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1 Introduction and motivations

Given a subset E of IN = {0,1,2,---} can we find an elementary algorithm which accepts
the elements of E' and rejects those that do not belong to E 7

By “elementary algorithm” we mean a finite state automaton. This question originates from
the work of Biichi (1960, [Bu]). Cobham gave two answers to this question. In 1969 he
proved that the existence of such an algorithm deeply depends on the numeration base,
more precisely :

First Cobham’s Theorem. Let p and q be two multiplicatively independent integers greater
or equal to 2. Then, a set E C IN is both p-recognizable and q-recognizable if and only if E
is the finite union of arithmetic progressions.

Where “p-recognizable” means that there exists an automaton which accepts exactly the
language consisting in the expansions in base p of the elements of E. For example, we will
see that the set {2";n € IN} is 2-recognizable and, as it is not a finite union of arithmetic
progressions, it can not be 3-recognizable. Cobham’s Theorem also says that the set {2n;n €
IN} is p-recognizable for any p € IN. But it does not tell us anything about the structure
of recognizable sets of integers. For example, we can not deduce whether the set of prime
numbers is recognizable or not ? In fact it is not (see [Co2] for the details) using the second
answer of Cobham which gives a complete description of their structure :

Second Cobham’s Theorem. A set E C IN is p-recognizable if and only if its characteristic
sequence x € {0, 11N (x; = 1 if and only if i € E) is the image by a letter to letter morphism
of a fixed point of a substitution of constant length.
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From this result we remark there are few recognizable sets, the family of recognizable sets is
numerable.

The original proof of the First Cobham’s Theorem was considered as “almost elementary”
but highly technical. In 1974, Eilenberg suggested in [Ei] to find some more readable proofs.
Hansel gave some ideas in this matter [Hal] . Later, in 1993, Michaux and Villemaire [MV]
found a new proof of this Theorem using the formalism of the first order logic. In the
same time other characterizations were given in terms of congruences with finite index [Ei]
and in terms of algebraic power series [CKMR]. Due to all these characterizations, many
generalizations of the First Cobham Theorem can be stated (see [BHMV] for a very nice
overview). Semenov [Se] gave the first one extending it to recognizable subsets of IN". The
most prolific generalization, in the sense that a lot of work has been done in this direction
[BH1, BH2, BP, Du3, Fabl, Fab2, Ha2, Sh|, propose to obtain the same kind of results
for non-standard numeration systems such as the numeration system given by the Fibonacci
sequence Uy = 1, Uy = 2 and Uy, 2 = U,1+U,. In [Du3] it is proved that such a result can be
obtained for a large class of linear numeration systems (including the Fibonacci numeration
system), more precisely :

Theorem 1 (systnum) Let U and V' be two Bertrand numeration systems, « and [ be two
multiplicatively independent 3-numbers such that L(U) = L(a) and L(V) = L(B), and E a
subset of IN. If E is U-recognizable and V -recognizable then E is a finite union of arithmetic
Progressions.

We will see that this result is a corollary of more general results concerning substitutions.
This is a result of Fabre [Fab2] (Theorem 49) which enables us to apply substitution results
to non-standard numeration systems. It is analogous to the Second Cobham’s Theorem but
for non-standard numeration systems. In [Bes] the author found a weaker result but with
completely different methods using first order logic (the characteristic polynomial of the
linear numeration systems he considered have to be the minimal polynomial of some Pisot
numbers).

Let us describe the way it will be proved in this paper. First we need to remark that a set
E C IN is a finite union of arithmetic progressions if and only if its characteristic sequence is
ultimately periodic. Hence the First Cobham Theorem can be formulated in the following
equivalent way : Let p and q be two multiplicatively independent integers greater or equal
to 2. Let A be a finite alphabet and x € AN. Then the sequence x is generated by both a
substitution of length p and a substitution of length q if and only if it is ultimately periodic.
To a substitution ¢ is associated an integral square matrix M # 0 which has non-negative
coefficients. It is known (see [LM] for instance) that such a matrix has a real eigenvalue «
which is greater than the modulus of all others eigenvalues. It is usually called the dominant
eigenvalue of M. If x is the image by a letter to letter morphism of a fixed point of ¢ then
we will say that x is a-substitutive. An easy computation shows that if ¢ is of length p
then o« = p. Furthermore if a sequence is generated by a substitution of length p then it is
p-substitutive. Note that the converse is not true. This suggests the following conjecture
stated by G. Hansel.

