LCD Module Technical Specification

First Edition Sep 25, 2007

Final Revision May 9, 2008

Type No. **T-51909GD019J-LW-ACN**

Customer : **OPTREX STANDARD**

Customer's Product No: -----

OPTREX CORPORATION

Approved: Minoru Akatsuka

QUALITY ASSURANCE DIVISION

Checked: Toshiyuki Okamoto

DESIGN 2T

Prepared: Takashi Yuchi

DESIGN 2T

Table of Contents

1.	General Specifications	3
	Electrical specifications	
3.	Optical Specifications	7
4.	I/O Terminal	8
5.	Test	. 10
	Appearance Standards	
	Code System of Production Lot	
8.	Type Number	. 16
9.	Precautions under operation	. 16
10.	Precautions Relating Product Handling	. 17
11.	Warranty	. 19

T-51909GD019J-LW-ACN (AC)

OPTREX CORPORATION

Page 1/19

Rev.	on History Date	Page	Comment	
1	May 9, 2008		Revise of Precautions Relating Product H	andling
·	May 5, 2555		and Warranty.	anamig
	T-51909GD019J-LW	/-ACN (AC)	OPTREX CORPORATION	Page 2/19

1.General Specifications

Operating Temp.: min. -20°C ~max. 70°C

Storage Temp. : min. -30°C ~max. 80°C

Resolution : 176 x 3 [R.G.B] (W) x 220 (H) dots

Dot pitch : 0.171 (W) x 0.171 (H) dots

Pixel arrangement: RGB-stripe

Color depth : 262,144 colors

Active Viewing Area : 30.096 (W) x 37.62 (H) mm

Outline dimensions : 40.657 (W) x 49.3* (H) x 5.5max** (D) mm

* Without FPC

** Without Conponent Parts Area and Hook

Weight : 12.40max

LCD type : TFT / Normally white-mode / Transmittance

Viewing angle : 6:00

TFT driver : S1D19105 (Epson)

Interface : 80 system 8bit/9bit/16bit/18bit parallel interface

68 system 8bit/9bit/16bit/18bit parallel interface

Serial interface

6bit/16bit/18bit RGB interface(for Movie)

Backlight : 3 chip LED backlight / White

Drawings : Dimensional outline T-51909AC base

Lead free : Our product corresponds to lead free.

Lead free is defined as below:

The solder used in the LCD module.

Electrical components (Terminal section) used in the LCD module. Any lead used within the electrical component does not apply to

our module definition of lead free.

2. Electrical specifications

2.1.Absolute Maximum Ratings

GND=0V

Parameter	Symbol	Conditions	Min.	Max.	Units
Supply Voltage	V _{DD1} -GND	-	-0.3	3.3	V
Supply for step- up Voltage	V _{DD2} -GND	-	-0.3	3.1	V
Input Voltage	VIN	-	-0.3	V _{DD1} +0.3	V

