

PicoScope® 3000 Series

USB OSCILLOSCOPES

60 to 250 MHz analog bandwidth
Up to 1 GS/s real-time sampling
2 or 4 analog channels
MSO models with 16 digital channels
Built-in function generator and AWG
Up to 512 MS buffer memory
Hardware-accelerated update rates
USB connected and powered

Automatic measurements

Mask limit testing

Advanced triggers

Serial decoding

Maths channels

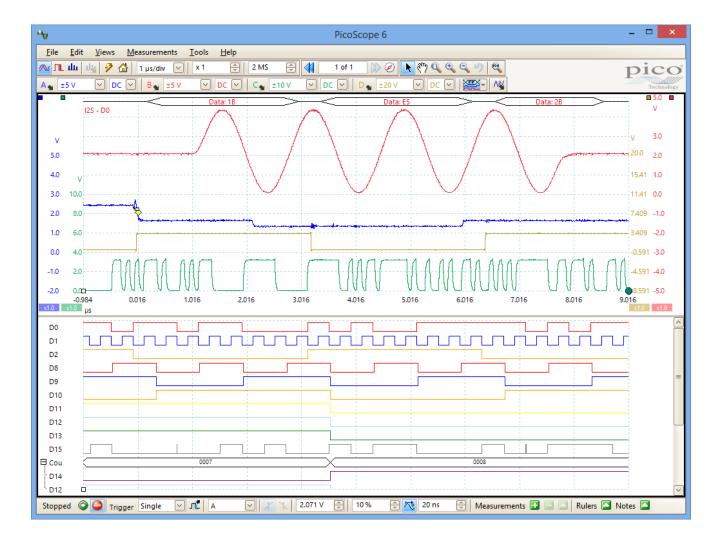
Spectrum analyzer

Free technical support and updates Free SDK and example programs 5 YEAR WARRANTY INCLUDED

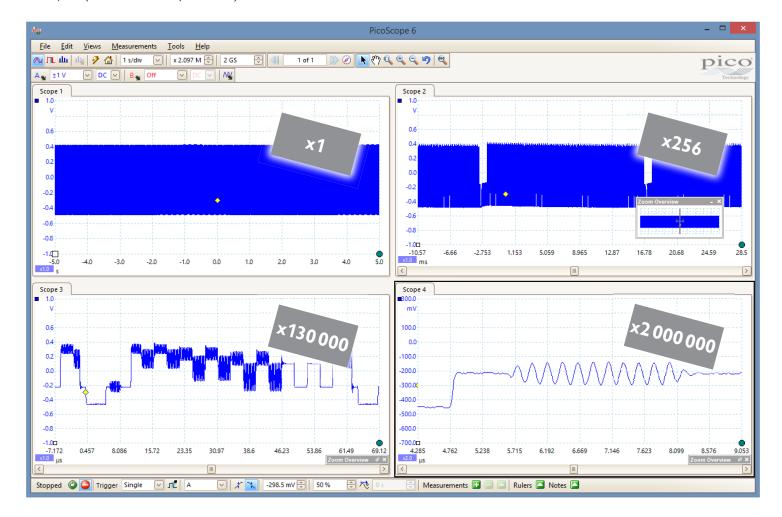
POWER, PORTABILITY, AND PERFORMANCE

The PicoScope 3000 Series USB-powered PC oscilloscopes are small, light, and portable, while offering a range of high-performance specifications required by engineers in the lab or on the move.

These oscilloscopes offer 2 or 4 analog channels, plus an additional 16 digital channels on the MSO models. The flexible, high-resolution display options enable you to view and analyze each signal in fine detail.


Supported by the advanced PicoScope 6 software, these devices offer an ideal, cost-effective package for many applications, including embedded systems design, research, test, education, service, and repair.

HIGH BANDWIDTH AND SAMPLING RATE


Despite a compact size and low cost, there is no compromise on performance. With input bandwidths up to 250 MHz, the PicoScope 3000 Series scopes can be used for a wide range of signal types from DC and baseband into RF and all the way up to VHF.

This is matched by a real-time sampling rate of up to 1 GS/s, allowing detailed display of high frequencies. For repetitive signals, the maximum effective sampling rate can be boosted to 10 GS/s by using Equivalent Time Sampling (ETS) mode. With a sampling rate of four or five times the input bandwidth, PicoScope 3000 Series oscilloscopes are well equipped to capture high-frequency signal detail.

DEEP MEMORY

The PicoScope 3000 Series oscilloscopes are also market leaders in offering a huge buffer memory, allowing them to sustain their high sampling rates across long timebases. For example, using a 512 MS buffer the PicoScope 3207B can sample at 1 GS/s all the way down to 50 ms/div (a 500 ms total capture time).

Powerful tools are included to allow you to manage and examine all of this data. As well as functions such as mask limit testing and color persistence mode, the PicoScope 6 software enables you to zoom into your waveform by several million times. A zoom overview window allows you to easily control the size and location of the zoom area.

Up to 10 000 waveforms can be stored in the segmented waveform buffer. The **Buffer Overview** window then allows you to rewind and review the history of your waveform. No longer will you struggle to catch an infrequent glitch.

PICOSCOPE 3000 SERIES OSCILLOSCOPES - OVERVIEW

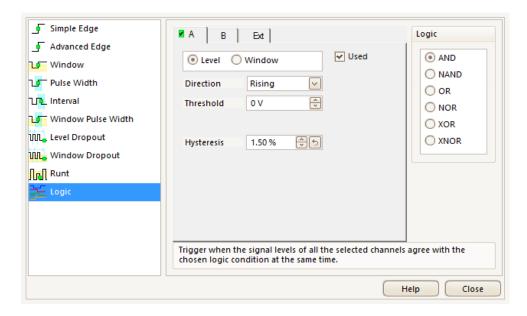
PicoScope model	USB 2.0	USB 3.0	AWG*	Bandwidth	Buffer memory	Max. sampling rate
3204A	•			60 MHz	4 MS	500 MS/s
3204B	•		•	60 MHz	8 MS	500 MS/s
3205A	•			100 MHz	16 MS	500 MS/s
3205B	•		•	100 MHz	32 MS	500 MS/s
3206A	•			200 MHz	64 MS	500 MS/s
3206B	•		•	200 MHz	128 MS	500 MS/s
3207A		•		250 MHz	256 MS	1 GS/s
3207B		•	•	250 MHz	512 MS	1 GS/s

^{*} Arbitrary waveform generator

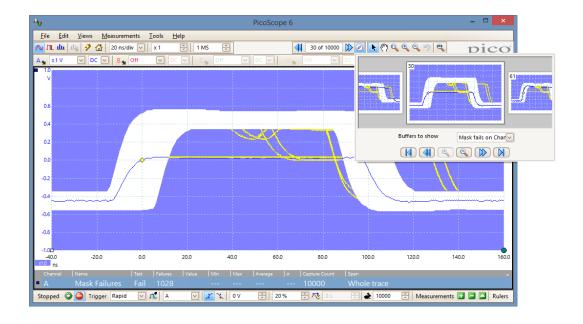
2 analog channels

PicoScope model	USB 2.0	USB 3.0	AWG*	Bandwidth	Buffer memory	Max. sampling rate
3404A	•			60 MHz	4 MS	1 G S/s
3404B	•		•	60 MHz	8 MS	1 GS/s
3405A	•			100 MHz	16 MS	1 GS/s
3405B	•		•	100 MHz	32 MS	1 GS/s
3406A	•			200 MHz	64 MS	1 GS/s
3406B	•		•	200 MHz	128 MS	1 GS/s

4 analog channels


PicoScope model	USB 2.0	USB 3.0	AWG*	Bandwidth	Buffer memory	Max. sampling rate
3204D MSO		•	•	60 MHz	128 MS	1 GS/s
3205D MSO		•	•	100 MHz	256 MS	1 GS/s
3206D MSO		•	•	200 MHz	512 MS	1 GS/s
3404D MSO		•	•	60 MHz	128 MS	1 GS/s
3405D MSO		•	•	100 MHz	256 MS	1 GS/s
3406D MSO		•	•	200 MHz	512 MS	1 GS/s

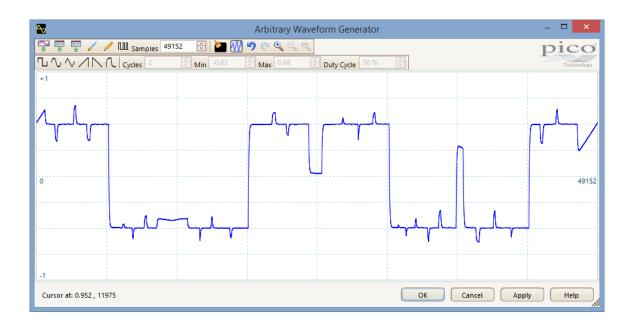
2 / 4 analog channels 16 digital channels


TRIGGERS

Since 1991 Pico Technology have been pioneering the use of digital triggering and precision hysteresis using the actual digitized data. Traditionally digital oscilloscopes have used an analog trigger architecture based on comparators. This can cause time and amplitude errors that cannot always be calibrated out. The use of comparators often limits the trigger sensitivity at high bandwidths and can also create a long trigger rearm delay.

