

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, emplo

July 1997 Revised April 2005

74VHCT574A Octal D-Type Flip-Flop with 3-STATE Outputs

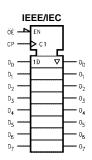
General Description

The VHCT574A is an advanced high speed CMOS octal flip-flop with 3-STATE output fabricated with silicon gate CMOS technology. It achieves the high speed operation similar to equivalent Bipolar Schottky TTL while maintaining the CMOS low power dissipation. This 8-bit D-type flip-flop is controlled by a clock input (CP) and an Output Enable input ($\overline{\text{OE}}$). When the $\overline{\text{OE}}$ input is HIGH, the eight outputs are in a high impedance state.

Protection circuits ensure that 0V to 7V can be applied to the input and output (Note 1) pins without regard to the supply voltage. This device can be used to interface 3V to 5V systems and two supply systems such as battery back up. This circuit prevents device destruction due to mismatched supply and input voltages.

Note 1: Outputs in OFF-State.

Features


- High speed: $f_{MAX} = 140 \text{ MHz}$ (typ) at $T_A = 25^{\circ}\text{C}$
- Power Down Protection is provided on all inputs and outputs.
- Low Noise: V_{OLP} = 1.6V (max)
- Low Power Dissipation: $I_{CC} = 4~\mu A~(max)~@~T_A = 25 ^{\circ}C$
- Pin and Function Compatible with 74HCT574

Ordering Code:


Order Number	Package Number	Package Description
74VHCT574AM	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
74VHCT574ASJ	M20D	Pb-Free 20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74VHCT574AMTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
74VHCT574AN	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Surface mount packages are also available on Tape and Reel. Specify by appending the suffix letter "X" to the ordering code. Pb-Free package per JEDEC J-STD-020B.

Logic Symbol

Connection Diagram

Pin Descriptions

Pin Names	Description
D ₀ -D ₇	Data Inputs
CP	Clock Pulse Input 3-STATE
ŌĒ	Output Enable Input 3-STATE
O ₀ -O ₇	Outputs

Truth Table

	Outputs		
D _n	СР	OE	O _n
Н		L	Н
L	~	L	L
Х	Х	Н	Z

- H = HIGH Voltage Level L = LOW Voltage Level
- X = Immaterial

Functional Description

The VHCT574A consists of eight edge-triggered flip-flops with individual D-type inputs and 3-STATE true outputs. The buffered clock and buffered Output Enable are common to all flip-flops. The eight flip-flops will store the state of their individual D inputs that meet the setup and hold time requirements on the LOW-to-HIGH Clock (CP) transi-

tion. With the Output Enable ($\overline{\text{OE}}$) LOW, the contents $\underline{\text{of the}}$ eight flip-flops are available at the outputs. When the OE is HIGH, the outputs go to the high impedance state. Operation of the OE input does not affect the state of the flipflops.

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings(Note 2)

-0.5V to +7.0V Supply Voltage (V_{CC}) DC Input Voltage (V_{IN}) -0.5V to +7.0V

DC Output Voltage (V_{OUT})

(Note 3) -0.5V to $V_{CC} + 0.5V$ (Note 4) -0.5V to +7.0V

Input Diode Current (I_{IK}) -20 mA Output Diode Current (I_{OK}) (Note 5) ±20 mA DC Output Current (I_{OUT}) ±25 mA

DC V_{CC}/GND Current (I_{CC}) $\pm 75~\text{mA}$ Storage Temperature (T_{STG}) -65°C to +150°C

Lead Temperature (T_L)

(Soldering, 10 seconds) 260°C

Recommended Operating Conditions (Note 6)

4.5V to +5.5V Supply Voltage (V_{CC}) 0V to +5.5V

Input Voltage (V_{IN})

Output Voltage (V_{OUT})

(Note 3) 0V to $V_{\mbox{\footnotesize CC}}$ 0V to +5.5V (Note 4) Operating Temperature (T_{OPR}) -40°C to +85°C

Input Rise and Fall Time $(t_r, \, t_f)$

 $V_{CC} = 5.0V \pm 0.5V$ 0 ns/V \sim 20 ns/V

Note 2: Absolute Maximum Ratings are values beyond which the device may be damaged or have its useful life impaired. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation outside databook specifica-

Note 3: HIGH or LOW state. $\mathbf{I}_{\mathrm{OUT}}$ absolute maximum rating must be observed.