2.2.DC Characteristics

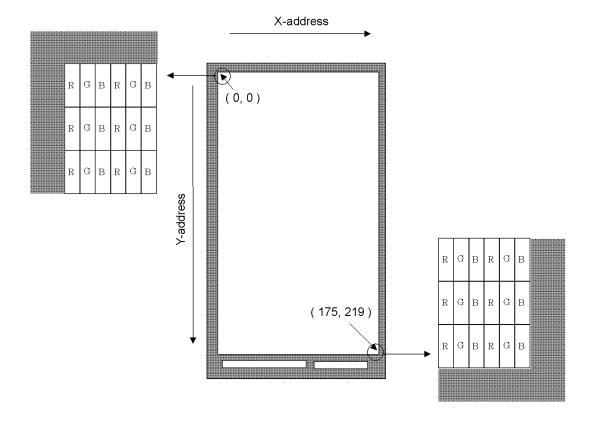
Ta=25°C, GND=0V

Symbol	Conditions	Min.	Тур.	Max.	Units
V _{DD1} -GND	-	1.7	1.8	1.9	V
V _{DD2} -GND	-	2.5	2.6	2.7	V
Vıн	-	0.8×V _{DD1}	-	V _{DD1}	V
VIL	-	GND	-	0.2×V _{DD}	V
Vон	I _{OH} =0.06mA	V _{DD1} -0.3	-	V _{DD1}	V
Vol	I _{OL} =0.06mA	GND	-	V _{DD1} +0.3	V
	Still picture				
I _{DD1}		-	2.3	3.5	μΑ
	•				•
	•				
I_{DD2}		-	7.5	11.3	mA
	-				
	VDD1-GND VDD2-GND VIH VOH VOL	$\begin{array}{c cccc} V_{DD1}\text{-}GND & - & & & \\ \hline V_{DD2}\text{-}GND & - & & & \\ \hline V_{IH} & - & & & \\ \hline V_{OH} & I_{OH}\text{=}0.06\text{mA} \\ \hline V_{OL} & I_{OL}\text{=}0.06\text{mA} \\ \hline \\ I_{DD1} & Still picture \\ V_{DD1}\text{-} GND = 1.8V \\ without backlight \\ (Note 1,2) \\ \hline Still picture \\ V_{DD2}\text{-} GND = 2.6V \\ \hline \end{array}$	VDD1-GND - 1.7 VDD2-GND - 2.5 VIH - 0.8×VDD1 VIL - GND VOH IOH=0.06mA VDD1-0.3 VOL IOL=0.06mA GND IDD1 Still picture VDD1 - GND = 1.8V without backlight (Note 1,2) - IDD2 Still picture VDD2 - GND = 2.6V without backlight -	VDD1-GND - 1.7 1.8 VDD2-GND - 2.5 2.6 VIH - 0.8×VDD1 - VIL - GND - VOH IOH=0.06mA VDD1-0.3 - VOL IOL=0.06mA GND - VDD1 - GND = 1.8V without backlight (Note 1,2) - 2.3 Still picture VDD2 - GND = 2.6V without backlight - 7.5	VDD1-GND - 1.7 1.8 1.9 VDD2-GND - 2.5 2.6 2.7 VIH - 0.8×VDD1 - VDD1 VIL - GND - 0.2×VDD VOH IOH=0.06mA VDD1-0.3 - VDD1 VOL IOL=0.06mA GND - VDD1+0.3 Still picture VDD1 - GND = 1.8V without backlight (Note 1,2) - 2.3 3.5 IDD2 Still picture VDD2 - GND = 2.6V without backlight without backlight - 7.5 11.3

Note1:The driving conditions are to be described.

Note2:At all black pattern(262k color, Line inversion drive)

T-51909GD019J-LW-ACN (AC)	OPTREX CORPORATION	Page 4/19
---------------------------	--------------------	-----------


2.3.AC Characteristics

Shown in the S1D19105 and driver specifications.

2.4.Display screen

2.4.1.Correspondence of graphic memory data and display screen

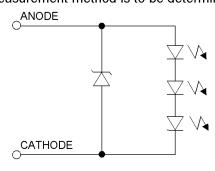
The software setting is to be determined.

2.5.Lighting specification

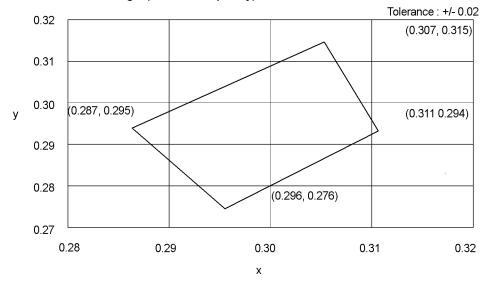
2.5.1.Absolute Maximum Ratings

Ta=25°C

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Foward Current	lF	-	-	-	30	mA
Reverse Voltage	VR	-	-	-	15.0	V
LED Power Dissipation	Pb	-	-	-	360	mW


2.5.2. Operating characteristics

Ta=25°C


Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Foward Voltage	VF	l _F =13mA/chip	i	10.2	11.3	V
Luminance of	L	l _F =13mA/chip	-	230	-	cd/m ²
Backlight Surface						
Unevenness Luminance of Backlight Surface	L	I _F =13mA (for one chip) Note 2	-	70	-	%

Note 1: The measurement is done with backlight center.

