

STK581U3C2D-E

Advance Information

Inverter IPM for 3-phase Motor Drive

ON Semiconductor®

<http://onsemi.com>

Overview

This “Inverter IPM” is highly integrated device containing all High Voltage (HV) control from HV-DC to 3-phase outputs in a single SIP module (Single-In line Package). Output stage uses IGBT/FRD technology and implements Under Voltage Protection (UVP) and Over Current Protection (OCP) with a Fault Detection output flag. Internal Boost diodes are provided for high side gate boost drive.

Function

- Single control power supply due to Internal bootstrap circuit for high side pre-driver circuit
- All control input and status output are at low voltage levels directly compatible with microcontrollers
- Built-in cross conduction prevention
- Externally accessible embedded thermistor for substrate temperature measurement
- The level of the over-current protection current is adjustable with the external resistor, “RSD”

Certification

- UL1557 (File Number : E339285).

Specifications

Absolute Maximum Ratings at $T_c = 25^\circ\text{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	V_{CC}	P to N, surge < 500V *1	450	V
Collector-emitter voltage	V_{CE}	P to U,V,W or U,V,W to N	600	V
Output current	I_o	P, N, U,V,W terminal current	± 30	A
		P, N, U,V,W terminal current at $T_c = 100^\circ\text{C}$	± 15	A
Output peak current	I_{op}	P, N, U,V,W terminal current for a Pulse width of 1ms.	± 45	A
Pre-driver voltage	$VD1,2,3,4$	VB1 to U, VB2 to V, VB3 to W, V_{DD} to VSS *2	20	V
Input signal voltage	V_{IN}	HIN1, 2, 3, LIN1, 2, 3	-0.3 to V_{DD}	V
FAULT terminal voltage	V_{FAULT}	FAULT terminal	-0.3 to V_{DD}	V
Maximum power dissipation	P_d	IGBT per channel	49	W
Junction temperature	T_j	IGBT,FRD	150	$^\circ\text{C}$
Storage temperature	T_{stg}		-40 to +125	$^\circ\text{C}$
Operating case temperature	T_c	H-IC case temperature	-40 to +100	$^\circ\text{C}$
Tightening torque		Case mounting screws *3	1.17	Nm
Withstand voltage	V_{is}	50Hz sine wave AC 1 minute *4	2000	VRMS

Reference voltage is “VSS” terminal voltage unless otherwise specified.

*1 : Surge voltage developed by the switching operation due to the wiring inductance between “P” and “N” terminal.

*2 : Terminal voltage : $VD1=VB1-U$, $VD2=VB2-V$, $VD3=VB3-W$, $VD4=V_{DD}-VSS$

*3 : Flatness of the heat-sink should be 0.15mm and below.

*4 : Test conditions : AC2500V, 1 second.

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

This document contains information on a new product. Specifications and information herein are subject to change without notice.

ORDERING INFORMATION

See detailed ordering and shipping information on page 15 of this data sheet.

Electrical Characteristics at $T_c = 25^\circ\text{C}$, $VD1, VD2, VD3, VD4 = 15\text{V}$

Parameter	Symbol	Conditions	Test circuit	min	typ	max	Unit
Power output section							
Collector-emitter cut-off current	I_{CE}	$V_{CE} = 600\text{V}$	Fig.1	-	-	0.1	mA
Bootstrap diode reverse current	$IR(BD)$	$VR(BD)$		-	-	0.1	mA
Collector to emitter saturation voltage	$V_{CE}(\text{SAT})$	$I_c = 30\text{A}$	Fig.2	-	1.8	2.7	V
		$T_j = 25^\circ\text{C}$		-	2.1	3.0	
		$I_c = 15\text{A}$	Fig.2	-	1.5	-	
		$T_j = 100^\circ\text{C}$		-	1.7	-	
		Upper side		-	2.0	2.9	
Diode forward voltage	VF	$I_F = 30\text{A}$	Fig.3	-	2.3	3.2	V
		$T_j = 25^\circ\text{C}$		-	1.5	-	
		$I_F = 15\text{A}$	Fig.3	-	1.7	-	
		$T_j = 100^\circ\text{C}$		-	-	-	
		Lower side *1		-	-	-	
Junction to case thermal resistance	$\theta_{j-c}(T)$	IGBT	-	-	-	2.5	$^\circ\text{C}/\text{W}$
	$\theta_{j-c}(D)$	FRD	-	-	-	3	
Control (Pre-driver) section							
Pre-driver power dissipation	ID	$VD1, 2, 3 = 15\text{V}$	Fig.4	-	0.08	0.4	mA
		$VD4 = 15\text{V}$		-	1.6	4	
High level Input voltage	$V_{IN\ H}$	HIN1, HIN2, HIN3, LIN1, LIN2, LIN3 to V_{SS}	-	2.5	-	-	V
Low level Input voltage	$V_{IN\ L}$		-	-	-	0.8	V
Input threshold voltage hysteresis*1	$V_{IN\ hys}$		-	0.5	0.8	-	V
Logic 1 input leakage current	I_{IN+}	$V_{IN} = +3.3\text{V}$	-	-	100	143	μA
Logic 0 input leakage current	I_{IN-}	$V_{IN} = 0\text{V}$	-	-	-	2	μA
FAULT terminal input electric current	$IoSD$	FAULT : ON / VFAULT = 0.1V	-	-	2	-	mA
FAULT clear time	FLTCLR	Fault output latch time.	-	18	-	80	ms
V_{CC} and V_S undervoltage positive going threshold.	V_{CCUV+} V_{SUV+}		-	10.5	11.1	11.7	V
V_{CC} and V_S undervoltage negative going threshold.	V_{CCUV-} V_{SUV-}		-	10.3	10.9	11.5	V
V_{CC} and V_S undervoltage hysteresis	V_{CCUVH} V_{SUVH-}		-	0.14	0.2	-	V
Over current protection level	ISD	$PW = 100\mu\text{s}$, $RSD = 0\Omega$	Fig.5	38.5	-	48.2	A
Output level for current monitor	ISO	$Io = 10\text{A}$	-	0.32	0.34	0.36	V