Note 4: When outputs are in OFF-State or when $\rm V_{CC} = \rm OV.$

Note 5: $V_{OUT} < GND$, $V_{OUT} > V_{CC}$ (Outputs Active). Note 6: Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

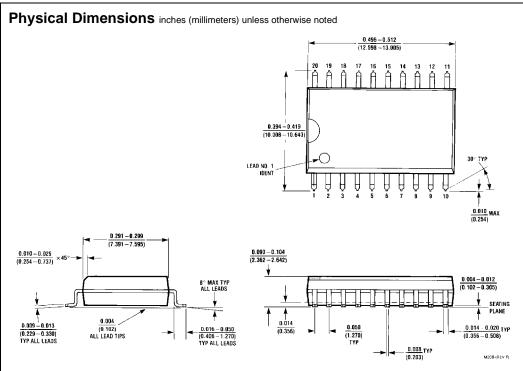
Symbol	Parameter	V _{CC}	T _A = 25°C			$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units	Conditions	
Cymbol		(V)	Min	Тур	Max	Min	Max	Ullits	Conditions	
V _{IH}	HIGH Level	4.5	2.0			2.0		V		
	Input Voltage	5.5	2.0			20		v		
V _{IL}	LOW Level	4.5			0.8		0.8	V		
	Input Voltage	5.5			0.8		0.8	V		
V _{OH}	HIGH Level	4.5	4.40	4.50		4.40		V	$V_{IN} = V_{IH}$ $I_{OH} = -50 \mu A$	
	Output Voltage	4.5	3.94			3.80		V	or V_{IL} $I_{OH} = -8 \text{ mA}$	
V _{OL}	LOW Level	4.5		0.0	0.1		0.1	V	$V_{IN} = V_{IH}$ $I_{OL} = 50 \mu A$	
	Output Voltage	4.5			0.36		0.44	V	or V _{IL} I _{OL} = 8 mA	
l _{oz}	3-STATE Output	5.5		±0.25	±2.5	μА	$V_{IN} = V_{IH}$ or V_{IL}			
	Off-State Current	5.5			±0.23		±2.5	μА	V _{OUT} = V _{CC} or GND	
I _{IN}	Input Leakage	0-5.5			±0.1		±1.0	μΑ	V _{IN} = 5.5V or GND	
	Current									
I _{CC}	Quiescent Supply	5.5			4.0		40.0	μΑ	V _{IN} = V _{CC} or GND	
	Current									
I _{CCT}	Maximum I _{CC} /Input	5.5			1.35		1.50	mA	V _{IN} = 3.4V	
									Other Input = V _{CC} or GND	
I _{OFF}	Output Leakage Current	0.0			0.5		5.0	μА	V _{OUT} = 5.5V	
	(Power Down State)									

Noise Characteristics

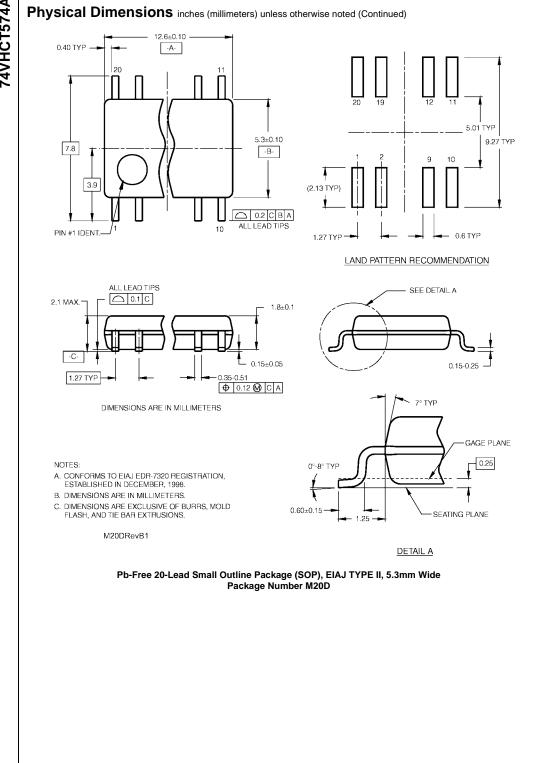
Symbol	Parameter	v _{cc}	T _A =	25°C	Units	Conditions	
Cymbol	T didilictor	(V)	Тур	Limits	O.I.I.S		
V _{OLP} (Note 7)	Quiet Output Maximum Dynamic V _{OL}	5.0	1.2	1.6	V	C _L = 50 pF	
V _{OLV} (Note 7)	Quiet Output Minimum Dynamic V _{OL}	5.0	-1.2	-1.6	V	C _L = 50 pF	
V _{IHD} (Note 7)	Minimum HIGH Level Dynamic Input Voltage	5.0		2.0	V	C _L = 50 pF	
V _{ILD} (Note 7)	Maximum LOW Level Dynamic Input Voltage	5.0		0.8	V	C _L = 50 pF	

Note 7: Parameter guaranteed by design.