Note 2: The measurement method is to be determined.

2.5.3. Color tone range (for LED chip only)

T-51909GD019J-LW-ACN (AC) OPTREX CORPORATION Page 6/19

3. Optical Specifications

Ite	Item		Min.	Тур.	Max.	Units	Remarks
Brightness	Brightness		-	230	-	cd/m ²	Note 1
Transmittance			-	6.5	-	%	
Reflectance			-	2.1	-	%	Note 2
Viewing Angle					6:00		
Contrast ratio	Transmission	25°C	-	350	-		
Response time	T T.	25°C	-	30	45	ms	
	Tr + Td	-20°C	-	400	600	ms	
Color area	Transmission		-	70	-		Gamut
	White	х	-	0.30	-		
		у	-	0.32	-		
	Red	х	ı	0.60	i		
Color/		у	ı	0.35	i		
transmission	Green	х	ı	0.33	i		
			ı	0.53	ı		
	Blue	х	-	0.14	ı		
		у	-	0.14	ı		

Note 1: 3 LEDs back light, 13mA/chip

Note 2: Ring light measurement

(15deg. incident light, detected at normal direction)

The reflectance of white calibration plate is 100%.

4.I/O Terminal

4.1.Pin Assignment

No.	Symbol	Function		
1	GND	Ground		
2	V DD1(1.8V)	Power Supply for Logic		
3	V DD1(1.8V)	Power Supply for Logic		
4	V DD2(2.6V)	Power Supply LCD step-up circuit		
5	V DD2(2.6V)	Power Supply LCD step-up circuit		
6	SD	Serial Data Input / Outout		
7	SCL	Serial Clock		
8	ENABLE	RGB Interface Enable		
9	DOTCLK	RGB Interface Dot Clock		
10	HSYNC	Horizontal Synchronization		
11	VSYNCI	Vertical Synchronization Input		
12	VSYNCO	Vertical Synchronization Output		
13	/CS	Chip Select Signal L: Active		
14	RS	Register Select Signal H:RAM Write/Read, L:Instraction		
15	/RD	80 family CPU L: Active		
16	/WR	80 family CPU		
17	D0	Data Bus		
18	D1	Data Bus		
19	D2	Data Bus		
20	D3	Data Bus		
21	D4	Data Bus		
22	D5	Data Bus		
23	D6	Data Bus		
24	D7	Data Bus		
25	D8	Data Bus		
26	D9	Data Bus		
27	D10	Data Bus		
28	D11	Data Bus		
29	D12	Data Bus		
30	D13	Data Bus		
31	D14	Data Bus		
32	D15	Data Bus		
33	D16	Data Bus		
34	D17	Data Bus		
35	/RES	Reset Signal L: Active		
36	IF1	MPU Interface Switching Signal		

T-51909GD019J-LW-ACN (AC) OPTREX	CORPORATION Page 8/19
----------------------------------	-----------------------

37	IF2	MPU Interface Switching Signal			
38	IF3	MPU Interface Switching Signal			
39	C86	MPU Interface Switching Signal H:68-series L:80-series			
40	LED A	LED Anode Terminal			
41	LED A	LED Anode Terminal			
42	LED K	LED Cathode Terminal			
43	LED K	LED Cathode Terminal			
44	GND	Power Supply (0V, GND)			
45	GND	Power Supply (0V, GND)			

IF3	IF2	IF1	Interface
Low	Low	Low	16-bit parallel
Low	Low	High	18-bit parallel
Low	High	Low	8-bit parallel
Low	High	High	9-bit parallel
High	High	High	9-bit serial

5.Test

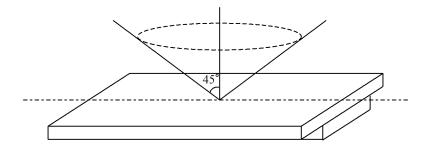
No practical problems caused by any change on display and in operation under the following test condition.

Conditions: Unless otherwise specified, tests will be conducted under the following condition.

Temperature: 20±5°C Humidity: 65±5%RH

Tests will be not conducted under operating state unless specified.