PicoScopes broke new ground back in 1991 by being the first to use digital triggering. This method reduces errors and allows our oscilloscopes to trigger on the smallest signals, even at the full bandwidth. Trigger levels and hysteresis can be set with high precision and resolution.

Digital triggering also reduces rearm delay and this, combined with the segmented memory, allows the triggering and capture of events that happen in rapid sequence. At the fastest timebase you can use rapid triggering to collect 10,000 waveforms in under 20 milliseconds. The mask limit testing function can then scan through these waveforms to highlight any failed waveforms for viewing in the waveform buffer.



FUNCTION GENERATOR

All of the PicoScope 3000 Series oscilloscopes include a built-in function generator with sine, square, triangle, and DC modes as standard. As well as basic controls to set level, offset and frequency, more advanced controls allow you to sweep over a range of frequencies and trigger the generator from a specified event. Combined with the spectrum peak hold option, this becomes a powerful tool for testing amplifier and filter responses. The 3000 Series B and D models also include the capability to generate white noise and pseudo-random binary sequence (PRBS) outputs.

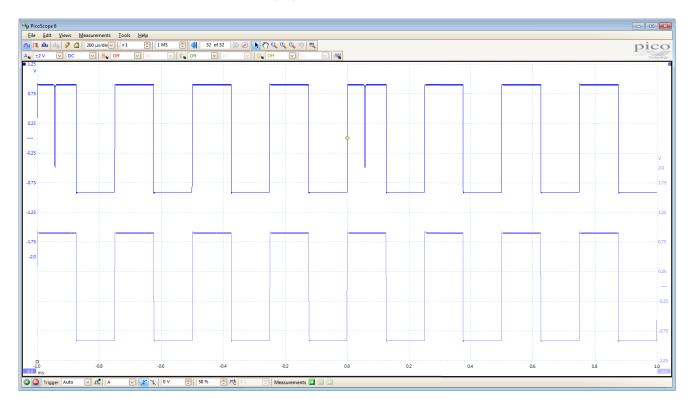
ARBITRARY WAVEFORM GENERATOR

Selected PicoScope 3000 Series oscilloscopes include a built-in arbitrary waveform generator (AWG). With a majority of oscilloscopes, you would need to purchase separate hardware to gain this functionality, taking up extra space on your workbench.

The AWG can be used to emulate missing sensor signals during product development, or to stress test a design over the full intended operating range.

Waveforms can be created or modified using the AWG editor, imported from oscilloscope traces, or loaded from a spreadsheet; as the hardware is integrated, these tasks can be performed instantly and easily.

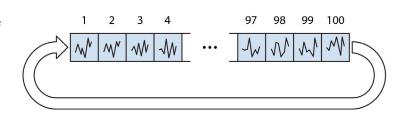
HARDWARE ACCELERATION AND DATA AGGREGATION


For a majority of setups, the data collection speed of the PicoScope will be faster than the USB transfer rate, and so information has to be stored in high-speed memory on the device. However, even deep-memory devices are required to have fast waveform update rates. For instance, the PicoScope 3207B can sample at 1 GS/s for timebases as long as 20 ms/div, capturing 200 million samples per waveform, and still update several times per second.

To ensure these fast waveform update rates, and to prevent a bottleneck of raw data, hardware acceleration is required to avoid the PC's CPU having to process every sample. Hardware acceleration enables the oscilloscope to intelligently compress the raw ADC data stored in its memory before transferring it to the PC.

1 GS 😓
20 ms/div ∨

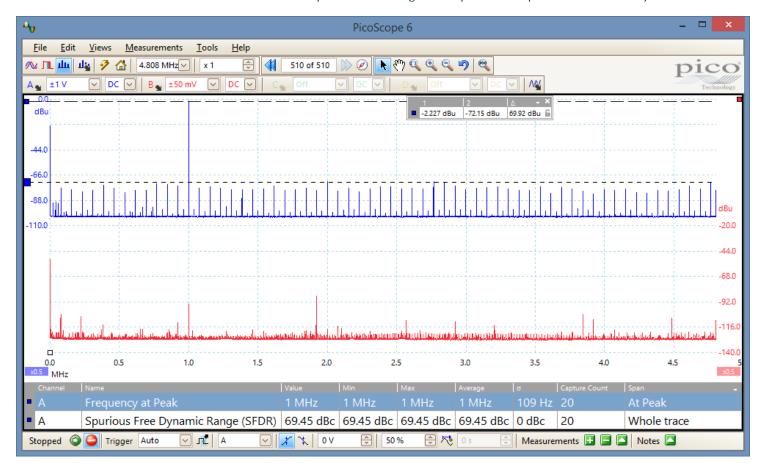
Traditionally, the oscilloscope would perform a simple decimation and only transfer every nth sample, resulting in the vast majority of data being lost (up to 99.999%) and a lack of high-frequency information.


PicoScope deep-memory oscilloscopes perform data aggregation instead. Dedicated logic divides the memory into blocks, and transfers the minimum and maximum values of each block to the PC, preserving the high-frequency data. For example, a waveform with 100 million samples may be divided into 1 000 blocks of 100 000 samples each, with only the minimum and maximum values for each block being transferred back to the PC. If a zoom is applied to the waveform, the oscilloscope will again divide the selected area into blocks and transfer the minimum and maximum data, so that fine detail is rapidly viewable.

In the example above, both waveforms show the same signal, but using different types of hardware acceleration. The top waveform has used the aggregation possible with a PicoScope, and as a result the high-frequency spikes are preserved. The bottom waveform has used traditional decimation, and shows a loss of signal data.

In parallel with the data aggregation, other data such as average values are also returned to speed up measurements and to reduce the number of occasions where we do have to use the PC's processor.

When the trace length is set to be shorter than the scope's memory, the PicoScope will automatically configure the memory as a circular buffer, recording recent waveforms for review. For example, if 1 million samples are captured, up to 500 waveforms will be stored in oscilloscope memory. Tools such as mask limit testing can then be used to scan through each waveform to identify anomalies.



Furthermore, as the hardware acceleration is performed with an FPGA, improvements to your scope's hardware can be made through regular, free software upgrades: no physical updates to your PicoScope are required.

SPECTRUM ANALYZER

With the click of a button you can display a spectrum plot of selected channels up to the full bandwidth of the oscilloscope. A full range of settings gives you control over the number of spectrum bands, window types, and display modes (instantaneous, average, or peak-hold).

You can display multiple spectrum views with different channel selections and zoom factors, and place these alongside time-domain views of the same data. A comprehensive set of automatic frequency-domain measurements can be added to the display, including THD, THD+N, SNR, SINAD and IMD. You can even use the AWG and spectrum mode together to perform swept scalar network analysis.

SIGNAL INTEGRITY

Most oscilloscopes are built down to a price. PicoScopes are built up to a specification.

Careful front-end design and shielding reduces noise, crosstalk and harmonic distortion. Years of oscilloscope design experience can be seen in improved bandwidth flatness and low distortion. We are proud of the dynamic performance of our products, and publish their specifications in detail.

The result is simple: when you probe a circuit, you can trust in the waveform you see on the screen.