Reference voltage is “ V_{SS} ” terminal voltage unless otherwise specified.

*1 : The lower side's $V_{CE}(\text{SAT})$ and VF include a loss by the shunt resistance

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

Electrical Characteristics at $T_c = 25^\circ\text{C}$, $VD1, VD2, VD3, VD4 = 15\text{V}$, $V_{CC}=300\text{V}$, $L=3.5\text{mH}$

Parameter	Symbol	Conditions	Test circuit	min	typ	max	Unit
Switching Character							
Switching time	t _{ON}	Io = 30A	Fig.6	0.3	0.6	1.3	μs
	t _{OFF}			-	0.9	1.6	
Turn-on switching loss	E _{on}			-	800	-	μJ
Turn-off switching loss	E _{off}			-	550	-	μJ
Total switching loss	E _{tot}			-	1350	-	μJ
Turn-on switching loss	E _{on}			-	530	-	μJ
Turn-off switching loss	E _{off}			-	450	-	μJ
Total switching loss	E _{tot}			-	980	-	μJ
Diode reverse recovery energy	E _{rec}	IF = 15A, $T_c = 100^\circ\text{C}$		-	39	-	μJ
Diode reverse recovery time	trr			-	75	-	Ns
Reverse bias safe operating area	RBSOA	Io = 45A, $V_{CE} = 450\text{V}$		Full square			
Short circuit safe operating area	SCSOA	$V_{CE} = 400\text{V}$, $T_c = 100^\circ\text{C}$		4	-	-	μs
Allowable offset voltage slew rate	dv/dt	Between U, V, W to N		-50	-	50	V/ns

Reference voltage is “V_{SS}” terminal voltage unless otherwise specified.

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

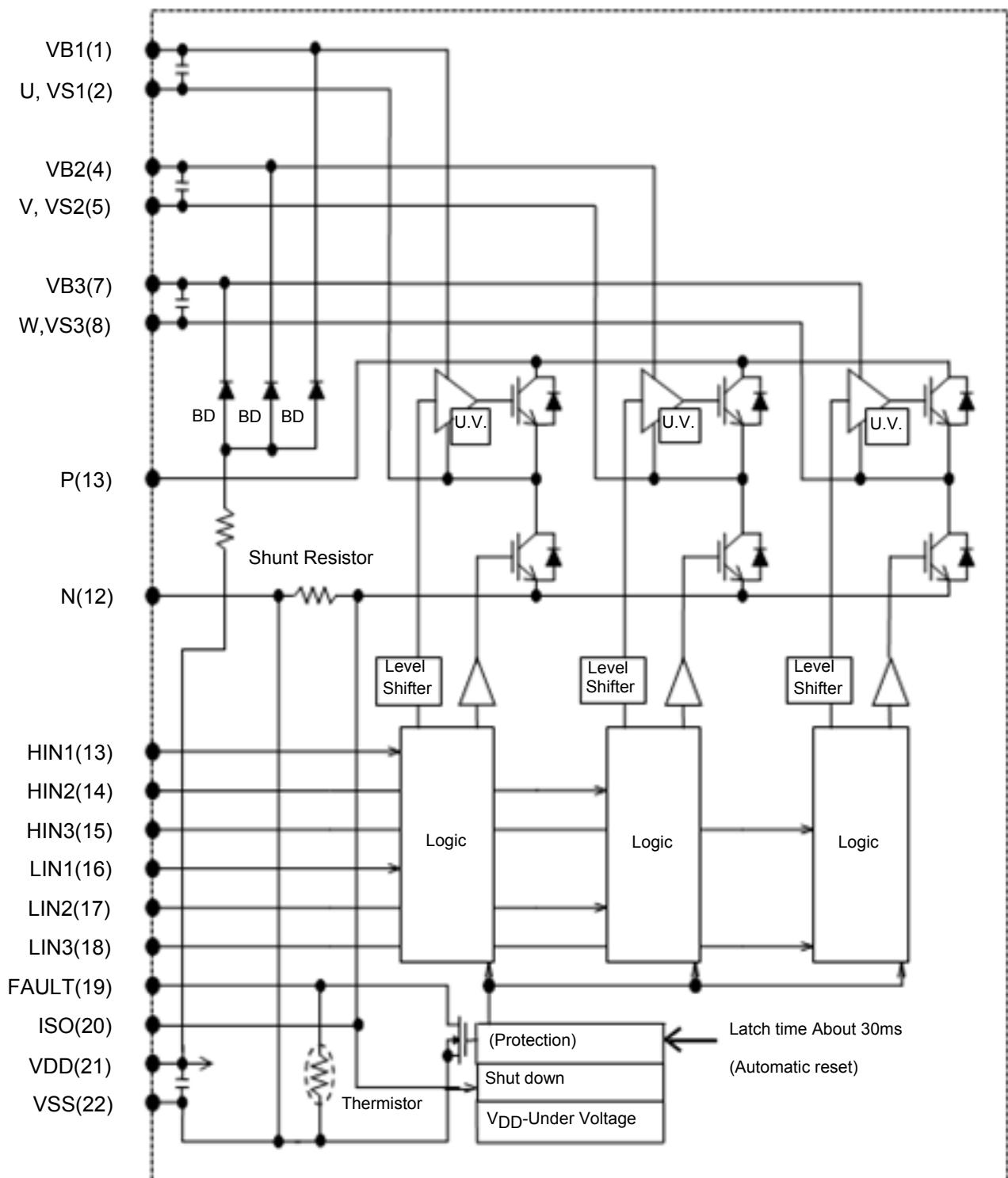
Notes :

