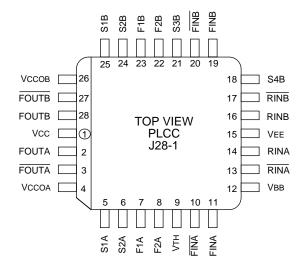
5V/3.3V DUAL PHASE LOCKED LOOP


FEATURES

- 3.3V and 5V power supply options
- 1.12GHz maximum VCO frequency
- 30MHz to 560MHz reference input operating frequency
- **■** Frequency doubler mode
- Low jitter design
- PECL differential outputs
- PECL and TTL reference voltages available
- External loop filter optimizes performance/cost
- Available in 28-pin PLCC package

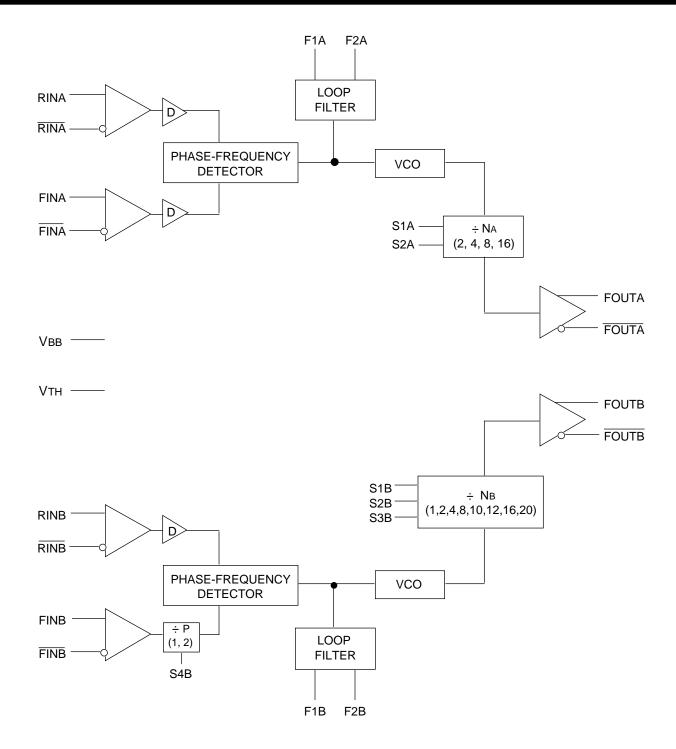
APPLICATIONS

- **■** Workstations
- Advanced communications
- High-end consumer
- **■** High-performance computing

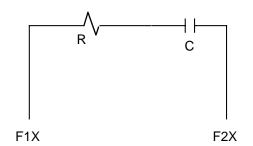
PIN CONFIGURATION

DESCRIPTION

The SY89420V device consists of two identical, low jitter, digital Phase Locked Loops based on Micrel-Synergy's differential PLL technology. Each of the PLLs (PLLA and PLLB) is capable of operating in the 30MHz to 560MHz input reference frequency range independently of the other and is configurable separately. The PLLs can be configured to be matched in all regards, or can be configured so that PLLB is used as a frequency doubler, while PLLA is used to regenerate the undoubled frequency.


Two reference inputs (RINX and RINX), two feedback inputs (FINX and FINX), two filter pins (F1X and F2X) and two differential outputs (FOUTX and FOUTX) are provided for each of the two PLLs. The reference and feedback inputs can be used as either differential or single-ended inputs. In single-ended mode RINX and FINX can be connected to either VBB for normal 100K PECL levels or VTH for normal TTL levels.

Feedback for the loops is realized by connecting FOUTX, FOUTX to FINX, FINX by means of external circuitry. This allows the user the flexibility of inserting additional circuitry off-chip in the feedback paths, such as a divider. Pulldown resistors are required for the FOUTX and FOUTX pins.


Use of a phase-frequency detector results in excellent PLL locking and tracking characteristics. Error correction voltages are generated by the detector if either phase or frequency deviations occur. The VCO has a frequency range covering more than a 2:1 ratio from 480MHz to 1120MHz.

Select pins S1X and S2X are used to program the N dividers for optimum VCO operation, in other words with the VCO in the center of its range. Additional select pins, S3B and S4B, are provided for PLLB. When both S3B and S4B are low, PLLB is identical to PLLA. When S3B is high, NB can be set to 1, 10, 18, or 20. When S4B is high, the frequency doubler option is enabled (P = 2). All Select pins are TTL compatible.

