

STGW10M65DF2

Trench gate field-stop IGBT, M series 650 V, 10 A low loss

Datasheet - production data

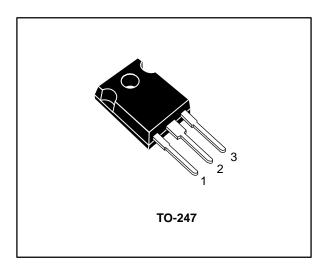
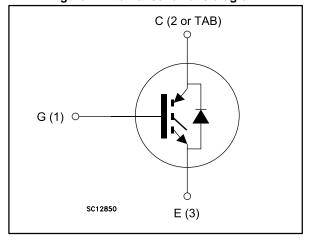



Figure 1: Internal schematic diagram

Features

- 6 µs of short-circuit withstand time
- V_{CE(sat)} = 1.55 V (typ.) @ I_C = 10 A
- Tight parameter distribution
- Safer paralleling
- Low thermal resistance
- Soft and very fast recovery antiparallel diode

Applications

- Motor control
- UPS
- PFC

Description

This device is an IGBT developed using an advanced proprietary trench gate field-stop structure. The device is part of the M series of IGBTs, which represent an optimum compromise in performance to maximize the efficiency of inverter systems where low-loss and short-circuit capability are essential. Furthermore, a positive $V_{\text{CE(sat)}}$ temperature coefficient and tight parameter distribution result in safer paralleling operation.

Table 1: Device summary

Order code	Marking	Package	Packing
STGW10M65DF2	G10M65DF2	TO-247	Tube

Contents STGW10M65DF2

Contents

1	Electric	al ratings	3
2	Electric	cal characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	·cuits	12
4	Packag	e information	13
	4.1	TO-247 package information	13
5	Revisio	n history	15

STGW10M65DF2 Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
Vces	Collector-emitter voltage (V _{GE} = 0)	650	V
1.	Continuous collector current at T _C = 25 °C	20	۸
lc	Continuous collector current at T _C = 100 °C	10	Α
ICP ⁽¹⁾	Pulsed collector current	sed collector current 40	
V_{GE}	Gate-emitter voltage	± 20	V
	Continuous forward current at T _C = 25 °C	20	А
l _F	Continuous forward current at T _C = 100 °C	10	A
I _{FP} ⁽¹⁾	Pulsed forward current	40	Α
Ртот	Total dissipation at T _C = 25 °C	115	W
T _{STG}	Storage temperature range - 55 to 150		°C
TJ	Operating junction temperature range	- 55 to 175	

Notes:

Table 3: Thermal data

Symbol	Parameter	Value	Unit
RthJC	Thermal resistance junction-case IGBT	1.3	
RthJC	Thermal resistance junction-case diode	2.08	°C/W
R _{thJA}	Thermal resistance junction-ambient	50	

 $^{^{(1)}}$ Pulse width limited by maximum junction temperature.

Electrical characteristics STGW10M65DF2

2 Electrical characteristics

 $T_C = 25$ °C unless otherwise specified

Table 4: Static characteristics

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)CES}	Collector-emitter breakdown voltage	V _{GE} = 0 V, I _C = 250 μA	650			V
		$V_{GE} = 15 \text{ V}, I_{C} = 10 \text{ A}$		1.55	2.0	
V _{CE(sat)} Collector-emitter saturation voltage	V _{GE} = 15 V, I _C = 10 A, T _J = 125 °C		1.9		V	
	V _{GE} = 15 V, I _C = 10 A, T _J = 175 °C		2.1			
		I _F = 10 A		1.5		
V _F	Forward on-voltage	I _F = 10 A, T _J = 125 °C		1.3		V
		I _F = 10 A, T _J = 175 °C		1.2		
V _{GE(th)}	Gate threshold voltage	V _{CE} = V _{GE} , I _C = 250 μA	5	6	7	V
ICES	Collector cut-off current	V _{GE} = 0 V, V _{CE} = 650 V			25	μΑ
I _{GES}	Gate-emitter leakage current	$V_{CE} = 0 \text{ V}, V_{GE} = \pm 20 \text{ V}$			250	μΑ