- When the internal protection circuit operates, a Fault signal is turned ON (When the Fault terminal is low level, Fault signal is ON state : output form is open DRAIN) but the Fault signal does not latch. After protection operation ends, it returns automatically within about 18ms to 80ms and resumes operation beginning condition. So, after Fault signal detection, set all input signals to OFF (Low) at once. However, the operation of pre-drive power supply low voltage protection (UVLO : with hysteresis about 0.2V) is as follows.

Upper side :

The gate is turned off and will return to regular operation when recovering to the normal voltage, but the latch will continue till the input signal will turn ‘low’.

Lower side :


The gate is turned off and will automatically reset when recovering to normal voltage. It does not depend on input signal voltage.

- When assembling the IPM on the heat sink with M3 type screw, tightening torque range is 0.79 Nm to 1.17 Nm.
- The pre-drive low voltage protection is the feature to protect devices when the pre-driver supply voltage falls due to an operating malfunction.

Module Pin-Out Description

Pin	Name	Description
1	VB1	High Side Floating Supply Voltage 1
2	U, VS1	Output 1 - High Side Floating Supply Offset Voltage
3	–	Without Pin
4	VB2	High Side Floating Supply voltage 2
5	V,VS2	Output 2 - High Side Floating Supply Offset Voltage
6	–	Without Pin
7	VB3	High Side Floating Supply voltage 1
8	W,VS3	Output 1 - High Side Floating Supply Offset Voltage
9	–	Without Pin
10	P	Positive Bus Input Voltage
11	–	Without Pin
12	N	Positive Bus Input Voltage
13	–	Without Pin
14	HIN1	Logic Input High Side Gate Driver - Phase U
15	HIN2	Logic Input High Side Gate Driver - Phase V
16	HIN3	Logic Input High Side Gate Driver - Phase W
17	LIN1	Logic Input Low Side Gate Driver - Phase U
18	LIN2	Logic Input Low Side Gate Driver - Phase V
19	LIN3	Logic Input Low Side Gate Driver - Phase W
20	ISO	Current monitor output
21	VDD	+15V Main Supply
22	VSS	Negative Main Supply

Equivalent Block Diagram

Test Circuit

(The tested phase : U+ shows the upper side of the U phase and U- shows the lower side of the U phase.)

■ ICE / IR(BD)

	U+	V+	W+	U-	V-	W-
M	10	10	10	2	5	8
N	2	5	8	12	12	12

	U(BD)	V(BD)	W(BD)
M	1	4	7
N	22	22	22

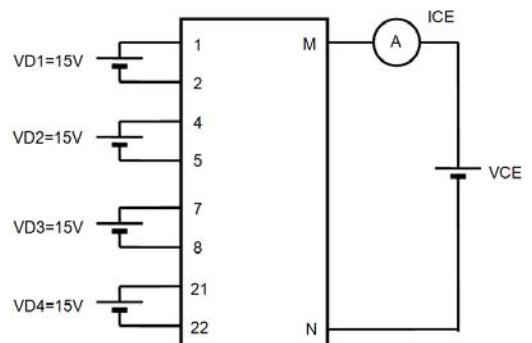


Fig. 1

■ VCE(SAT) (Test by pulse)