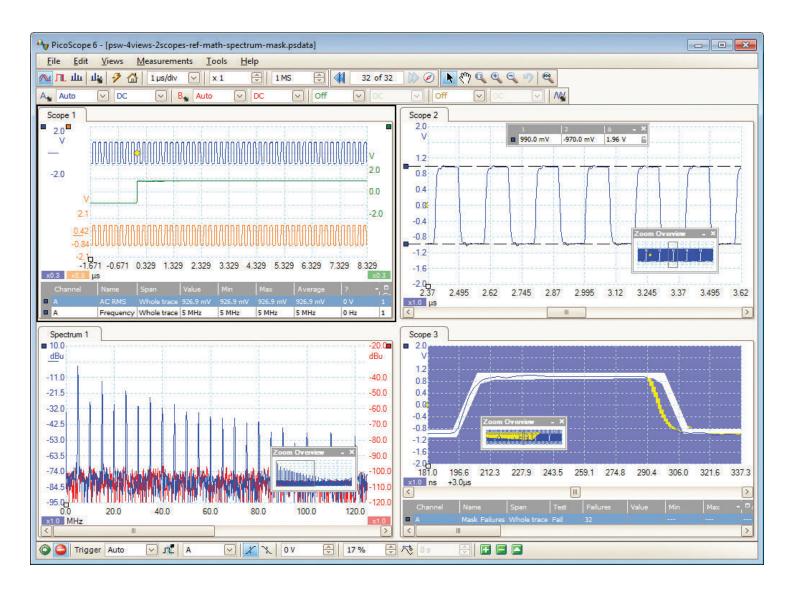
USB CONNECTIVITY

The USB connection not only allows high-speed data acquisition and transfer, but also makes printing, copying, saving, and emailing your data from the field quick and easy. USB powering removes the need to carry around a bulky external power supply, making the kit even more portable for the engineer on the move.

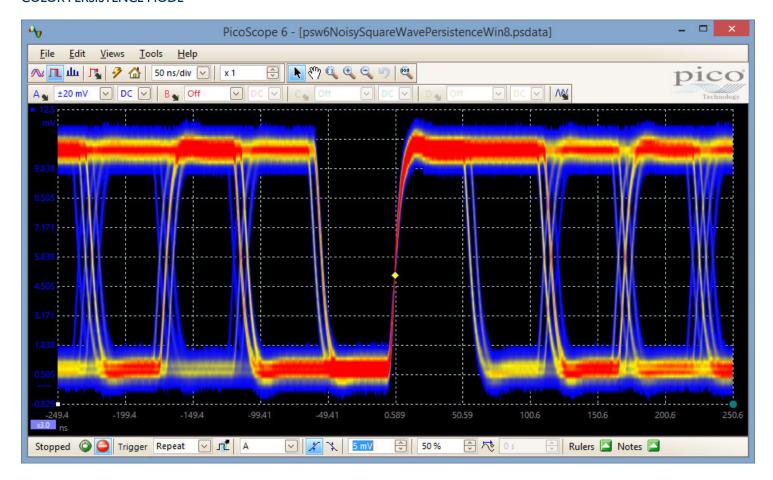
Selected PicoScope 3000 Series oscilloscopes now also feature a SuperSpeed USB 3.0 connection, making the already-optimized process of data transfer even faster.

Further benefits of a USB 3.0 connection include faster saving of waveforms and faster gap-free continuous streaming of up to 125~MS/s when using the SDK, while the scope is still backward-compatible with older USB systems.

HIGH-END FEATURES AS STANDARD


Buying a PicoScope is not like making a purchase from other oscilloscope companies, where optional extras considerably increase the price. With our scopes, high-end features such as resolution enhancement, mask limit testing, serial decoding, advanced triggering, automatic measurements, math channels, XY mode, segmented memory, and a signal generator are all included in the price.

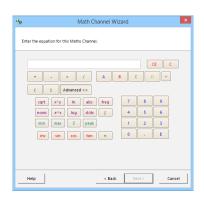
To protect your investment, both the PC software and firmware inside the scope can be updated. Pico Technology have a long history of providing new features for free through software downloads. We deliver on our promises of future enhancements year after year, unlike many other companies in the field. Users of our products reward us by becoming lifelong customers and frequently recommending us to their colleagues.


ADVANCED DISPLAY

The PicoScope software dedicates almost all of the display area to the waveform. This ensures that the maximum amount of data is seen at once. Even with a laptop the viewing area is much bigger and of a higher resolution than with a typical benchtop scope.

With a large display area available, you can also create a customizable split-screen display, and view multiple channels or different variants of the same signal at the same time. As the example below shows, the software can even show both oscilloscope and spectrum analyzer traces at once. Additionally, each waveform shown works with individual zoom, pan, and filter settings for ultimate flexibility.

COLOR PERSISTENCE MODE



Color persistence mode allows you to see old and new data superimposed, with new data in a brighter color or shade. This makes it easy to see glitches and dropouts and to estimate their relative frequency. Choose between analog persistence and digital color, or create custom display modes.

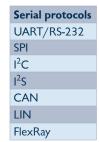
MATH CHANNELS

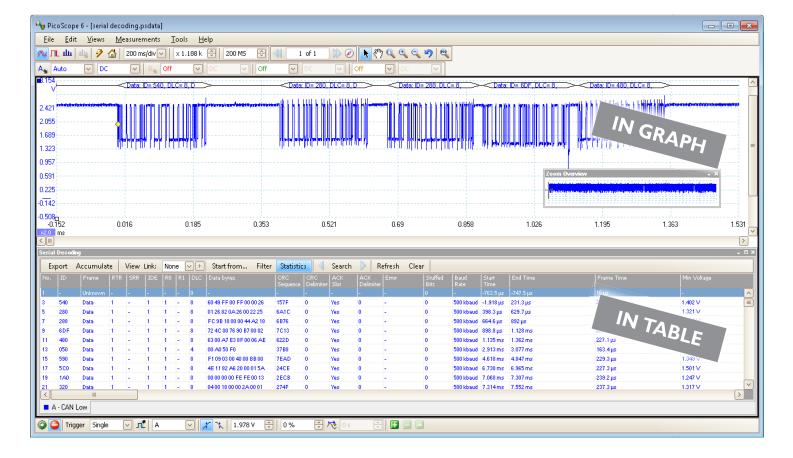
With PicoScope 6 you can perform a variety of mathematical calculations on your input signals and reference waveforms.

Use the built-in list for simple functions such as addition and inversion, or open the equation editor and create complex functions involving trigonometry, exponentials, logarithms, statistics, integrals and derivatives.

CUSTOM PROBE SETTINGS

Custom probes allow you to correct for gain, attenuation, offsets and nonlinearities of probes and transducers, or convert to different measurement units such as current, power or temperature. Definitions for standard Pico-supplied probes are built in, but you can also create your own using linear scaling or even an interpolated data table, and save them for later use.


SERIAL DECODING

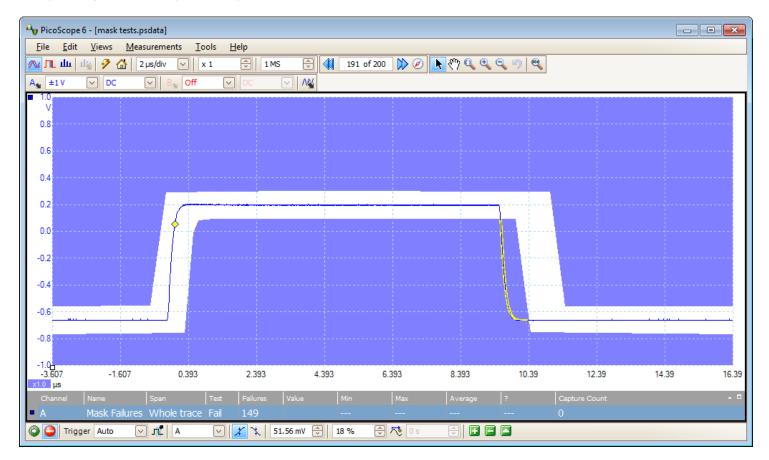

The deep-memory PicoScope 3000 Series oscilloscopes include serial decoding capability across all channels, and are ideal for this job as they can capture thousands of frames of uninterrupted data.

The decoded data can be displayed in the format of your choice: In graph, In table, or both at once.

- **IN GRAPH** format shows the decoded data beneath the waveform on a common time axis, with error frames marked in red. These frames can be zoomed to investigate noise or distortion.
- **IN TABLE** format shows a list of the decoded frames, including the data and all flags and identifiers. You can set up filtering conditions to display only the frames you are interested in, search for frames with specified properties, or define a start pattern to signal when the program should list the data.

PicoScope can also import a spreadsheet to decode the numerical data into user-defined text strings.