Table 5: Dynamic characteristics

rable of Dynamic Characteriones						
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{ies}	Input capacitance		-	840	-	
Coes	Output capacitance	$V_{CE} = 25 \text{ V}, f = 1 \text{ MHz}, $ $V_{GE} = 0 \text{ V}$	-	63	ı	pF
Cres	Reverse transfer capacitance	VGL — V V	-	16	-	
Qg	Total gate charge	Vcc = 520 V, Ic = 10 A,	-	28	ı	
Q_{ge}	Gate-emitter charge	V _{GE} = 15 V (see <i>Figure 30</i> :	-	6	1	nC
Q_{gc}	Gate-collector charge	" Gate charge test circuit")	-	12	-	

Table 6: IGBT switching characteristics (inductive load)

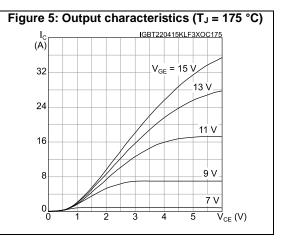
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time			19	-	ns
tr	Current rise time			7.4	1	ns
(di/dt)on	Turn-on current slope	V _{CE} = 400 V, I _C = 10 A,		1086	-	A/µs
t _{d(off)}	Turn-off-delay time	$V_{GE} = 15 \text{ V}, R_G = 22 \Omega$		91	-	ns
t _f	Current fall time	(see Figure 29: " Test circuit for inductive load		92	-	ns
E _{on} ⁽¹⁾	Turn-on switching energy	switching")		0.12	-	mJ
E _{off} (2)	Turn-off switching energy			0.27	-	mJ
Ets	Total switching energy			0.39	-	mJ
t _{d(on)}	Turn-on delay time			18	-	ns
tr	Current rise time			9	-	ns
(di/dt) _{on}	Turn-on current slope	V _{CE} = 400 V, I _C = 10 A,		890	-	A/µs
t _{d(off)}	Turn-off-delay time	$V_{GE} = 15 \text{ V}, R_{G} = 22 \Omega$		90	-	ns
tf	Current fall time	T _J = 175 °C (see Figure 29: " Test circuit for		170	-	ns
Eon ⁽¹⁾	Turn-on switching energy	inductive load switching")		0.26	-	mJ
E _{off} (2)	Turn-off switching energy			0.4	-	mJ
E _{ts}	Total switching energy			0.66	-	mJ
t _{sc}	Short-circuit withstand time	Vcc ≤ 400 V, V _{GE} = 13 V, T _{Jstart} = 150 °C	10		-	
		V _{CC} ≤ 400 V, V _{GE} = 15 V, T _{Jstart} = 150 °C	6		-	μs

Notes:

Table 7: Diode switching characteristics (inductive load)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{rr}	Reverse recovery time		-	96		ns
Qrr	Reverse recovery charge	I _F = 10 A, V _R = 400 V,	-	373		nC
I _{rrm}	Reverse recovery current	V _{GE} = 15 V (see <i>Figure 29:</i> "	-	13		Α
dl _{rr} /dt	Peak rate of fall of reverse recovery current during t _b	Test circuit for inductive load switching") di/dt = 1000 A/µs	-	661		A/µs
Err	Reverse recovery energy		-	52		μJ
t _{rr}	Reverse recovery time		-	201		ns
Qrr	Reverse recovery charge	I _F = 10 A, V _R = 400 V,	-	1352		nC
I _{rrm}	Reverse recovery current	$V_{GE} = 15 \text{ V T}_{J} = 175 \text{ °C}$ (see Figure 29: " Test circuit	-	19		Α
dl _{rr} /dt	Peak rate of fall of reverse recovery current during t _b	for inductive load switching") di/dt = 1000 A/µs	-	405		A/µs
Err	Reverse recovery energy		-	150		μJ

⁽¹⁾Including the reverse recovery of the diode.


 $[\]ensuremath{^{(2)}}\mbox{Including}$ the tail of the collector current.