	U+	V+	W+	U-	V-	W-
M	10	10	10	2	6	8
N	2	5	8	12	12	12
m	13	14	15	16	17	18

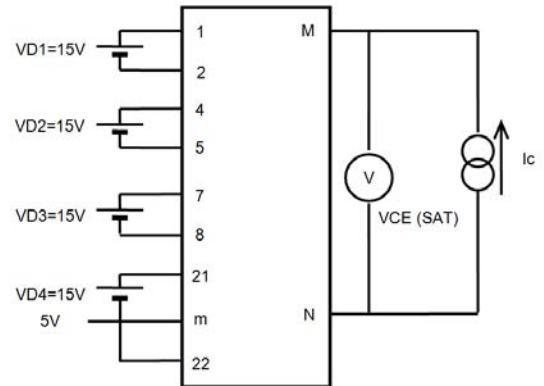


Fig. 2

■ VF (Test by pulse)

	U+	V+	W+	U-	V-	W-
M	10	10	10	2	5	8
N	2	5	8	12	12	12

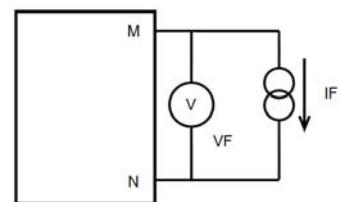


Fig. 3

■ ID

	VD1	VD2	VD3	VD4
M	1	4	7	21
N	2	5	8	22

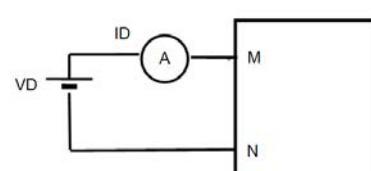


Fig. 4

■ ISD

Input signal

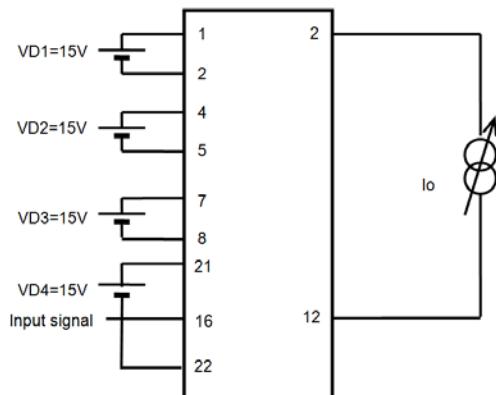
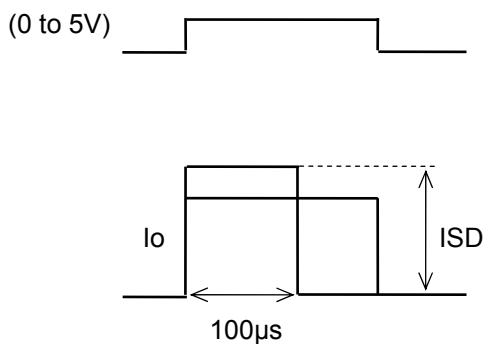



Fig. 5

■ Switching time (The circuit is a representative example of the lower side U phase.)

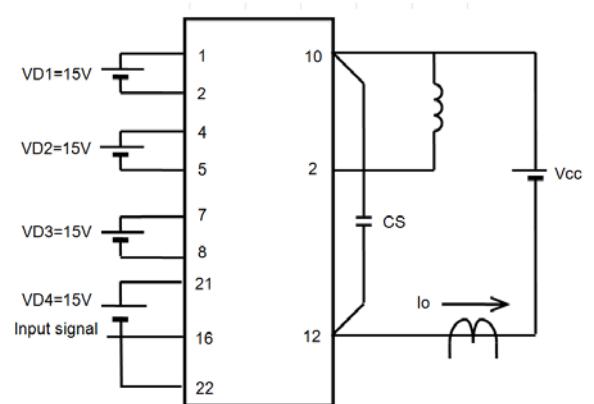
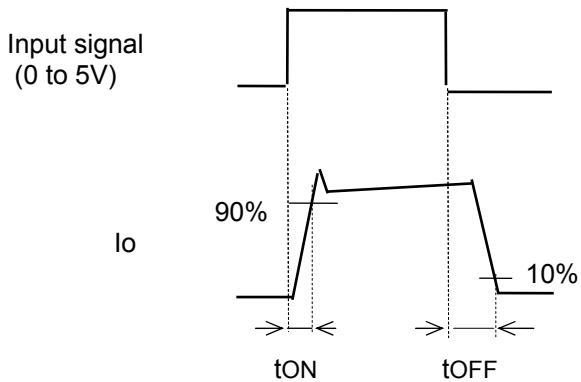