BLOCK DIAGRAM

LOOP FILTER COMPONENT SELECTION

C = $1.0\mu F \pm 10\%$ (X7R dielectric)

 $R = 560\Omega \pm 10\%$

PIN NAMES

Pin	Function	I/O
F1A	Filter Pin 1A	I/O
F2A	Filter Pin 2A	I/O
RINA	Reference Input A	1
RINA	Inverted Reference Input A	1
FINA	Feedback Input A	1
FINA	Inverted Feedback Input A	1
FOUTA	Frequency Output A	0
FOUTA	Inverted Frequency Output A	0
F1B	Filter Pin 1B	I/O
F2B	Filter Pin 2B	I/O
RINB	Reference Input B	1
RINB	Inverted Reference Input B	I
FINB	Feedback Input B	I
FINB	Inverted Feedback Input B	I
FOUTB	Frequency Output B	0
FOUTB	Inverted Frequency Output B	0
Vcc	Vcc	_
VCCOA	Output A Vcc	_
Vссов	Output B Vcc	_
VEE	VEE (0V)	_
Vвв	PECL Threshold Voltage	0
VTH	TTL Threshold Voltage	0
S1A	Select Input 1A (TTL)	1
S2A	Select Input 2A (TTL)	1
S1B	Select Input 1B (TTL)	1
S2B	Select Input 2B (TTL)	1
S3B	Select Input 3B (TTL)	1
S4B	Select Input 4B (TTL)	1

PIN DESCRIPTION

RINA, RINA, RINB, RINB

Reference frequency inputs for loop A and B. These are differential signal pairs and may be driven differentially or single-ended.

FINA, FINA, FINB, FINB

Feedback frequency inputs for loop A and B. These are differential signal pairs and may be driven differentially or single-ended.

Vвв, **V**тн

These are the reference voltages for use as bias for the frequency inputs. The references are generated on-chip. VBB is PECL compatible, while VTH is TTL compatible.

F1A, F2A, F1B, F2B

These pins are connection points for the loop filters, which are to be provided off-chip. F1X is the high impedance side, F2X is the reference side. The loop filter should be a first order, low pass with a DC block. The difference voltage on these pins will be a DC level, which is controlled by the loop feedback and determined by the required VCO frequency.

FOUTA, FOUTA, FOUTB, FOUTB

Frequency outputs for the loops. These are differential, positive referenced, emitter-follower signals and must be terminated off-chip. Termination in 50 ohms is recommended.

S1A, S2A, S1B, S2B, S3B, S4B

These inputs are used to select the configuration for PLLA and PLLB. They are compatible with standard TTL signal levels. See the Frequency Selection Table for details of the logic.

Vcc

This is the positive supply for the entire chip excluding output buffers. It should be decoupled and present a very low impedance in order to assure low-jitter operation.

VCCOA, VCCOB

These are the positive supplies for the output buffers. They are constrained to be equal to the value of Vcc. They should be decoupled and present a very low impedance in order to assure low-jitter operation.

VEE

This pin is the negative supply for the chip and is normally connected to ground (0V).

FREQUENCY SELECTION TABLE

PLLA

S2A	S1A	Divide-by-N	Output Frequency Range (MHz)
0	0	N = 2	240 – 560
0	1	N = 4	120 – 280
1	0	N = 8	60 – 140
1	1	N = 16	30 – 70

PLLB

S3B	S2B	S1B	Divide-by-N	Output Frequency Range (MHz)
0	0	0	N =2	240 – 560
0	0	1	N = 4	120 – 280
0	1	0	N = 8	60 – 140
0	1	1	N = 16	30–70
1	0	0	N = 1	480 – 1120
1	0	1	N = 10	48 – 112
1	1	0	N = 12	40 – 93.3
1	1	1	N = 20	24 – 56

S4B	Divide-by-P	Max. Feedback Frequency (MHz)
0	P =1	560
1	P = 2	1120

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Parameter	Value	Unit
Vcc	Power Supply Voltage	-0.5 to +7.0	V
Vı	TTL Input Voltage ⁽²⁾	-0.5 to 6.0	V
lı	TTL Input Current ⁽²⁾	-30 to +5.0	mA
Іоит	ECL Output Current — Continuous — Surge	50 100	mA
Tstore	Storage Temperature	-65 to +150	°C
TA	Operating Temperature Range ⁽³⁾	0 to +85	°C

NOTES:

- Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. This is a stress rating only and functional operation is not implied at conditions other than those detailed in the operational sections of this data sheet. Exposure to ABSOLUTE MAXIMUM RATING conditions for extended periods may affect device reliability.
- 2. Either voltage limit or current limit is sufficient to protect input.
- 3. All DC and AC electrical characteristics are specified over the operating temperature range.