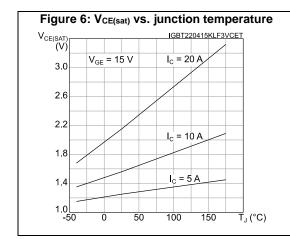
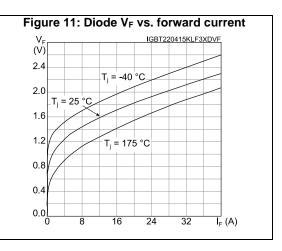
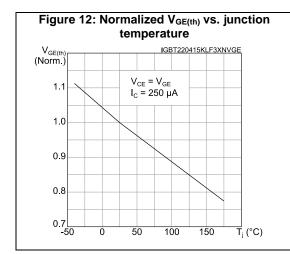
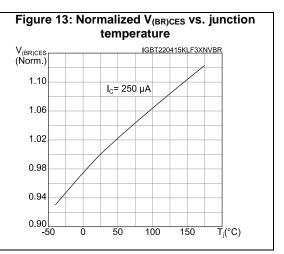

2.1 Electrical characteristics (curves)

Figure 2: Power dissipation vs. case temperature


PTOT | GBT220415KLF3XPDT |


120 | 90 | $V_{GE} \ge 15 \text{ V}$ $T_j \le 175 \text{ °C}$ 30 | $T_c \text{ (°C)}$



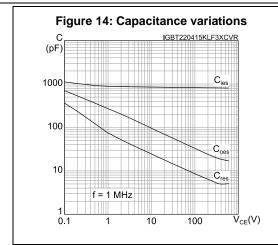
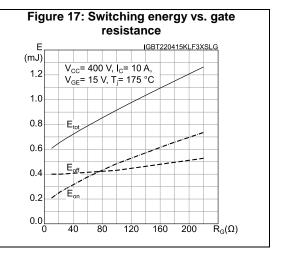
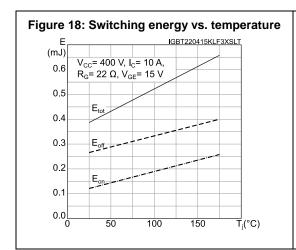


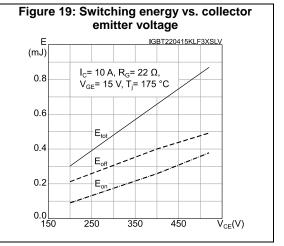
Figure 15: Gate charge vs. gate-emitter voltage

V_{GE}
(V)

16

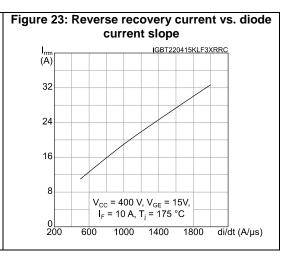

V_{CC} = 520 V,
I_C = 10 A,
I_G = 1 mA

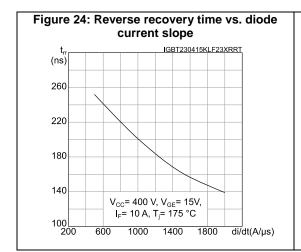

12

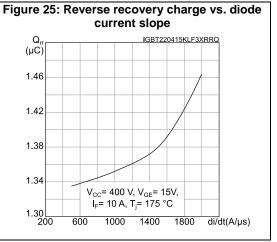

8

4

0
0
0
5
10
15
20
25
30
Q_g (nC)