Fig. 6

Logic Timing Chart

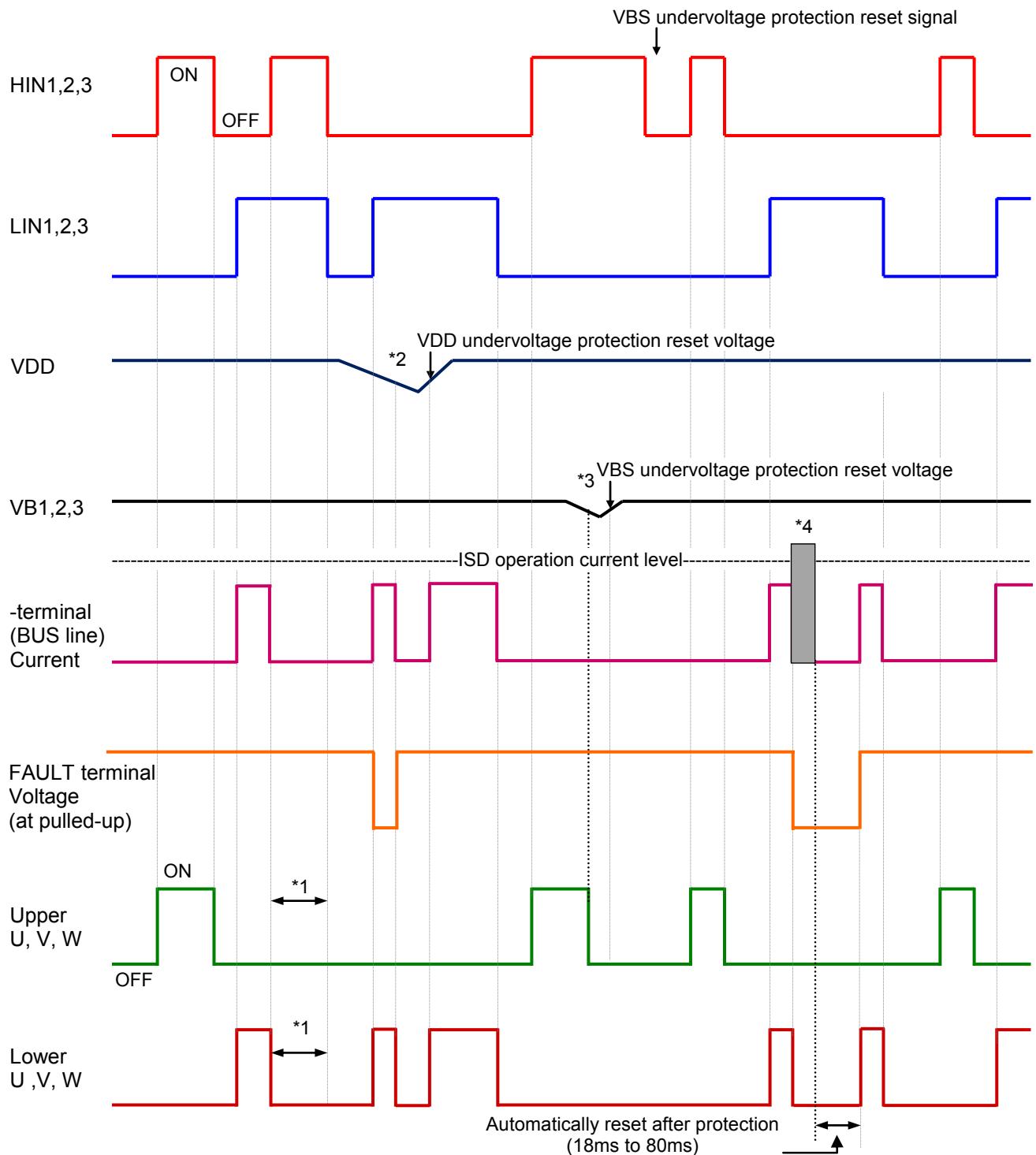
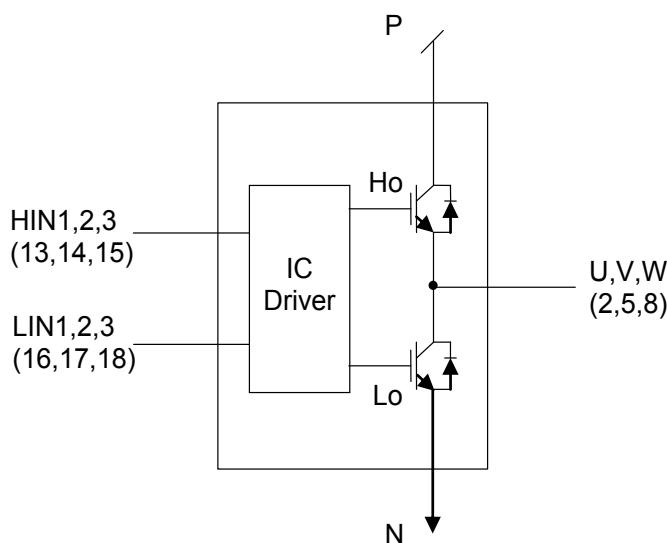



Fig. 7

Notes

- *1 : Diagram shows the prevention of shoot-through via control logic. More dead time to account for switching delay needs to be added externally.
- *2 : When VDD decreases all gate output signals will go low and cut off all of 6 IGBT outputs. When VDD rises the operation will resume immediately.
- *3 : When the upper side gate voltage at VB1, VB2 and VB3 drops only, the corresponding upper side output is turned off. The outputs return to normal operation immediately after the upper side gate voltage rises.
- *4 : In case of over current detection, all IGBT's are turned off and the FAULT output is asserted. Normal operation resumes in 18 to 80ms after the over current condition is removed.