Conjecture. Let o and S be two multiplicatively independent Perron numbers. Let A be a



finite alphabet. Let x be a sequence of AN. Then, x is both a-substitutive and B-substitutive
if and only if x is ultimately periodic.

This is true when we restrict to primitive substitutive sequences [Du2] (Theorem 30) and
also in some non-primitive case (Theorem 46). This is from Theorem 46 we will get Theorem
1. Moreover there is an analogous result for substitutive subshifts. More precisely we have :

Theorem 2 Let (X,Tx) and (Y, Ty) be two subshifts generated by respectively an a-substitu-
tive primitive sequence x and a (3-substitutive primitive sequence y, where o and 3 are mul-
tiplicatively independent. Then, (X,Tx) and (Y,Ty) are isomorphic if and only if there are
pertodic with the same period.

The main notion of this paper is the notion of return word. The following theorem ([Dul,
HZ1]) shows the relevance of this notion for substitution. It makes evident the “self-induced”
structure of substitutions and provide a very useful tool to study substitutions, namely the
derivative sequences.

Theorem 3 (caracterisation) Let x be a uniformly recurrent sequence. The following are
equivalent

1. x s a substitutive sequence ;
2. the set of its u-derivative sequences is finite, u being a word of L(x) ;

3. the set of its u-derivative sequences is finite, u being a preficz of x.

In terms of subshifts this theorem says that subshifts generated by primitive substitutions
only have a finite number of induced systems on cylinders.

The paper is organized as follows. Section 2 is devoted to the definitions concerning sequences
and subshifts and to some results. We recall Perron’s Theorem which will be used quite often.
In Section 3 we prove Theorem 3 and make some comments about substitutive subshifts.
We prove Theorem 2 in Section 4. We also recall a nice result of Holton and Zamboni
saying that, for the unique shift-invariant measure, the measures of cylinders of a minimal
substitution subshift lie in a finite union of arithmetic progressions and we point out it gives
a new proof of Theorem 2. Numeration systems appear in Section 5 where Theorem 1 is
proved.

2 Definitions and background

2.1 Words, sequences and morphisms

Words and sequences. We call alphabet a finite set of elements called letters. Let A be
an alphabet, a word on A is an element of the free monoid generated by A, denoted by A*,
i.e. a finite sequence (possibly empty) of letters. Let © = xoz1 - - 2,1 be a word, its length
is n and is denoted by |z|. The empty-word is denoted by €, |¢| = 0. The set of non-empty
words on A is denoted by AT. If J = [i, 7] is an interval of IN = {0,1---} then z; denote
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the word z;x;11---z; and is called a factor of x. We say that x; is a prefix of x when i =0
and a suffix when j = n — 1. If u is a factor of =, we call occurrence of u in x every integer
¢ such that zp;;yjy-1] = u. Let u and v be two words, we denote by L,(v) the number of
occurrences of v in v.

The elements of AN are called sequences. For a sequence x = (x,;;n € IN) = xox;--- we
use the notation x; and the terms “occurrence” and “factor” exactly as for a word. The
set of factors of length n of x is written L,(x), and the set of factors of x, or language of
X, is represented by L(x); L(x) = UnenLn(x). The sequence x is periodic if it is the infinite
concatenation of a word v. A gap of a factor u of x is an integer ¢ which is the difference
between two successive occurrences of v in x. We say that x is uniformly recurrent if each
factor has bounded gaps. We have the following property which proof is left to the reader.

Proposition 4 If a sequence is ultimately periodic and uniformly recurrent then it is peri-
odic.

A way to evaluate the complexity of a sequence x is the so called symbolic complezity. It
is the integer function p, : IN — IN where p,(n) is the number of different words of length
n. The following classical result about complexity asserts that if x is not ultimately periodic
then its complexity is at least n + 1 (see [HM]).

Proposition 5 Let x be a sequence. If for some n py(n) < n then x is ultimately periodic.

Morphisms. Let A, B and C' be three alphabets. A morphism 7 is a map from A to B*.
Such a map induces by concatenation a map from A* to B*. If 7(A) is included in BT, it
induces a map from AN to BN. All these maps are written 7 also.