5V DC ELECTRICAL CHARACTERISTICS

 $VCC = VCCOA = VCCOB = 5.0V \pm 5\%$

Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
Vcc	Power Supply Voltage	4.75	_	5.25	V	Vcc = Vcco
Icc	Power Supply Current (Vcc)	_	_	200	mA	
Icco	Power Supply Current (Vcco)	_	_	28	mA	PECL outputs are open

3.3V DC ELECTRICAL CHARACTERISTICS

 $VCC = VCCOA = VCCOB = 3.3V \pm 5\%$

Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
Vcc	Power Supply Voltage	3.135	_	3.465	V	Vcc = Vcco
Icc	Power Supply Current (Vcc)	_	_	200	mA	
Icco	Power Supply Current (Vcco)	_	_	28	mA	PECL outputs are open

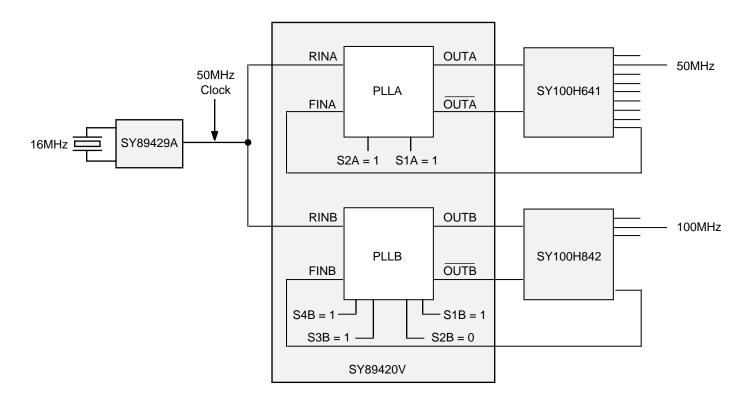
PECL DC ELECTRICAL CHARACTERISTICS

 $VCC = VCCOA = VCCOB = 3.3V \text{ or } 5.0V \pm 5\%$

Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
Voн	Output HIGH Voltage	Vcc - 1.025		Vcc - 0.780	٧	
VoL	Output LOW Voltage	Vcc - 1.810		Vcc - 1.520	V	
VIH	Input HIGH Voltage	Vcc – 1.165	_	Vcc - 0.780	V	
VIL	Input LOW Voltage	Vcc - 1.810	_	Vcc – 1.475	V	
Vвв	PECL Threshold	_	Vcc - 1.35	_	V	

TTL DC ELECTRICAL CHARACTERISTICS

 $VCC = VCCOA = VCCOB = 3.3V \text{ or } 5.0V \pm 5\%$

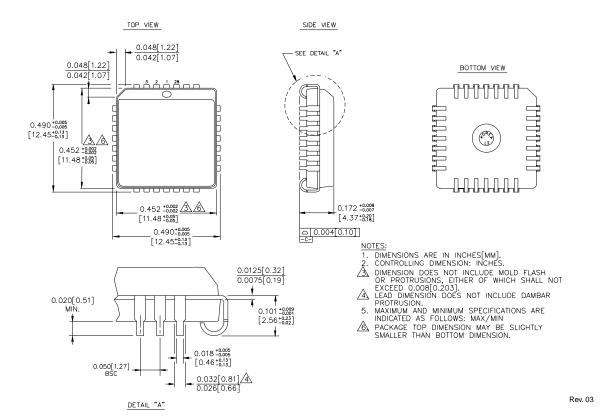

Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
ViH	Input HIGH Voltage	2.0	_	_	V	
VIL	Input LOW Voltage	_	_	0.8	V	
Іін	Input HIGH Current	_	_	20 100	μΑ	VIN = 2.7V VIN = VCC
lı∟	Input LOW Current	_	_	-0.3	mA	VIN = 0.5V
Vıĸ	Input Clamp Voltage	_	_	- 1.2	V	IIN = −12mA
Vтн	TTL Threshold	_	1.5	_	V	

AC ELECTRICAL CHARACTERISTICS

 $VCC = VCCOA = VCCOB = 3.3V \text{ or } 5.0V \pm 5\%$

Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
ΔΤ	Output Period Jitter	_	10	15	ps rms	
PPW	Output Duty Cycle	45	50	55	%	
tr tf	Output Rise/Fall Time (20% to 80%)	_	300 300	550 550	ps	_
FOUTA	Output Frequency PLLA	_	_	560	MHz	
FOUTB	Output Frequency PLLB	_	_	1120	MHz	S4B=1
RINA, B	Input Frequency PLLA, B	_	_	560	MHz	

APPLICATION



50MHz Low Skew Clock System with 100MHz Clock to CPU

PRODUCT ORDERING CODE

Ordering Code	Package Type	Operating Range
SY89420VJC	J28-1	Commercial
SY89420VJCTR	J28-1	Commercial

28 LEAD PLCC (J28-1)

MICREL-SYNERGY 3250 SCOTT BOULEVARD SANTA CLARA CA 95054 USA

TEL + 1 (408) 980-9191 FAX + 1 (408) 914-7878 WEB http://www.micrel.com

This information is believed to be accurate and reliable, however no responsibility is assumed by Micrel for its use nor for any infringement of patents or other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent right of Micrel Inc.

© 2000 Micrel Incorporated