Logic level table

INPUT			OUTPUT			
HIN	LIN	OCP	Ho	Lo	U, V, W	FAULT
H	L	OFF	H	L	P	OFF
L	H	OFF	L	H	N	OFF
L	L	OFF	L	L	High Impedance	OFF
H	H	OFF	L	L	High Impedance	OFF
X	X	ON	L	L	High Impedance	ON

Fig. 8

Sample Application Circuit

Fig. 9

Recommended Operating Conditions at $T_c = 25^\circ\text{C}$

Item	Symbol	Conditions	min	typ	max	Unit
Supply voltage	V_{CC}	P to N	0	280	450	V
Pre-driver supply voltage	VD1, 2, 3	VB1 to U, VB2 to V, VB3 to W	12.5	15	17.5	V
	VD4	V_{DD} to V_{SS} *1	13.5	15	16.5	
ON-state input voltage	$V_{IN(ON)}$	HIN1, HIN2, HIN3, LIN1, LIN2, LIN3	3.0	-	5.0	V
OFF-state input voltage	$V_{IN(OFF)}$		0	-	0.3	
PWM frequency	f_{PWM}		1	-	20	kHz
Dead time	DT	Turn-off to turn-on	2	-	-	μs
Allowable input pulse width	PWIN	ON and OFF	1	-	-	μs
Tightening torque		'M4' type screw	0.79	-	1.17	Nm

*1 Pre-drive power supply ($VD4=15\pm1.5\text{V}$) must have the capacity of $Io=20\text{mA(DC)}$, 0.5A(Peak) .

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

Usage Precautions

1. This IPM includes bootstrap diode and resistors. Therefore, by adding a capacitor "CB", a high side drive voltage is generated; each phase requires an individual bootstrap capacitor. The recommended value of CB is in the range of 1 to $47\mu\text{F}$, however this value needs to be verified prior to production. If selecting the capacitance more than $47\mu\text{F}$ ($\pm20\%$), connect a resistor (about 20Ω) in series between each 3-phase upper side power supply terminals (VB1, 2, 3) and each bootstrap capacitor.
When not using the bootstrap circuit, each upper side pre-drive power supply requires an external independent power supply.
2. It is essential that wiring length between terminals in the snubber circuit be kept as short as possible to reduce the effect of surge voltages. Recommended value of "CS" is in the range of 0.1 to $10\mu\text{F}$.
3. "ISO" (pin20) is terminal for current monitor. When the pull-down resistor is used, please select it more than $5.6\text{k}\Omega$.
4. "FAULT" (pin19) is open DRAIN output terminal (Active Low). Pull up resistor is recommended more than $5.6\text{k}\Omega$.
5. Inside the IPM, a thermistor used as the temperature monitor for internal substrate is connected between VSS terminal and TH terminal, therefore, an external pull up resistor connected between the TH terminal and an external power supply should be used. The temperature monitor example application is as follows, please refer the Fig.10, and Fig.11 below.
6. Pull down resistor of $33\text{k}\Omega$ is provided internally at the signal input terminals. An external resistor of 2.2k to $3.3\text{k}\Omega$ should be added to reduce the influence of external wiring noise.
7. The over-current protection feature is not intended to protect in exceptional fault condition. An external fuse is recommended for safety.
8. When input pulse width is less than $1.0\mu\text{s}$, an output may not react to the pulse. (Both ON signal and OFF signal)

This data shows the example of the application circuit, does not guarantee a design as the mass production set.

The characteristic of thermistor

Parameter	Symbol	Condition	Min	Typ.	Max	Unit
Resistance	R ₂₅	T _c = 25°C	99	100	101	kΩ
Resistance	R ₁₀₀	T _c = 100°C	5.12	5.38	5.66	kΩ
B-Constant (25 to 50 °C)	B		4165	4250	4335	K
Temperature Range			-40	-	+125	°C