HIGH-SPEED DATA ACQUISITION AND DIGITIZER

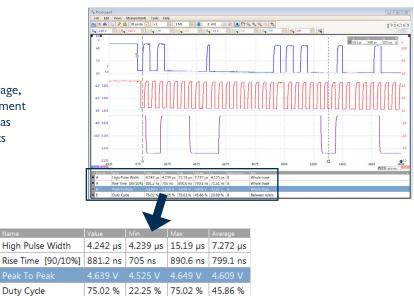

The supplied drivers and software development kit (SDK) allows you to write your own software or interface to popular third-party software packages such as National Instruments LabVIEW and MathWorks MATLAB.

The driver supports data streaming, a mode which captures gap-free continuous data over USB direct to the PC's RAM or hard disk at rates of up to 125 MS/s and capture sizes limited only by available PC storage. Sampling rates in streaming mode are subject to PC specifications and application loading.

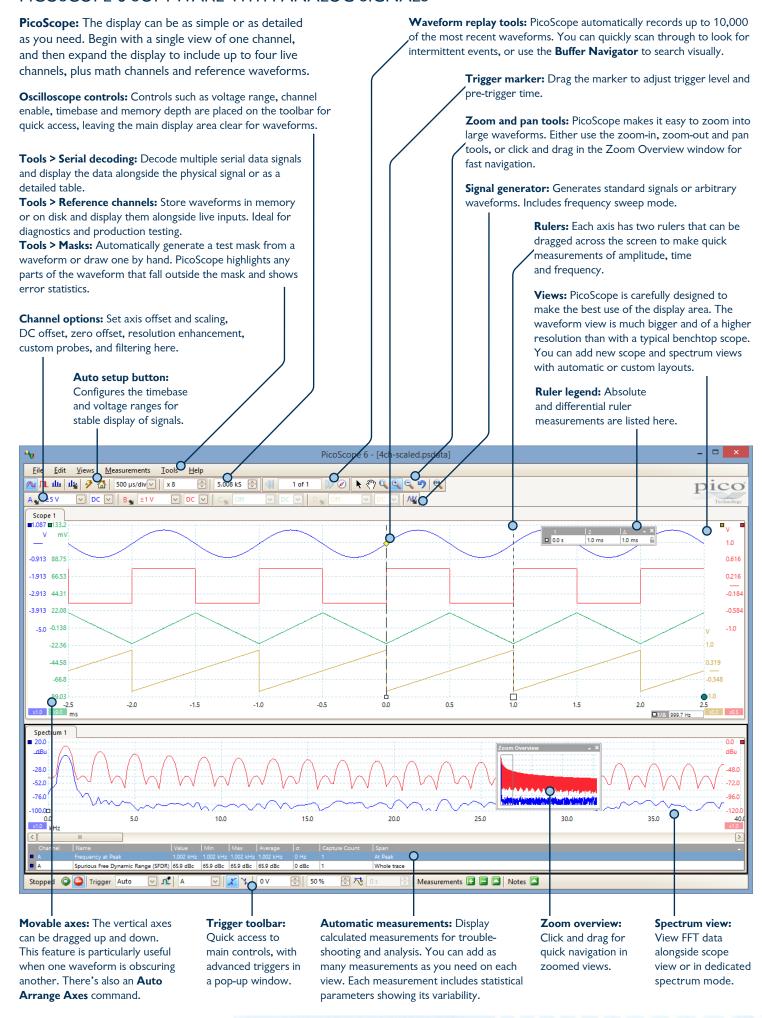
MASK LIMIT TESTING

Mask limit testing allows you to compare live signals against known good signals, and is designed for production and debugging environments. Simply capture a known good signal, draw a mask around it, and then attach the system under test. PicoScope will capture any intermittent glitches and can show a failure count and other statistics in the Measurements window.

The numerical and graphical mask editors can be used separately or in combination, allowing you to enter accurate mask specifications, modify existing masks, and import and export masks as files.


High Pulse Width

Duty Cycle

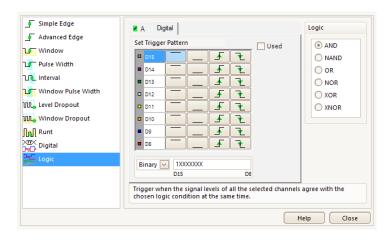

AUTOMATIC MEASUREMENTS

PicoScope allows you to display a table of calculated measurements for troubleshooting and analysis.

Using the built-in measurement statistics you can see the average, standard deviation, maximum and minimum of each measurement as well as the live value. You can add as many measurements as you need on each view. For information on the measurements available in scope and spectrum modes, see Automatic Measurements in the Specifications table.

PICOSCOPE 6 SOFTWARE WITH ANALOG SIGNALS

MIXED-SIGNAL OSCILLOSCOPES


The PicoScope 3000 Series Mixed-Signal Oscilloscopes (MSOs) include 16 digital inputs alongside the standard 2 or 4 analog channels, so that you can view your digital and analog signals simultaneously.

These models include the same features as other PicoScope 3000 Series oscilloscopes, such as SuperSpeed USB 3.0 connectivity, deep memory, and a built-in arbitrary waveform generator, as well as functions such as mask limit testing, math and reference channels, advanced triggers, serial decoding, and automatic measurements.

DIGITAL TRIGGERS

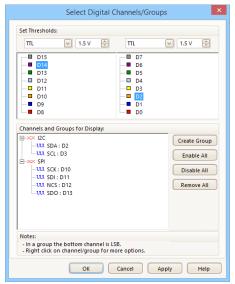
The PicoScope 3000 Series MSO models offer a comprehensive set of advanced triggers covering both the analog and digital inputs, to help you capture the data you need.

As well as simple edge triggers, a selection of time-based triggers are available for both digital and analog inputs.

- The pulse-width trigger allows you to trigger on either "high" or "low" pulses, which are shorter or longer than a specified time, or which fall inside or outside a range of times.
- The interval trigger measures the time between subsequent rising or falling edges. This allows you to trigger if a clock signal falls outside of an acceptable frequency range, for example.
- The dropout trigger fires when a signal stops toggling for a defined interval of time, functioning rather like a watchdog timer.

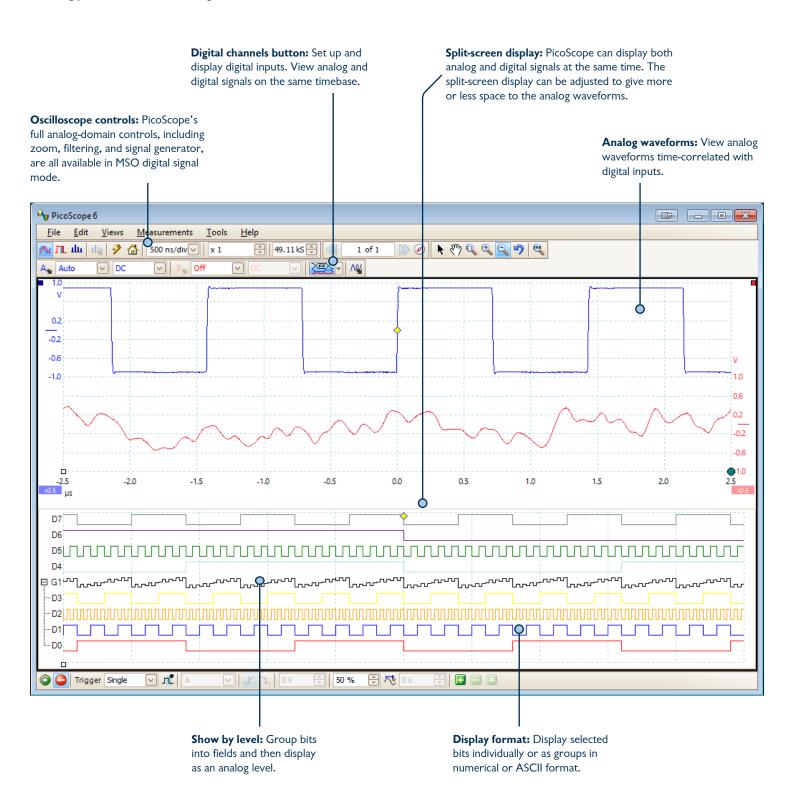
Logic triggering allows you to trigger the scope when any or all of the 16 digital inputs match a user-defined pattern. You can specify a condition for each channel individually, or set up a pattern for all channels at once using a hexadecimal or binary value. You can also combine logic triggering with an edge trigger on any one of the digital or analog inputs, to trigger on data values in a clocked parallel bus for example.