To a morphism 7, from A to B*, is naturally associated the matrix M, = (m; ;)icp,jca Where
m; ; is the number of occurrences of ¢ in the word 7(j). To the composition of morphisms
corresponds the multiplication of matrices. For example, let 7, : B — C*, , : A — B*
and 73 : A — C* be three morphisms such that 7, o 79 = 73 (we will quite often forget the
composition sign), then we have the following equality: M, M., = M,,. In particular if 7 is
a morphism from A to A* we have M,» = M" for all non-negative integers n.

2.2 Dynamical systems and subshifts

By a dynamical system we mean a pair (X,S) where X is a compact metric space and S a
continuous map from X onto itself. We say that it is a Cantor system if X is a Cantor space.
That is, X has a countable basis of its topology which consists of closed and open sets and
does not have isolated points. The system (X, S) is minimal whenever X and the empty
set are the only S-invariant closed subsets of X. We say that a minimal system (X, S) is
periodic whenever X is finite. We say it is p-periodic if Card(X) = p.

Let (X,S) and (Y,7T) be two dynamical systems. We say that (Y,7T) is a factor of (X, S)
if there is a continuous and onto map ¢ : X — Y such that ¢S = T¢ (¢ is called factor
map). If ¢ is one-to-one we say that ¢ is an isomorphism and that (X,S) and (Y,T) are
1somorphic.



Let (X,S) be a minimal Cantor system and U C X be a clopen set. Minimality implies
that min{n > 0 ; S™(z) € U} exists for all z € U. Hence, for all z € U we can define
Sy : U — U, the induced transformation on U, by

Sy(z) = Sv@)(x), where ry7(z) = min{n > 0 ; S"(z) € U}.

The pair (U, Sy) is a minimal Cantor system, we say that (U, Sy) is the induced system of
(X, S) with respect to U.

In this paper we deal with Cantor systems called subshifts. Let A be an alphabet. We endow
AN with the topology defined by the metric

1
d(x,y) = on with n = Inf{k;x; # yi},

where x = (x,;n € IN) and y = (y,;n € IN) are two elements of AN. By a subshift on A we
shall mean a couple (X, T)x) where X is a closed T-invariant (T'(X) = X) subset of AN and
T is the shift transformation

T . AN — AN
(Xp;n € IN) = (Xpp15m € IN).

We call language of X the set L(X) = {x; ;x € X, < j}. Let v and v be two words of A*.
The set
[ulx = {x € X;xqu)) = u}

is called cylinder. The family of these sets is a base of the induced topology on X. When it
will not create confusion we will write [u] and 7" instead of [u]x and T)x.

Let x be a sequence on A and Q(x) be the set {y € AN;yj; 5 € L(x),V [¢,7] C IN}. Tt is clear
that (2(x),T) is a subshift. We say that (©(x),7’) is the subshift generated by x. When x is
a sequence we have Q(x) = {T"x;n € IN}. Let (X,T) be a subshift on A, the following are
equivalent:

1) (X, T) is minimal.
n) For all x € X we have X = Q(x).
u1) For all x € X we have L(X) = L(x).

We also have that (£2(x), 7)) is minimal if and only if x is uniformly recurrent.

2.3 Return words and derivatives of a sequence

For the rest of the section x is a uniformly recurrent sequence on the alphabet A and (X, T) is
the minimal subshift it generates. We recall that all sequences in X are uniformly recurrent.
Let u be a non-empty word of L(X).

Definition 6 A word w on A is a return word to w in x if there exrist two consecutive
occurrences j,k of u in x such that w = X ).



The set of return words to u is denoted by R,(x). It is immediate to check that a word
w € AT is a return word if and only if:

1) uwv € L(x) (i.e. uwv is a factor of x);
1) u is a prefix of wu;
112) the word wu contains only two occurrences of w.

Remarks.

1. As x is uniformly recurrent, the difference between two consecutive occurrences of u in
x is bounded, and the set R,(x) of return words to u is finite.

2. The statement #2) cannot be simplified: it is not equivalent to u is a prefix of w. For
example, if aaa is a factor of x then the word « is a return word to aa.

3. From this characterization, it follows that the set of return words to u is the same for
all y € X, hence we set R, (X) = Ry, (x).