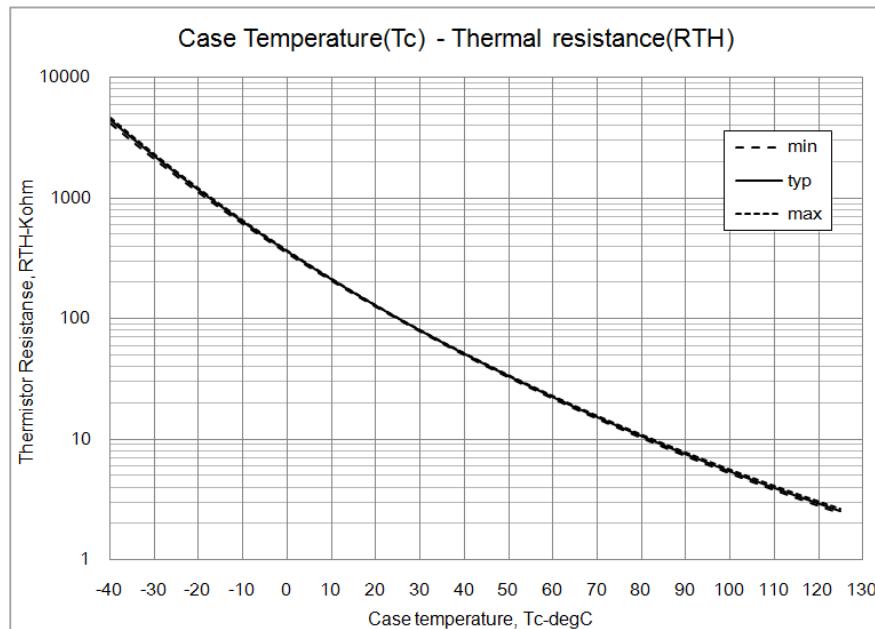


Fig. 10

Fig. 11

The characteristic of PWM switching frequency

Maximum sinusoidal phase current as function of switching frequency (V_{BUS}=300V, T_c=100°C)

Fig.12

Switching waveform

IGBT Turn-on. Typical turn-on waveform @T_c=100°C, V_{BUS}=400V

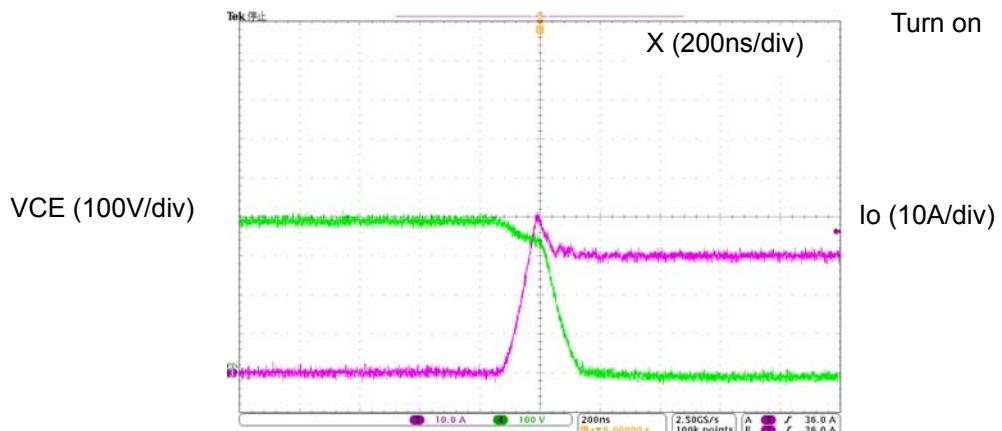


Fig. 13

IGBT Turn-off. Typical turn-off waveform @T_c=100°C, V_{BUS}=400V

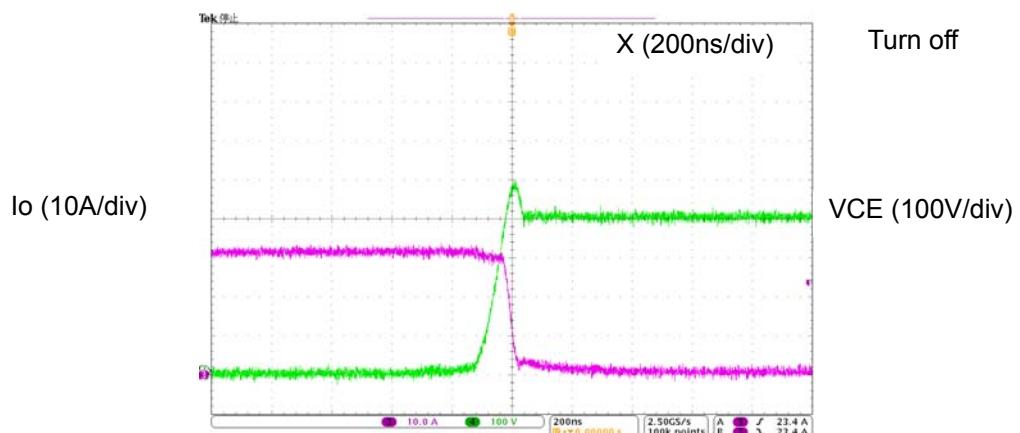


Fig. 14

CB capacitor value calculation for bootstrap circuit

Calculate condition

Item	Symbol	Value	Unit
Upper side power supply.	VBS	15	V
Total gate charge of output power IGBT at 15V.	Qg	266	nC
Upper side power supply low voltage protection.	UVLO	12	V
Upper side power dissipation.	IDmax	400	µA
ON time required for CB voltage to fall from 15V to UVLO	Tonmax	-	s