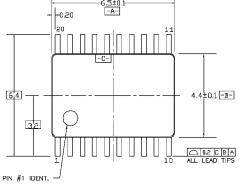
AC Electrical Characteristics

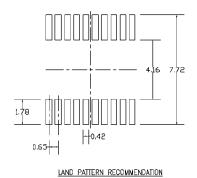

Symbol	Parameter	v _{cc}		$T_A = 25^{\circ}C$		T _A = -40°	C to +85°C	Units	Cone	ditions
- Cyllibol	r urumeter	(V)	Min	Тур	Max	Min	Max	Units	Conditions	
t _{PLH}	Propagation Delay	5.0 ± 0.5		4.1	9.4	1.0	10.5	ns		C _L = 15 pF
t _{PHL}	Time	3.0 ± 0.3		5.6	10.4	1.0	11.5	115		$C_L = 50 pF$
t _{PZL}	3-STATE Output	5.0 ± 0.5		6.5	10.2	1.0	11.5	ns	$R_L = 1 k\Omega$	$C_L = 15 pF$
t _{PZH}	Enable Time	5.0 ± 0.5		7.3	11.2	1.0	12.5	115		$C_L = 50 pF$
t _{PLZ}	3-STATE Output	5.0 ± 0.5		7.0	11.2	1.0	12.0	ns	$R_L = 1 k\Omega$	$C_L = 50 pF$
t _{PHZ}	Disable Time	3.0 ± 0.3		7.0	11.2	1.0	12.0	115		
toslh	Output to	50.05			4.0		1.0		(Note 8)	
toshl	Output Skew	5.0 ± 0.5			1.0		1.0	ns		
f _{MAX}	Maximum Clock	5.0 ± 0.5	90	140		80		MHz		C _L = 15 pF
	Frequency	3.0 ± 0.3	85	130		75		IVITIZ		$C_L = 50 pF$
C _{IN}	Input			4	10		10	pF	V _{CC} = Oper)
	Capacitance									
C _{OUT}	Output			9				pF	$V_{CC} = 5.0V$	
	Capacitance									
C _{PD}	Power Dissipation			25				pF	(Note 9)	
	Capacitance									

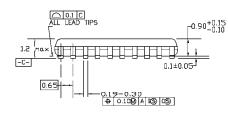
Note 8: Parameter guaranteed by design. $t_{OSLH} = |t_{PLH \; max} - t_{PLH \; min}|; t_{OSHL} = |t_{PHL \; max} - t_{PHL \; min}|$


Note 9: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: I_{CC} (opr.) = $C_{PD} * V_{CC} * f_{|N} + I_{CC}/8$ (per F/F). The total C_{PD} when n pcs. of the Octal D Flip-Flop operates can be calculated by the equation: C_{PD} (total) = 20 + 12n.

AC Operating Requirements


Symbol	Parameter	V _{CC}		T _A = 25°C		T _A = −40°	Units	
		(V)	Min	Тур	Max	Min	Max	UIIIS
t _W (H)	Minimum Pulse Width (CP)	5.0 ± 0.5	6.5			8.5		ns
$t_W(L)$		5.0 ± 0.5	0.5			0.5		115
t _S	Minimum Set-Up Time	5.0 ± 0.5	2.5			2.5		ns
t _H	Minimum Hold Time	5.0 ± 0.5	2.5			2.5		115



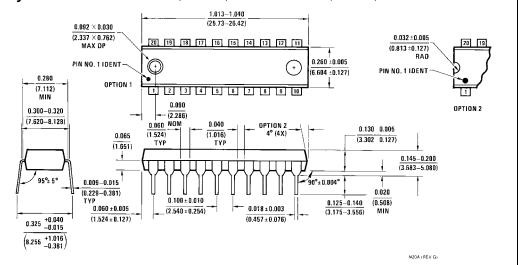

20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide Package Number M20B

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

DIMENSIONS ARE IN MILLIMETERS

NOTES:

- A. CONFORMS TO JEDEC REGISTRATION MD-153, VARIATION AC, REF NOTE 6, DATE 7/93.
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLDS FLASH, AND TIE BAR EXTRUSIONS.
- D. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M, 1982.


|-12.00° R0.09mir GAGE PLANE 0.6±0.1 R0.09min -1.00

DETAIL A

MTC20REVD1

20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package Number MTC20

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N20A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor:

74VHCT574AMX 74VHCT574AM 74VHCT574AMTC 74VHCT574AMTCX