SERIAL DECODING FOR DIGITAL SIGNALS


The PicoScope 3000 Series MSO models bring extra power to the serial decoding features outlined in **Serial decoding for analog signals**. You can decode serial data on all analog and digital inputs simultaneously, giving you up to 20 channels of data with any combination of serial protocols!

DIGITAL CHANNELS

To view the digital signals in the PicoScope 6 software, simply click the digital channels button. Channels can be added to the view by dragging and dropping, and can then be reordered, grouped, and renamed.



The 16 digital inputs can be displayed individually or in arbitrary groups labelled with binary, decimal or hexadecimal values. A separate logic threshold from -5 V to +5 V can be defined for each 8-bit input port. The digital trigger can be activated by any bit pattern combined with an optional transition on any input.

Advanced logic triggers can be set on either the analog or the digital input channels, or both.

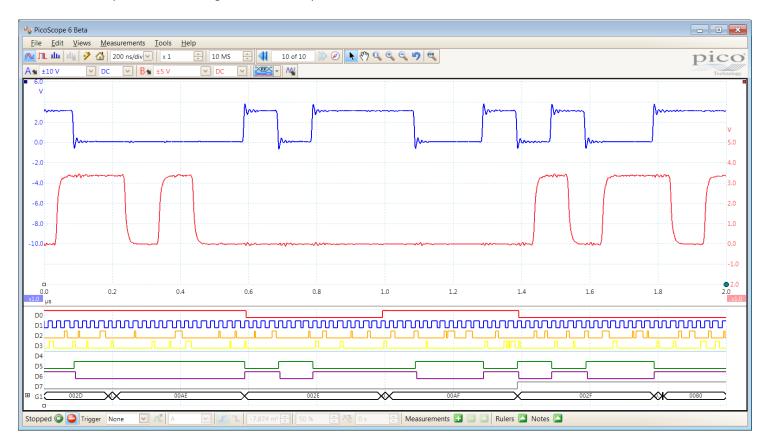
PICOSCOPE 6 SOFTWARE WITH DIGITAL SIGNALS

The flexible nature of the PicoScope 6 software interface allows for high-resolution viewing of up to 16 digital and 4 analog signals at once. You can use the whole of your PC's display to view the waveforms, ensuring you never miss a detail again.

APPLICATION FXAMPLES

TESTING ON THE MOVE

The PicoScope 3000 Series oscilloscopes slip easily into a laptop bag, so you don't need to carry bulky benchtop instruments to perform on-site troubleshooting. Being powered via a USB connection, your PicoScope can simply be plugged into your laptop and used for measuring wherever you are. The PC connection also makes saving and sharing your data quick and easy: in a matter of seconds you can save your scope traces to review later, or attach the complete data file to an email for analysis by other engineers away from the test site. As PicoScope 6 is free to download by anyone, colleagues can use the full capabilities of the software, such as serial decoding and spectrum analysis, without needing an oscilloscope themselves.


EMBEDDED DEBUGGING

You can test and debug a complete signal-processing chain using a PicoScope 3406D MSO.

Use the built-in arbitrary waveform generator (AWG) to inject single-shot or continuous analog signals. The response of your system can then be observed in both the analog domain, using the four 200 MHz input channels, and in the digital domain with 16 digital inputs at up to 100 MHz. Follow the analog signal through the system while simultaneously using the built-in serial decoding function to view the output of an I^2C or SPI ADC.

If your system drives a DAC in response to the analog input changing, you can decode the I^2C or SPI communication to that as well as its analog output. This can all be performed simultaneously using the 16 digital and 4 analog channels.

Using the deep 512 MS buffer memory, you can capture the complete response of your system without sacrificing the sampling rate, and zoom in on the captured data to find glitches and other points of interest.

DETAILED SPECIFICATIONS FOR 2-CHANNEL MODELS

	PicoScope	2 3204 A/B	PicoScope	3205 A/B	PicoScope	e 3206 A/B	PicoScope	3207 A/B
VERTICAL								
Input channels				channels, BN				
Bandwidth (–3 dB)		MHz		MHz		MHz		MHz
Rise time (calculated)	5.8	3 ns	3.5	ns		75 ns	1.4	1 ns
Vertical resolution					oits			
Input ranges			±50 r	nV to ±20 V f	full scale in 9	ranges		
Input sensitivity			10 mV/	div to 4 V/div	(10 vertical	divisions)		
Input coupling				AC /	/ DC			
Input characteristics			1 ΜΩ	±1%, in paral	lel with 13 pF	±1 pF		
DC accuracy				±3% of	full scale			
Analog offset range (vertical position adjust)			±	0 mV (50 mV 2.5 V (500 m\ ±20 V (5 V to	√ to 2 V rang	es)		
Offset adjust accuracy			±1% of of	fset setting, ac	dditional to D	C accuracy		
Overvoltage protection				±100 V (DC	+ AC peak)			
HORIZONTAL			500 MO / //				1.00 / //	
Maximum sampling rate (real-time)			500 MS/s (1 o 250 MS/s (2 o		,		, ,	ch. in use) 2 chs. in use)
Maximum equivalent-time sampling rate	2.5	GS/s	5.0	iS/s	10	GS/s	10.0	CC /c
(repetitive signals)	2.5	G3/ s	3 0	13/ 3	10	G3/ S	10 GS/s	
Maximum sampling rate (streaming)		10 MS/s in PicoScope software > 10 MS/s using the supplied SDK (PC-dependent)					soft 125 MS/s supplie	n PicoScope ware when using ed SDK pendent)
Timebase ranges (real-time)	2 ns/div to	5000 s/div	1 ns/div to	5000 s/div	500 ps/div	to 5000 s/div	500 ps/div t	o 5000 s/div
Buffer memory	4 MS (A model)	8 MS (B model)	16 MS (A model)	32 MS (B model)	64 MS (A model)	128 MS (B model)	256 MS (A model)	512 MS (B model)
Buffer memory				00 MS in Pico	•			
(streaming)			Up to availab		,	supplied SDK		
Maximum buffer segments					000			
Timebase accuracy				ppm				ppm/year
Sample jitter			< 5 ps Rf	1S typical			< 3 ps RI	MS typical
TRIGGERING								
Trigger modes			None, auto, r	epeat, single,	rapid (segme	nted memory))	
Advanced trigger types	Edge, wir	ndow, pulse w	vidth, window	pulse width, d	ropout, wind	ow dropout, i	nterval, logic,	runt pulse
Trigger sensitivity		Digital 1	triggering prov	ides 1 LSB acc	curacy up to f	full bandwidth	of scope	
Trigger types (ETS mode)				Rising edge,	, falling edge			
Trigger sensitivity (ETS mode)			10 n	nV p-p typical	(at full bandv	vidth)		
Maximum pre-trigger capture				Up to 100% o	of capture size	e		
Maximum post-trigger delay			Up to 4 billio	on samples (se	electable in 1	sample steps)		
Trigger rearm time			< 2 µs on fas	test timebase			< 1 µs on fas	test timebase
Maximum trigger rate		Up to	10 000 wavefo	orms in a 20 n	ns burst			0 waveforms ms burst