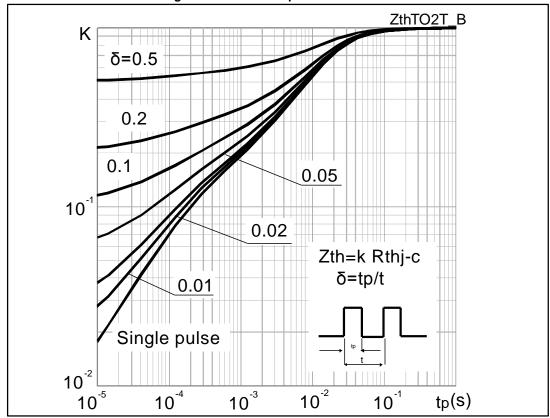
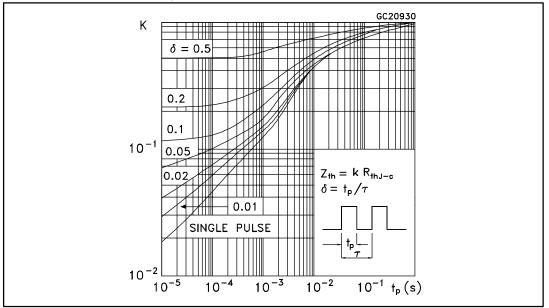
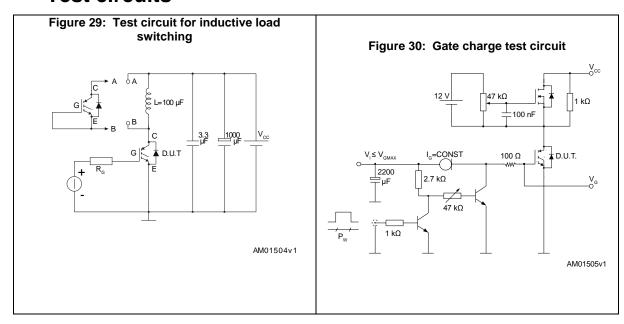
STGW10M65DF2 Electrical characteristics

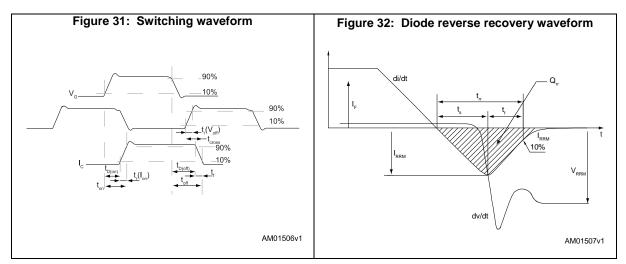
Figure 20: Short-circuit time and current vs. V_{GE} IGBT220415KLF3XSCV I_{SC} (A) (µs) V_{CC}≤ 400 V 65 20 T_i≤ 150 °C 15 50 10 35 20 5 $\overrightarrow{V}_{GE}(V)$ 12 13 14 15

Electrical characteristics STGW10M65DF2



Figure 27: Thermal impedance for IGBT


Figure 28: Thermal impedance for diode

Test circuits STGW10M65DF2

3 Test circuits

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

4.1 TO-247 package information

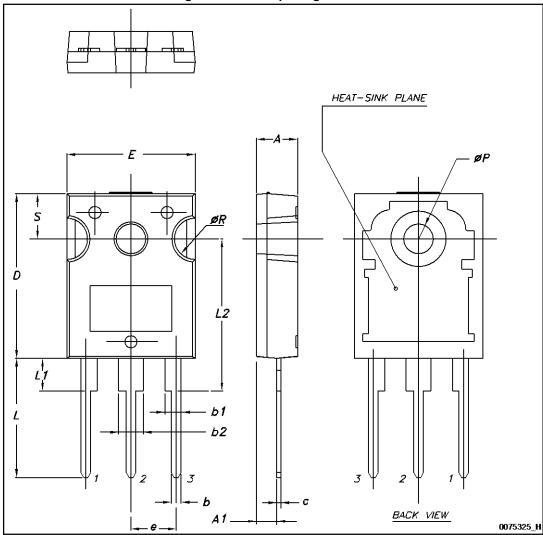


Figure 33: TO-247 package outline

Table 8: TO-247 package mechanical data

Dim.	•	mm.	
Dilli.	Min.	Тур.	Max.
А	4.85		5.15
A1	2.20		2.60
b	1.0		1.40
b1	2.0		2.40
b2	3.0		3.40
С	0.40		0.80
D	19.85		20.15
Е	15.45		15.75
е	5.30	5.45	5.60
L	14.20		14.80
L1	3.70		4.30
L2		18.50	
ØP	3.55		3.65
ØR	4.50		5.50
S	5.30	5.50	5.70

STGW10M65DF2 Revision history

5 Revision history

Table 9: Document revision history

Date	Revision	Changes
08-Mar-2016	1	First release.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