No.	Parameter	Conditions	Notes		
1	High Temperature Operating	70°C, 96hrs (operation state)			
2	Low Temperature Operating	-20°C, 96hrs (operation state)	2		
3	High Temperature Storage	80°C, 96hrs	3		
4	Low Temperature Storage	-30°C, 96hrs	2,3		
5	Damp Proof Test	40°C,90%RH, 96hrs	2,3		
6	Vibration Test	Total fixed amplitude: 1.5mm	3		
		Vibration frequency: 10–55Hz (60 sec. sweep)			
		Time duration: 15 minutes for each x, y, z direction			
7	Shock Test	To be measured after dropping from 60cm height			
		to the concrete surface with shipping package.			
		Dropping method corner dropping A corner : once Edge dropping B,C,D edge : once Face dropping E,F,G face : once			


- Note 1: It should be checked at the actual driving condition under the high temperature.
- Note 2: No dew condensation is to be observed.
- Note 3: The functional test shall be conducted after 4 hours storage at the room temperature and humidity after removed from the test chamber.
- Note 4: Shock test will be conducted to the product itself without any actual set.

6. Appearance Standards

6.1.Inspection

The distance between the eyes and the sample shall be more than 30cm.

All directions for inspecting the sample should be within 45° against perpendicular line.

(a) Operating Inspection

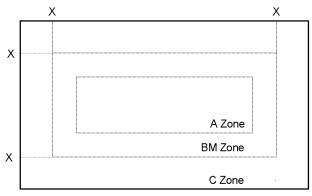
The function and appearance shall be inspected in the condition of

- under 750 lx or over light ... Reflective Type.
- using over Backlight unit ... Transflective Type , Transmissive Type.

Condition of judgement

In case of no gradation display. It judges by applied On/Off voltage or optimal contrast. In case of gradation display. It judges by contrast that the bad point is able to confirm best.

(b) Appearance Inspection


The appearance shall be inspected in the condition of

- under 500 lx or over light ... Reflective Type.
- using over Backlight unit \dots Transflective Type , Transmissive Type.

(c) Inspection Environment

Inspection environment is carried out with 250 lx or less in principles.

6.2. Definition of applicable Zones

X : Maximum Seal Line

A Zone : Active display area

BM Zone : Out of active display area ~ Maximum seal line

C Zone : Rest parts

6.3.Standards

No.	Parameter				Crit	teria		
1	G Line	Nothing						
2	S Line	N	Nothing					
3	Bright and	The definition of bright pixel						
	Dark dot	1	Uneven Luminous , which is Single Color Display of Black, White,					
		١	Halftone R,G,B, is brighter than circumstace Pixel.					
		Th	ne definition	of dark pixe	e l			
		١	Uneven Luminous , which is Single Color Display of Black, Wh					of Black, White,
		١	Halftone R,G,B, is darker than circumstace Pixel.					
		Continuous bright spot						
		,	Vertical Cont	inuous brig	nt spot	3 horizontal c	ontinu	ous bright spot
			-			l continuous t	_	1
		(equivalent of	uneven lur	ninous	are considere	ed as 1	bright spot.
			Zone			ble Number		
			Α	Brigh		0		
			DM	Dark		0		
		L	ВМ	Brigh	Dol	0		
4	Polarizer foreign material	(1) Round Sha	pe				
	Assemble foreign material]		Zone		Acceptable	e Num	nber
	Surface defective		Dimension (mm)		Α		ВМ
	CF foreign material		D ≤ (0.10		Disre	gard	
	B/L foreign material other		0.10 < D ≤	≤ 0.15		2		
	(defective, which can not		$0.15 < D \le 0.20$			1		
	see at lighting inspection)		0.20 < D			С	0	
		D = (Long + Short) / 2						
		(2) Line Shape						
			Zone		e	Acceptable Number		nber
			X(mm) Y	(mm)		Α		BM
			_	W≤0.01		Disre		
			L≤2.0	W≤0.02		2	2	
			L≤1.0	W≤0.03		1		
			L>2.0	-		C		
		L	<u> </u>	W>0.03		С)	
			X : Length		ا ا مصم	l la 4 le ' - '	- ملمیہ	and
		Li	mit sample s	nali be dete	rmined	l by the arisin	g dem	and.