	1 icoscope 3204 A/B	1 icoscope 3203 A/B	1 icoscope 3200 A/B	1 icoscope 3207 A/B
EXTERNAL TRIGGER INPUT	Γ			
Trigger types		<u> </u>	out, interval, logic, delayed	
Input characteristics		Front panel BNC, 1 M Ω ±19		
Bandwidth (-3 dB)	60 MHz	100 MHz	200 MHz	250 MHz
Threshold range			C coupled	
Overvoltage protection		±100 V (DC	C + AC peak)	
UNCTION GENERATOR				
Standard output signals	B mo	All models: sine, squarodels only: ramp, sinc, Gaus	re, triangle, DC voltage sian, half-sine, white noise,	PRBS
Standard signal frequency		DC to	1 MHz	
Sweep modes	Up, dov	vn, dual with selectable star	rt / stop frequencies and in	crements
Output frequency accuracy		As osci	lloscope	
Output frequency resolution		< 10 mHz		< 25 mHz
Output voltage range		±2	2 V	
Output voltage adjustments	Signal amplitude a	and offset adjustable in appr	oximate 1 mV steps within	overall ±2 V range
Amplitude flatness		< 0.5 dB to 1	1 MHz typical	
DC accuracy		±1% of	full scale	
SFDR		> 60 dB, 10 kHz	full scale sine wave	
Output characteristics		Front panel BNC, 600	0 Ω output impedance	
Overvoltage protection		±2	0 V	
ARBITRARY WAVEFORM G	ENERATOR (B models of	only)		
Update rate	,	20 MS/s		100 MS/s
Buffer size	8 kS	8 kS	16 kS	32 kS
Resolution		12 bits (output step siz	re approximately 1 mV)	
Bandwidth		>1	MHz	
Rise time (10% to 90%)		< 12	20 ns	
PHYSICAL SPECIFICATIONS	;			
PC connectivity		USB 2.0		USB 3.0 (USB 2.0 compatible
Dimensions		200 mm x 140 mm x 40	mm (including connectors)	
Weight		< 0.	.5 kg	
Temperature range	Оре	erating: 0 °C to 50 °C (20 ° Storage: –20	°C to 30 °C for stated accur	racy)
Humidity range			80% RH non-condensing 5% RH non-condensing	

PicoScope 3205 A/B

PicoScope 3206 A/B

PicoScope 3207 A/B

PicoScope 3204 A/B

DETAILED SPECIFICATIONS FOR 4-CHANNEL MODELS

PicoScope	3404 A/B	P ico S cope	3405 A/B	PicoScope	3406 A/B
		4 channels, BN	C single-ended		
100	60 MHz 100 MHz 200 MI				
5.8	ns	3.5	ns	1.7	5 ns
		8 b	its		
	±	:50 mV to ±20 V ft	ıll scale in 9 range	es	
	10 r	mV/div to 4 V/div	(10 vertical divisi	ons)	
		AC/	DC		
	1	$M\Omega \pm 1\%$, in paralle	el with 14 pF ±1 ¡	oF	
		±3% of f	ull scale		
	±25	±2.5 V (500 mV,	1 V, 2 V ranges)	nges)	
	±1% d	of offset setting, ad	ditional to DC acc	curacy	
		±100 V (DC	+ AC Peak)		
		500 MS/s (2 ch	nannels in use)		
2.5 (GS/s	5 G	S/s	10 0	GS/s
	> 10 M	,	•	endent)	
2 ns/div to	5000 s/div	1 ns/div to	5000 s/div	500 ps/div t	o 5000 s/div
4 MS (A model)	8 MS (B model)	16 MS (A model)	32 MS (B model)	64 MS (A model)	128 MS (B model)
100 MS	in PicoScope soft	tware. Up to availa	ble PC memory v	when using supplie	ed SDK.
		10 0	000		
		±50 ¡	opm		
		< 3 ps RM	IS typical		
	Auto noi	ne ranid reneat si	ingle (segmented	memory)	
Edge window					ogic runt puls
	•	•	•	<u> </u>	
	Digital triggering	<u>'</u>		andwidth of scope	•
				\	
			•)	
	I In to 4	·	<u> </u>	ole steps)	
	Op 10 4	· ` `	·	ine stehs)	
		> ∠ µs on last	est uniepase		
	2.5 (2 ns/div to 4 MS (A model) 100 MS	5.8 ns ± 10 r 1 ±25 ±1% o 2.5 GS/s > 10 M 2 ns/div to 5000 s/div 4 MS 8 MS (A model) (B model) 100 MS in PicoScope soft Auto, note Edge, window, pulse width, wind Digital triggering in	4 channels, BNn 60 MHz 100 N 5.8 ns 3.5 8 b ±50 mV to ±20 V fr 10 mV/div to 4 V/div AC / 1 MΩ ±1%, in paralle ±3% of f ±2.50 mV (50 mV, 100 ±2.5 V (500 mV, ±20 V (5 V, 10 N) ±1% of offset setting, ad ±100 V (DC 1 GS/s (1 chance setting) 10 MS/s in PicoS 2.5 GS/s 5 GS 10 MS/s (3 or 4 2.5 GS/s 5 GS 10 MS/s using the supple 2 ns/div to 5000 s/div 4 MS 8 MS 16 MS (A model) (B model) (A model) 100 MS in PicoScope software. Up to availate 10 C ±50 g <3 ps RM Auto, none, rapid, repeat, si Edge, window, pulse width, window pulse width, dr Digital triggering provides 1 LSB according edge, 10 mV p-p typical (10 mV p-p typical) Up to 100% o Up to 4 billion samples (selection)	4 channels, BNC single-ended 60 MHz 5.8 ns 3.5 ns 8 bits ±50 mV to ±20 V full scale in 9 range 10 mV/div to 4 V/div (10 vertical divisi) AC / DC 1 MΩ ±1%, in parallel with 14 pF ±1 pt ±3% of full scale ±250 mV (50 mV, 100 mV, 200 mV ranges) ±20 V (5 V, 10 V, 20 V ranges) ±20 V (5 V, 10 V, 20 V ranges) ±1% of offset setting, additional to DC accomposed to the setting of the setting	4 channels, BNC single-ended 60 MHz 100 MHz 200 5.8 ns 3.5 ns 1.7 8 bits ±50 mV to ±20 V full scale in 9 ranges 10 mV/div to 4 V/div (10 vertical divisions) AC / DC 1 MΩ ±1%, in parallel with 14 pF ±1 pF ±3% of full scale ±250 mV (50 mV, 100 mV, 200 mV ranges) ±2.5 V (500 mV, 1 V, 2 V ranges) ±2.5 V (500 mV, 1 V, 2 V ranges) ±1% of offset setting, additional to DC accuracy ±100 V (DC + AC Peak) 1 GS/s (1 channel in use) 500 MS/s (2 channels in use) 2.5 GS/s 5 GS/s 10 MS/s in PicoScope software > 10 MS/s using the supplied SDK (PC-dependent) 2 ns/div to 5000 s/div 1 ns/div to 5000 s/div 5 MS/s in PicoScope software > 10 MS/s in PicoScope software > 10 MS/s using the supplied SDK (PC-dependent) 2 ns/div to 5000 s/div 4 MS 8 MS 16 MS 3 2 MS 64 MS (A model) (B model) (A model) 10 MS in PicoScope software. Up to available PC memory when using supplied 10 000 ±50 ppm < 3 ps RMS typical Auto, none, rapid, repeat, single (segmented memory) Edge, window, pulse width, window pulse width, dropout, window dropout, interval, in Digital triggering provides 1 LSB accuracy up to full bandwidth of scope Rising edge, falling edge 10 mV p-p typical (at full bandwidth) Up to 100% of capture size Up to 4 billion samples (selectable in 1 sample steps)

	PicoScope 3404 A/B	PicoScope 3405 A/B	PicoScope 3406 A/B
EXTERNAL TRIGGER INPUT			
Trigger types	Edge, p	oulse width, dropout, interval, logic,	delayed
Input characteristics	Front pane	el BNC, 1 M Ω ±1% in parallel with 14	4 pF ±1 pF
Bandwidth (–3 dB)	60 MHz	100 MHz	200 MHz
Threshold range		±5 V, DC coupled	
Overvoltage protection		±100 V (DC + AC peak)	
FUNCTION GENERATOR			
Standard output signals		nodels: sine, square, triangle, DC vol r: ramp, sinc, Gaussian, half-sine, whi	•
Standard signal frequency		DC to 1 MHz	
Sweep modes	Up, down, dual w	vith selectable start / stop frequencie	es and increments
Output frequency accuracy		As oscilloscope	
Output frequency resolution		< 10 mHz	
Output voltage range		±2 V	
Output voltage adjustments	Signal amplitude and offset	adjustable in approximate 1 mV step	os within overall ±2 V range
Amplitude flatness		< 0.5 dB to 1 MHz typical	
DC accuracy		±1% of full scale	
SFDR		> 60 dB, 10 kHz full scale sine wave	
Output characteristics	Fro	nt panel BNC, 600 Ω output impeda	nce
Overvoltage protection		±20 V	
ARBITRARY WAVEFORM GENE	RATOR (B models only)		
Update rate	, ,,	20 MS/s	
Buffer size	8 kS	8 kS	16 kS
Resolution	12 bi	its (output step size approximately 1	mV)
Bandwidth		> 1 MHz	
Rise time (10% to 90%)		< 120 ns	
PROBE COMPENSATION OUTP	UT		
Impedance		600 Ω	
Frequency		1 kHz square wave	
Level		2 V pk-pk	
PHYSICAL SPECIFICATIONS			
PC connectivity		USB 2.0	
Dimensions	190 mm	n x 170 mm x 40 mm (including con	nectors)
Weight		< 0.5 kg	
Temperature range	Operating: 0	°C to 40 °C (20 °C to 30 °C for sta Storage: -20 °C to 60 °C	ted accuracy)
Humidity range		rating: 5% RH to 80% RH non-conderage: 5% RH to 95% RH non-conder	

