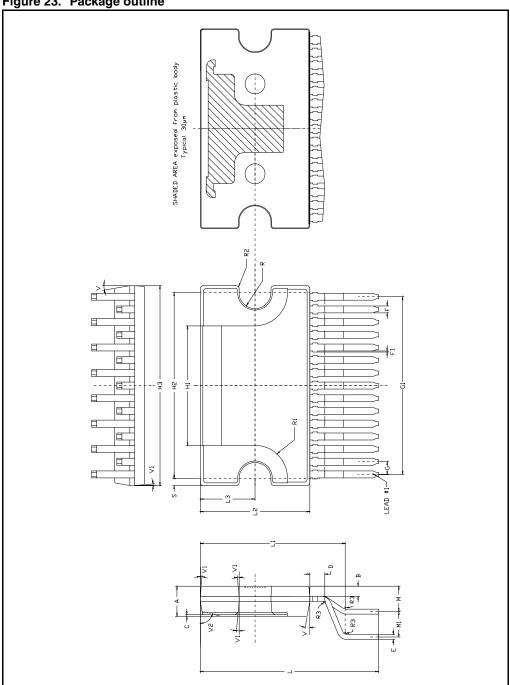

The correct ground assignments are as follows:

- on SGND:
 - standby capacitor (pin 7, or any other standby driving networks)
 - SVR capacitor (pin 5), to be placed as close as possible to the device
 - input signal ground (from active/passive signal processor stages)
- on PGND:
 - power supply filtering capacitors for pins 3 and 13; the negative terminal of the electrolytic capacitor(s) must be directly tied to the battery negative line and this should represent the starting point for all the ground paths.

7.7 Mute function

If the mute function is desired, it can be implemented on pin 5, SVR, as shown in Figure 22.

Figure 22. Optional mute function circuit


Using a different value for R1 than the suggested 3.3 k Ω , results in two different situations:

- R1 > 3.3 kΩ:
 - pop noise improvement
 - lower mute attenuation
- R1 < 3.3 kΩ:
 - pop noise degradation
 - higher mute attenuation.

Package mechanical data 8

The STA541SA is housed in a Clipwatt 15-lead split vertical package. Figure 23 shows the package outline and *Table 7* below gives the dimensions.

Figure 23. Package outline

22/26 Doc ID 16988 Rev 1 In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. $ECOPACK^{\textcircled{R}}$ is an ST trademark. $ECOPACK^{\textcircled{R}}$

Table 7. Package dimensions

Reference	Dimensions in mm			Dimensions in inches			Notes
	Min	Тур	Max	Min	Тур	Max	Notes
Α	-	-	3.2	-	-	0.126	-
В	-	-	1.05	-	-	0.041	-
С	-	0.15	-	-	0.006	-	-
D	-	1.5	-	-	0.059	-	-
E	0.49	-	0.55	0.019	-	0.021	-
F	0.65	-	0.73	0.026	-	0.029	-
F1	-	-	0.1	-	-	0.004	(1)
G	1.14	1.27	1.40	0.045	0.050	0.055	-
G1	17.57	17.78	17.91	0.692	0.700	0.705	-
Н1	-	12	-	-	0.472	-	-
H2	-	18.6	-	-	0.732	-	-
Н3	19.85	-	-	0.781	-	-	(2)
L	-	17.9	-	-	0.705	-	-
L1	-	14.55	-	-	0.573	-	-
L2	10.70	11.00	11.20	0.421	0.433	0.441	(2)
L3	-	5.5	-	-	0.217	-	-
М	-	2.54	-	-	0.1	-	-
M1	-	2.54	-	-	0.1	-	-
R	-	1.50	-	-	0.059	-	-
R1	-	3.30	-	-	0.130	-	-
R2	-	0.30	-	-	0.012	-	-
R3	-	0.50	-	-	0.019	-	-
s	-	0.70	-	-	0.028	-	-
v	-	10 deg	-	-	10 deg	-	-

477

Doc ID 16988 Rev 1

23/26

Table 7. Package dimensions (continued)

Reference	Dimensions in mm			Dimensions in inches			Notes
	Min	Тур	Max	Min	Тур	Max	Notes
V1	-	5 deg	-	-	5 deg	-	-
V2	-	75 deg	-	-	75 deg	-	-

^{1.} No intrusion allowed inwards the leads

^{2.} H3 and L2 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side

STA541SA Revision history

9 Revision history

Table 8. Document revision history

Date	Revision	Changes		
27-Jan-2010	1	Initial release.		

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION). OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2010 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

26/26 Doc ID 16988 Rev 1