OPTREX CORPORATION

Page 13/19

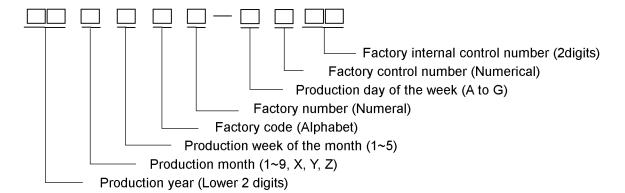
$\overline{}$		_	_	,	$\overline{}$		c: .1			
()	РΙ	ĸ	⊢>	(∩n	tın	en	ıtia	ı

T-51909GD019J-LW-ACN (AC)

No.	Parameter		Criteria				
5	Contrast Variation	Not to be conspicuous defects.					
		Limit sample shall be determined by the arising demand.					
6	Color Variation	Not to be conspicuous defects.					
		Limit sample shall be determined by the arising demand.					
		However, about the Color pa	atches shall be two pieces or less which				
		are same level as the limit	sample.				
7	Air Bubbles						
	(between glass	Zone	Acceptable Number				
	and polarizer)	Dimension (mm)	A BM				
		D ≤0.10	Disregard				
		0.10 < D ≤0.15	1				
		0.15 < D ≤0.20	1				
		< D ≤0.20	0				
		The polarizer edge has not	floated.				
		Limit sample shall be deteri	mined by the arising demand.				
8	Polarizer Scratches,	Not to be conspicuous defects.					
	Stroke marks	Limit sample shall be determined by the arising demand.					
9	Polarizer Dirts	If the stains are removed easily from LCDP surface, the module is					
		not defective.					
10	Chipped Glass	(1) Other than electrode pad areas and corner areas					
		*/					
		y y	X Y Z				
		z	≤5.0 ≤0.5 ≤1/2t				
		t	×				
		(2)Other than electrode pad	l Areas				
		\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	X≤1.5 & Y≤0.5 or X≤0.5 & Y≤1.5				
		*The direction of board					
			thickness is disregarded.				
		*For LCD module with holder					
		It is disregard. When it ha	s no problem for appearance, reliability				
		and progressiveness.					
		*For LCD module without holder					
		The back side is disregard	d. When it has no problem for reliability				
		and progressiveness.					
		*It is not approved when a glass chip occurs with the part of the					
		seal, wiring and terminal.	•				
		-					

OPTREX CORPORATION

Page 14/19


T-51909GD019J-LW-ACN (AC)

No.	Parameter	Criteria
11	Hot Spot	See from the counter viewing angle. Jugement is based on Limit Sample.(043G-07005) Eye point Viewing Angle FPC LCDP

T-51909GD019J-LW-ACN (AC)

7.Code System of Production Lot

The production lot of module is specified as follows.

8. Type Number

The type number of module is specified as follows.

351909AC

9. Precautions under operation

When questions arise concerning this specifications or new problems not specified in this specifications arise, problems related to the specification is to be discussed for solution.

T-51909GD019J-LW-ACN (AC)

OPTREX CORPORATION

Page 16/19

10. Precautions Relating Product Handling

The Following precautions will guide you in handling our product correctly.

- 1) Liquid crystal display devices
 - 1. The liquid crystal display panel used in the liquid crystal display module is made of plate glass. Avoid any strong mechanical shock. Should the glass break handle it with care. The polarizer adhering to the surface of the LCD is made of a soft material. Guard against scratching it.
- 2) Care of the liquid crystal display module against static electricity discharge.
 - 1. When working with the module, be sure to ground your body and any electrical equipment you may be using. We strongly recommend the use of anti static mats (made of rubber), to protect worktables against the hazards of electrical shock.
 - 2. Avoid the use of work clothing made of synthetic fibers. We recommend cotton clothing or other conductivity-treated fibers.
 - 3. Slowly and carefully remove the protective film from the LCD module, since this operation can generate static electricity.
- 3) When the LCD module must be stored for long periods of time:
 - 1. Protect the modules from high temperature and humidity.

Conditions: Temperature: 0°C~40°C

Humidity: Less than 60%RH

No dew condensation to be observed.