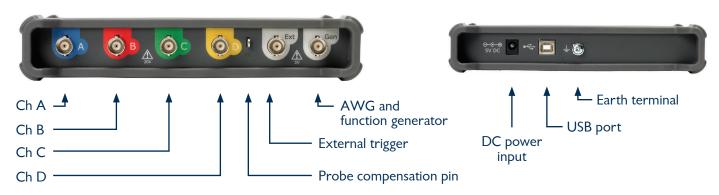
DETAILED SPECIFICATIONS FOR MSO MODELS

V	PicoScope 3204D MSO	PicoScope 3205D MSO	PicoScope 3206D MSO	PicoScope 3404D MSO	PicoScope 3405D MSO	PicoScope 3406D MSO
VERTICAL (analog)	2 about	2 channels, BNC single-ended 4 channels, BNC single-		andad		
Input channels	60 MHz	100 MHz	200 MHz	60 MHz	100 MHz	200 MHz
Bandwidth (-3 dB)						
Rise time (calculated)	5.8 ns	3.5 ns	1.75 ns	5.8 ns	3.5 ns	1.75 ns
Vertical resolution				bits		
Input ranges			.0 mV to ±20 V f			
Input sensitivity		4 m	V/div to 4 V/div		isions	
Input coupling				/ DC		
Input characteristics		1	$M\Omega \pm 1\%$, in para		pF	
DC accuracy				cale ±200 µV		
Analog offset range (vertical position adjust)		±250 m\	/ (20 mV, 50 mV ±2.5 V (500 mV ±20 V (5 V, 10			
Offset adjust accuracy		±1% o	of offset setting, a		ccuracy	
Overvoltage protection			±100 V (DC	C + AC peak)		
VERTICAL (digital)			`	, ,		
Input channels		16	channels (2 port	s of 8 channels ea	ach)	
Input connectors			.54 mm pitch, 10			
Maximum input frequency			·	MHz		
Minimum detectable pulse width				ns		
nput impedance (with TA136 cable)				8 pF ±2 pF		
Digital threshold range				5 V		
				0 V		
Input dynamic range				0 V		
Overvoltage protection					() D + 1 (D0 +	D45)
Threshold grouping	IWO		eshold controls: I	•	,	(נוט
Threshold selection		I	TL, CMOS, ECL,		ed	
Threshold accuracy				0 mV		
Minimum input voltage swing				V pk-pk		
Channel-to-channel skew				typical		
Minimum input slew rate			10 \	V/µs		
HORIZONTAL						
Maximum sampling rate (real-time)		250 MS/s (U 125 MS/s (5	1 GS/s (1 analo Jp to 2 analog ch Jp to 4 analog ch or more analog c digital port conta	annels or digital p hannels or digital	ports* in use) ports* in use) ports* in use)	
Maximum equivalent-time sampling rate (repetitive signals)*	2.5 GS/s	5 GS/s	10 GS/s	2.5 GS/s	5 GS/s	10 GS/s
Maximum sampling rate (streaming)		125 MS/s	10 MS/s in Pico when using the su	Scope software upplied SDK (PC-	dependent)	
Timebase ranges	2 ns/div to 5000 s/div	1 ns/div to 5000 s/div	500 ps/div to 5000 s/div	2 ns/div to 5000 s/div	1 ns/div to 5000 s/div	500 ps/div to 5000 s/div
Buffer memory	128 MS	256 MS	512 MS	128 MS	256 MS	512 MS
Buffer memory (streaming)	100 MS i	n PicoScope soft	ware. Up to avail	able PC memory	when using supp	olied SDK.
Maximum buffer segments			10	000		
Timebase accuracy	±50 ppm	±2 ppm	±2 ppm	±50 ppm	±2 ppm	±2 ppm
Sample jitter			< 3 ps RI	MS typical		

TRIGGERING (all)	PicoScope 3204D MSO	PicoScope 3205D MSO	PicoScope 3206D MSO	PicoScope 3404D MSO	PicoScope 3405D MSO	PicoScope 3406D MSO
Trigger modes		Auto, nor	ne, rapid, repeat, s	single (segmented	d memory)	
Advanced trigger types*	Edge window r		ow pulse width, d			logic runt nuls
Trigger sensitivity*			provides 1 LSB acc	<u> </u>		
Trigger types (ETS mode)*		rigital triggering p		falling edge	Janawidan or sco	
Trigger sensitivity (ETS mode)*			10 mV p-p typical		h)	
Maximum pre-trigger capture			, .	of capture size	···)	
Maximum post-trigger delay		Up to 4	billion samples (se	<u> </u>	unle stens)	
Trigger re-arm time		Op 10 1	· ` `	test timebase	ріс зтерз)	
Maximum trigger rate		Un	to 10 000 wavefo		nurst	
		<u> </u>	to 10 000 wavele	71113 111 4 20 1113 1		
TRIGGERING (digital)						
Source			D0 to			
Trigger types			· · · · · · · · · · · · · · · · · · ·	tern and edge		
Advanced triggers		Edg	ge, pulse width, dr	opout, interval,	logic	
FUNCTION GENERATOR						
Standard output signals	Sine, so	juare, triangle, D	C voltage, ramp, s	sinc, Gaussian, ha	lf-sine, white nois	se, PRBS
Standard signal frequency			DC to	1 MHz		
Sweep modes	U	Jp, down, dual w	ith selectable star	t / stop frequenc	cies and incremen	ts
Output frequency accuracy			As oscil	loscope		
Output frequency resolution			< 10	mHz		
Output voltage range			±2	V		
Output voltage adjustment	Signal amp	litude and offset	adjustable in appr	oximate 1 mV ste	eps within overall	±2 V range
Amplitude flatness			< 0.5 dB to 1	MHz typical		
DC accuracy			±1% of	full scale		
SFDR			> 60 dB 10 kHz f	ull scale sine wav	e	
Output characteristics		Rea	r panel BNC, 600	Ω output imped	lance	
Overvoltage protection			±2	0 V		
ARBITRARY WAVEFORM GENE	RATOR (AWG)					
Update rate			20 1	1S/s		
Buffer size				kS		
Resolution		12 bi	ts (output step siz		1 mV)	
Bandwidth				MHz	,	
Rise time (10% to 90%)			< 12	.0 ns		
,						
PROBE COMPENSATION OUTP	UI		(0)	2.0		
Impedance				0 Ω :Hz		
Frequency						
Level			2 V [ok-pk		
PHYSICAL SPECIFICATIONS						
PC connectivity			USB 3.0 (USB	2.0 compatible)		
Dimensions		190 mm	× 170 mm × 40 r		nnectors)	
Weight				5 kg		
Temperature range				°C to 60 °C		
Humidity range			ating: 5% RH to 8 age: 5% RH to 95			