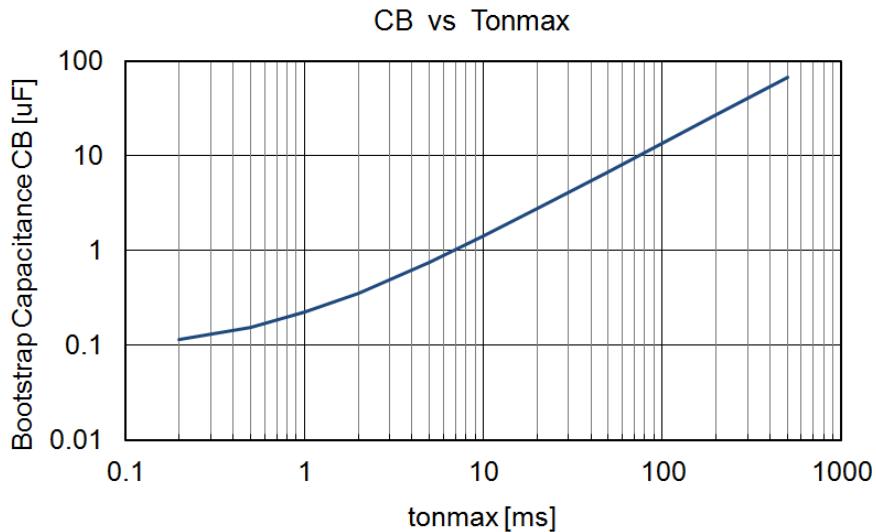
Capacitance calculation formula

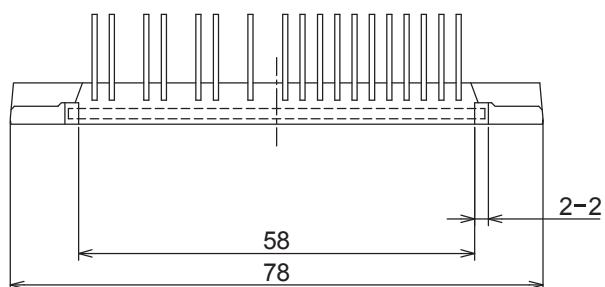
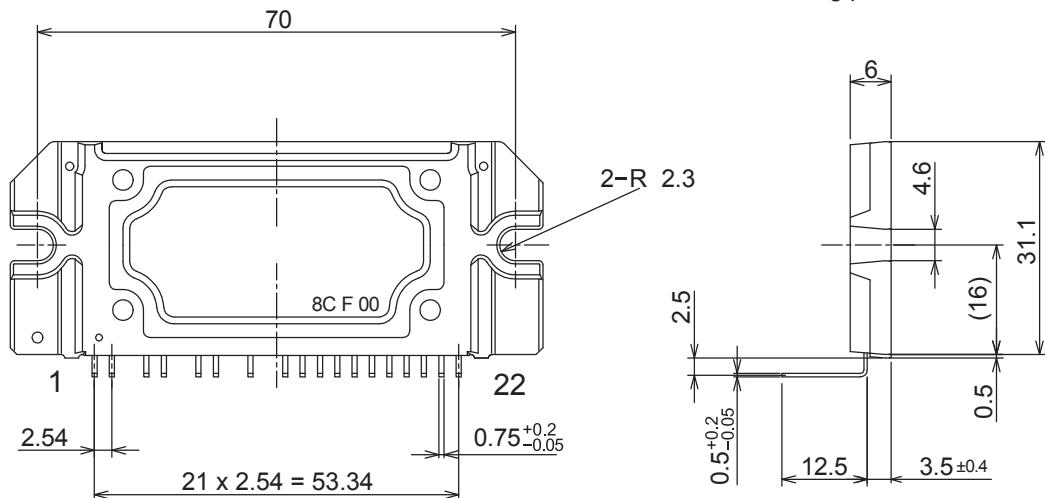
CB must not be discharged below to the upper limit of the UVLO - the maximum allowable on-time (Tonmax) of the upper side is calculated as follows:

$$\begin{aligned} VBS * CB - Qg - IDmax * Tonmax &= UVLO * CB \\ CB &= (Qg + IDmax * Tonmax) / (VBS - UVLO) \end{aligned}$$

The relationship between Tonmax and CB becomes as follows. CB is recommended to be approximately 3 times the value calculated above. The recommended value of CB is in the range of 1 to 47µF, however, the value needs to be verified prior to production.

Tonmax-CB characteristic





Fig 15

Package Dimensions

unit : mm

SIP22 70x31.1
CASE 127BU
ISSUE O

Missing pin : 3, 6, 9, 11

ORDERING INFORMATION

Device	Package	Shipping (Qty / Packing)
STK581U3C2D-E	SIP22 70x31.1 (Pb-Free)	7 / Tube

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

[ON Semiconductor](#):

[STK581U3C2D-E](#)