- 2. Keep the modules out of direct sunlight or direct exposure to ultraviolet rays.
- 3. Protect the modules from excessive external forces.
- 4) Use the module with a power supply that is equipped with an overcurrent protector circuit, since the module is not provided with this protective feature.
- 5) Do not ingest the LCD fluid itself should it leak out of a damaged LCD module. Should hands or clothing come in contact with LCD fluid, wash immediately with soap.
- 6) Conductivity is not guaranteed for models that use metal holders where solder connections between the metal holder and the PCB are not used. Please contact us to discuss appropriate ways to assure conductivity.
- 7) For models which use CFL:
 - 1. High voltage of 1000V or greater is applied to the CFL cable connector area. Care should be taken not to touch connection areas to avoid burns.
 - 2. Protect CFL cables from rubbing against the unit and thus causing the wire jacket to become worn.
 - 3. The use of CFLs for extended periods of time at low temperatures will significantly shorten their service life.
 - 4. After storing the product (or LCD) under low temperature and/or in dark atmosphere for a long period of time, CCFL may take longer time to reach its specified brightness.
- 8) For models which use touch panels:
 - 1.Do not stack up modules since they can be damaged by components on neighboring modules.
- 2.Do not place heavy objects on top of the product. This could cause glass breakage.

T-51909GD019J-LW-ACN (AC) OPTREX CORPORATION Page 17/19

- 9) For models which use COG, TAB, or COF:
 - 1. The mechanical strength of the product is low since the IC chip faces out unprotected from the rear. Be sure to protect the rear of the IC chip from external forces.
 - 2. Given the fact that the rear of the IC chip is left exposed, in order to protect the unit from electrical damage, avoid installation configurations in which the rear of the IC chip runs the risk of making any electrical contact.
- 10) Models which use flexible cable, heat seal, or TAB:
 - 1.In order to maintain reliability, do not touch or hold by the connector area.
 - 2. Avoid any bending, pulling, or other excessive force, which can result in broken connections.
- 11) In case of buffer material such as cushion / gasket is assembled into LCD module, it may have an adverse effect on connecting parts (LCD panel-TCP / HEAT SEAL / FPC / etc., PCB-TCP / HEAT SEAL / FPC etc., TCP-HEAT SEAL, TCP-FPC, HEAT SEAL-FPC, etc.,) depending on its materials. Please check and evaluate these materials carefully before use.
- 12) In case of acrylic plate is attached to front side of LCD panel, cloudiness (very small cracks) can occur on acrylic plate, being influenced by some components generated from polarizer film. Please check and evaluate those acrylic materials carefully before use.

T-51909GD019J-LW-ACN (AC)

OPTREX CORPORATION

Page 18/19

11. Warranty

This product has been manufactured to your company's specifications as a part for use in your company's general electronic products. It is guaranteed to perform according to delivery pecifications. For any other use apart from general electronic equipment, we cannot take responsibility if the product is used in medical devices, nuclear power control equipment, aerospace equipment, fire and security systems, or any other applications in which there is a direct risk to human life and where extremely high levels of reliability are required. If the product is to be used in any of the above applications, we will need to enter into a separate product liability agreement.

- 1. We cannot accept responsibility for any defect, which may arise from additional manufacturing of the product (including disassembly and reassembly), after product delivery.
- 2. We cannot accept responsibility for any defect, which may arise after the application of strong external force to the product.
- 3. We cannot accept responsibility for any defect, which may arise due to the application of static electricity after the product has passed your company's acceptance inspection procedures.
- 4. When the product is in CFL models, CFL service life and brightness will vary according to the performance of the inverter used, leaks, etc. We cannot accept responsibility for product performance, reliability, or defect, which may arise.
- 5. We cannot accept responsibility for intellectual property of a third party, which may arise through the application of our product to your assembly with exception to those issues relating directly to the structure or method of manufacturing of our product.
- 6. Optrex will not be held responsible for any quality issue(s) after two years and beyond from its production date indicated on the lot number (please refer to "Code System of Production Lot" indicated earlier in this specification).

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Kyocera:

T-51909GD019J-LW-ACN