COMMON SPECIFICATIONS FOR ALL MODELS

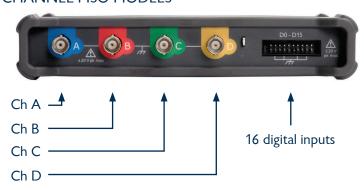
ALL MODELS


Crosstalk	Better than 400:1 up to full bandwidth (equal voltage ranges)
Harmonic distortion	< –50 dB at 100 kHz full scale input
SFDR	52 dB typical
Noise	180 μV RMS (on most sensitive range)
Bandwidth flatness	+0.3 dB, -3 dB from DC to full bandwidth
	O.5 dB, 5 dB Holli BC to full balldwidth
SPECTRUM ANALYZER	
Frequency range	DC to maximum bandwidth of scope
Display modes	Magnitude, average, peak hold
Windowing functions	Rectangular, Gaussian, triangular, Blackman, Blackman-Harris, Hamming, Hann, flat-top
Number of FFT points	Selectable from 128 to 1 million in powers of 2
MATH CHANNELS	
Functions	$-x$, $x+y$, $x-y$, $x*y$, x/y , x^y , sqrt, exp, ln, log, abs, norm, sign, sin, cos, tan, arcsin, arccos, arctan, sinh, cosh, tanh, freq, derivative, integral, min, max, average, peak, delay
Operands	All input channels, reference waveforms, time, constants, π
UTOMATIC MEASUREMENTS	(analog channels only)
	AC RMS, true RMS, cycle time, DC average, duty cycle, falling rate, fall time, frequency,
Oscilloscope mode	high pulse width, low pulse width, maximum, minimum, peak to peak, rise time, rising rate.
Spectrum mode	Frequency at peak, amplitude at peak, average amplitude at peak, total power, THD %, THD dB, THD+N, SFDR, SINAD, SNR, IMD
Statistics	Minimum, maximum, average, standard deviation
SERIAL DECODING	
Protocols	CAN, FlexRay, I ² C, I ² S, LIN, SPI, UART/RS-232
MACK LIMIT TECTING	
MASK LIMIT TESTING Statistics	Pass/fail, failure count, total count
Statistics	Fassy Idil, Idilure Court, total Court
DISPLAY	
Interpolation	Linear or sin(x)/x
Persistence modes	Digital color, analog intensity, custom, none
GENERAL	
Power requirements	USB 2.0 models: powered from single USB port USB 3.0 models: powered from single USB 3.0 port or two USB 2.0 ports (dual cable supplied) For 4-channel models, use a USB port supplying at least 1200 mA, or use the AC adaptor supplied
Safety approvals	Designed to EN 61010-1:2010
EMC approvals	Tested to EN 61326-1:2006 and FCC Part 15 Subpart B
Environmental approvals	RoHS and WEEE compliant
Software included	PicoScope 6 (for Windows and Linux). Windows and Linux SDK. Example programs (C, Visual Basic, Excel VBA, LabVIEW).
PC requirements	Microsoft Windows XP (SP3), Windows Vista, Windows 7 or Windows 8 (not Windows RT)
Output file formats	bmp, csv, gif, jpg, mat, pdf, png, psdata, pssettings, txt
Output functions	copy to clipboard, print
Languages	Chinese (simplified), Chinese (traditional), Czech, Danish, Dutch, English, Finnish, French, German, Greek, Hungarian, Italian, Japanese, Korean, Norwegian, Polish, Portuguese,

CONNECTIONS

2-CHANNEL MODELS

4-CHANNEL MODELS



2-CHANNEL MSO MODELS

4-CHANNEL MSO MODELS

KIT CONTENTS

All PicoScope 3000 Series oscilloscope kits contain:

- PicoScope 3000 Series oscilloscope
- Switchable x1/x10 probes (2 or 4) in carrying case
- Ouick Start Guide
- Software and reference CD
- USB cable(s)*
- AC power adaptor (selected models)*
 - * see table below

PicoScope 3000D MSO kits also contain:

- TA136 digital cable
- TA139 pack of 10 test clips (x2)

PROBES

All PicoScope 3000 Series oscilloscopes are supplied with two or four probes (quantity to match the number of analog channels), which are chosen to obtain the specified system bandwidth. See the table below for more information on which probes are included and how to order additional probes.

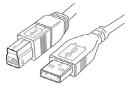
Order code	Description	Models supplied with	GBP*	USD*	EUR*
MI007	60 MHz x1/x10, 1.2 m probe	3204, 3404 A, B and D MSO	15	25	18
TA132	150 MHz x1/x10, 1.2 m probe	3205, 3405 A, B and D MSO	20	33	24
TA131	250 MHz x1/x10, 1.2 m probe	3206, 3406 A, B and D MSO	25	41	30
TA160	250 MHz x1/x10, 1.2 m probe	3207 A and B	25	41	30

^{*} Prices are correct at the time of publication. VAT not included. Please contact Pico Technology for the latest prices before ordering.

USB CONNECTIVITY AND POWER

All PicoScope 3000 Series oscilloscopes are supplied with a USB 2.0 or USB 3.0 cable to match the scope's specifications. To ensure that the USB 3.0 model scopes work effectively with older USB systems, and to supply extra power for all scopes with 4 analog channels, a double-headed USB 2.0 cable is also provided with selected models. This cable enables you to use a second USB port for additional power.

For PicoScope 3000 models with 4 analog channels, the supplied AC power adaptor may be required if the USB port(s) provide less than 1200 mA.


Analog channels	Scope USB connection	USB 2.0 cable	USB 2.0 double-headed cable	USB 3.0 cable	AC power adaptor
2	2.0	•			
2	3.0		•	•	
4	2.0	•	•		•
4	3.0		•	•	•

USB 2.0 cable

USB 2.0 cable, double-headed

USB 3.0 cable

ORDERING INFORMATION

Order code	Model number	Description	GBP*	USD*	EUR*
PP708	PicoScope 3204A	60 MHz 2-channel oscilloscope	399	658	483
PP709	PicoScope 3204B	60 MHz 2-channel oscilloscope with AWG**	499	823	604
PP710	PicoScope 3205A	100 MHz 2-channel oscilloscope	599	988	725
PP711	PicoScope 3205B	100 MHz 2-channel oscilloscope with AWG	699	1153	846
PP712	PicoScope 3206A	200 MHz 2-channel oscilloscope	799	1318	967
PP713	PicoScope 3206B	200 MHz 2-channel oscilloscope with AWG	899	1483	1088
PP875	PicoScope 3207A	250 MHz 2-channel USB 3.0 oscilloscope	1099	1813	1330
PP876	PicoScope 3207B	250 MHz 2-channel USB 3.0 oscilloscope with AWG	1199	1978	1451
PP846	PicoScope 3404A	60 MHz 4-channel oscilloscope	599	988	725
PP847	PicoScope 3404B	60 MHz 4-channel oscilloscope with AWG	749	1236	906
PP848	PicoScope 3405A	100 MHz 4-channel oscilloscope	899	1483	1088
PP849	PicoScope 3405B	100 MHz 4-channel oscilloscope with AWG	1049	1731	1269
PP850	PicoScope 3406A	200 MHz 4-channel oscilloscope	1199	1978	1451
PP851	PicoScope 3406B	200 MHz 4-channel oscilloscope with AWG	1349	2226	1632
PP931	PicoScope 3204D MSO	60 MHz 2-channel mixed-signal oscilloscope with AWG	649	1071	785
PP932	PicoScope 3205D MSO	100 MHz 2-channel mixed-signal oscilloscope with AWG	849	1401	1027
PP933	PicoScope 3206D MSO	200 MHz 2-channel mixed-signal oscilloscope with AWG	1049	1731	1269
PP934	PicoScope 3404D MSO	60 MHz 4-channel mixed-signal oscilloscope with AWG	899	1483	1088
PP935	PicoScope 3405D MSO	100 MHz 4-channel mixed-signal oscilloscope with AWG	1199	1978	1451
PP936	PicoScope 3406D MSO	200 MHz 4-channel mixed-signal oscilloscope with AWG	1499	2473	1814

^{*} Prices are correct at the time of publication. VAT not included. Please contact Pico Technology for the latest prices before ordering.

MORE OSCILLOSCOPES IN THE PICOSCOPE RANGE...

PicoScope 3000 Series General-purpose and MSO models

PicoScope 4000 SeriesHigh precision
12 to 16 bits

PicoScope 5000 Series Flexible resolution 8 to 16 bits PicoScope 6000 Series High performance Up to 1 GHz **PicoScope 9000 Series** Sampling scopes and TDR to 20 GHz

UK headquarters:
Pico Technology
James House
Colmworth Business Park
St. Neots
Cambridgeshire
PE19 8YP
United Kingdom

+44 (0) 1480 396 395 +44 (0) 1480 396 296

sales@picotech.com

US headquarters:
Pico Technology
320 N Glenwood Blvd
Tyler
Texas 75702
United States

★1 800 591 2796
 ★1 620 272 0981
 ★ sales@picotech.com

*Prices correct at the time of publication. Please contact Pico Technology for the latest prices before ordering.

Errors and omissions excepted. Windows is a registered trade mark of Microsoft Corporation in the United States and other countries. Pico Technology and PicoScope are internationally registered trade marks of Pico Technology Ltd.

MM054.en-4. Copyright © 2014 Pico Technology Ltd. All rights reserved.

^{**} Arbitrary waveform generator