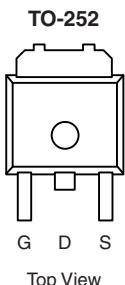
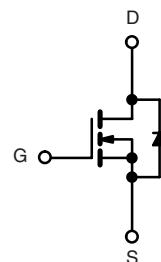


N-Channel 55 V (D-S) 175 °C MOSFET


PRODUCT SUMMARY		
V_{DS} (V)	$r_{DS(on)}$ (Ω)	I_D (A) ^a
55	0.020 at $V_{GS} = 10$ V	35
	0.026 at $V_{GS} = 4.5$ V	30

FEATURES

- TrenchFET® Power MOSFETs
- 175 °C Rated Maximum Junction Temperature
- Low Input Capacitance



Available
RoHS*
COMPLIANT

Drain Connected to Tab

Top View

N-Channel MOSFET

Ordering Information: SUD35N05-26L
SUD35N05-26L (Lead (Pb)-free)

ABSOLUTE MAXIMUM RATINGS $T_A = 25$ °C, unless otherwise noted				
Parameter		Symbol	Limit	Unit
Drain-Source Voltage		V_{DS}	55	V
Gate-Source Voltage		V_{GS}	± 20	V
Continuous Drain Current ($T_J = 175$ °C) ^b	$T_C = 25$ °C	I_D	35	A
	$T_C = 100$ °C		25	
Pulsed Drain Current		I_{DM}	80	A
Continuous Source Current (Diode Conduction) ^a		I_S	35	
Maximum Power Dissipation	$T_C = 25$ °C	P_D	50 ^c	W
	$T_A = 25$ °C		7.5 ^b	
Operating Junction and Storage Temperature Range		T_J, T_{stg}	- 55 to 175	°C

THERMAL RESISTANCE RATINGS					
Parameter		Symbol	Typical	Maximum	Unit
Junction-to-Ambient ^b	$t \leq 10$ sec	R_{thJA}	17	20	°C/W
	Steady State		50	60	
Junction-to-Case		R_{thJC}	2.5	3.0	
Junction-to-Lead		R_{thJL}	5.0	6.0	

Notes:

a. Package limited.

b. Surface Mounted on 1" x1" FR4 Board, $t \leq 10$ sec.

c. See SOA curve for voltage derating.

* Pb containing terminations are not RoHS compliant, exemptions may apply.

SUD35N05-26L

Vishay Siliconix

SPECIFICATIONS $T_J = 25^\circ\text{C}$, unless otherwise noted

Parameter	Symbol	Test Conditions	Min	Typ ^a	Max	Unit
Static						
Drain-Source Breakdown Voltage	$V_{(\text{BR})\text{DSS}}$	$V_{\text{GS}} = 0 \text{ V}$, $I_D = 250 \mu\text{A}$	55			V
Gate Threshold Voltage	$V_{\text{GS}(\text{th})}$	$V_{\text{DS}} = V_{\text{GS}}$, $I_D = 250 \mu\text{A}$	1			
Gate-Body Leakage	I_{GSS}	$V_{\text{DS}} = 0 \text{ V}$, $V_{\text{GS}} = \pm 20 \text{ V}$		± 100	nA	
Zero Gate Voltage Drain Current	I_{DSS}	$V_{\text{DS}} = 44 \text{ V}$, $V_{\text{GS}} = 0 \text{ V}$		1		μA
		$V_{\text{DS}} = 44 \text{ V}$, $V_{\text{GS}} = 0 \text{ V}$, $T_J = 125^\circ\text{C}$		50		
On-State Drain Current ^b	$I_{\text{D}(\text{on})}$	$V_{\text{DS}} = 5 \text{ V}$, $V_{\text{GS}} = 5 \text{ V}$	35			A
Drain-Source On-State Resistance ^b	$r_{\text{DS}(\text{on})}$	$V_{\text{GS}} = 10 \text{ V}$, $I_D = 20 \text{ A}$		0.0165	0.020	Ω
		$V_{\text{GS}} = 10 \text{ V}$, $I_D = 10 \text{ A}$, $T_J = 125^\circ\text{C}$			0.035	
		$V_{\text{GS}} = 4.5 \text{ V}$, $I_D = 15 \text{ A}$		0.0215	0.026	
Forward Transconductance ^b	g_{fs}	$V_{\text{DS}} = 15 \text{ V}$, $I_D = 20 \text{ A}$		25		S
Dynamic^a						
Input Capacitance	C_{iss}	$V_{\text{GS}} = 0 \text{ V}$, $V_{\text{DS}} = 25 \text{ V}$, $F = 1 \text{ MHz}$		885		pF
Output Capacitance	C_{oss}			185		
Reverse Transfer Capacitance	C_{rss}			80		
Total Gate Charge ^c	Q_g	$V_{\text{DS}} = 25 \text{ V}$, $V_{\text{GS}} = 5 \text{ V}$, $I_D = 35 \text{ A}$		10.5	13	nC
Gate-Source Charge ^c	Q_{gs}			4		
Gate-Drain Charge ^c	Q_{gd}			4.8		
Turn-On Delay Time ^c	$t_{\text{d}(\text{on})}$			5	8	
Rise Time ^c	t_r	$V_{\text{DD}} = 25 \text{ V}$, $R_L = 0.3 \Omega$ $I_D \geq 35 \text{ A}$, $V_{\text{GEN}} = 10 \text{ V}$, $R_G = 2.5 \Omega$		18	30	ns
Turn-Off Delay Time ^c	$t_{\text{d}(\text{off})}$			20	30	
Fall Time ^c	t_f			100	150	
Source-Drain Diode Ratings and Characteristic ($T_C = 25^\circ\text{C}$)						
Continuous Current	I_S				35	A
Pulsed Current	I_{SM}				80	
Diode Forward Voltage ^b	V_{SD}	$I_F = 80 \text{ A}$, $V_{\text{GS}} = 0 \text{ V}$			1.5	V
Source-Drain Reverse Recovery Time	t_{rr}	$I_F = 35 \text{ A}$, $\text{di}/\text{dt} = 100 \text{ A}/\mu\text{s}$		25	40	ns

Notes:

- a. Guaranteed by design, not subject to production testing.
- b. Pulse test; pulse width $\leq 300 \mu\text{s}$, duty cycle $\leq 2\%$.
- c. Independent of operating temperature.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.