If it is clear from the context, we write R, instead of R, (x).

Lemma 7 If u is prefiz of some word v € L(x) then the return words to v are concatenation
of return words to u, i.e. Ry, C R;.

Lemma 8 If x is not periodic. Then
my, = Inf{|v|;v € Ryon} = +00 when n — 4o00.

Proof. We have seen (Proposition 7) that Ry 1] is included in ’R;“[O’n], then m,, < my,41.
Let suppose (my)n,en stationary at the rank mg: there exist an integer k and, for every
n > ng, a word v, where |v,| = k and v, is an element of Ryj,. If n > k then x[0,n]
is a prefix of v,x[0,n]. Therefore, for all integers j such that 0 < j < n — k, we deduce
x[j] = x[k + j]- It follows that x is periodic with period k. This completes the proof. O

Definition 9 Let A be an alphabet. A finite subset C of A" is a code if every word u € A*
admits at most one decomposition in a concatenation of elements of C.

Lemma 10 ([Dul]) The set R, is a code.
It will be convenient to label the return words to u with respect to x. Put
R,(x) ={1,...,Card(R,)}

and let Oy, : R,(x) = R, be the bijection defined as follows: let R, be ordered according
to the rank of first occurrence in x, and O, , (k) defined to be the k' element of R, for this
order.

We consider R, (x) as an alphabet, and ¢y, as a map from R,(x) to AT. Clearly, for all
y € X we have R,(y) = R,(x) but for some y € X we have Oy, is different from ©,,,.
Nevertheless when it will not create confusion we will write R,, = R, (x) and ©, = ©,,. The
Lemma 10 can be stated as follows:



Corollary 11 O, ,: Rf — AT and ©,, : RN — AN are one to one.

This corollary implies that if y is a concatenation of return word to u then the equation
Oxu(z) =y admits a unique solution. This remark is important for the next definition and
for some proofs in the next sections.

Let ¢ > 0 be the smallest integer such that v is a prefix of y = T%(x). The sequence y is a
concatenation of return words, thus we can define:

Definition 12 Let i > 0 be the smallest integer such that u is a prefiz of y = T*(x). The
u-derivative of x is the unique sequence D,(x) on the alphabet R, such that:

Oxu(Du(x))=y .
We remark that ©,, = 0y, and D,(x) = D,(y) . For example if x = aabbaabbbbabaaaabbaa...
then D,,(x) = ABCCA....

Lemma 13 ([Dul]) Let v be a non-empty prefiz of Dy(x) and w = Oy, (v)u. Then w is a
prefiz of x and Dy(Dy(x)) = Dy(x).

2.4 Topological interpretation

The notion of derivative sequence is the combinatorial analogue to the notion of induced
system, as we explain now.

Let v € L(X) and x € [u]. We set ©, = O,,. The cylinder sets [wu] for w € R, are
obviously pairwise disjoint; they are included in the cylinder set [u] by the property ) of
return words. Let y € [u], and n be the smallest positive occurrence of u in y; then w = yj )
is a return word, and y € [wu]. Thus {Jwu]; w € R,} is a partition of [u]. Moreover, if
w € Ry and y € [wul, the first return time of y to [u] is |w| by the property #22) of return
words. It follows that

Q= {T[wu] w € Ry and 0 < j < |wl}

is a Kakutani-Rohlin partition of X, with base [u]. Using the bijection ©,, this partition
can also be written:

Q = {T’[0,(k)u); k € R, and 0 < j < |©,(k)|} .
Let S be the shift on RN and Y the subshift spanned by D, (x).

Proposition 14 O, is an isomorphism of (Y, S) onto the system induced by (X,T) on the
cylinder set [u].

Proof. We know that ©, : RN — AN is one to one. As

04(Dy(x)) = x and, for ally € RN, ©,(Sy) = 71900l @, (y)



we get ©,(S"D,(x)) € X for all n, thus ©,(Y) C X. By definition of ©,, we have ©,(Y) C
Let z € [u]. There exists a sequence (n;) of integers such that 7" x — z; as [u] is open in
X, for i large enough T™x € [u], and n; is an occurrence of u in x; it follows that T™ix =
O.(S*D,(x)) for some k;, and T"x € ©,(Y); finally we get z € ©,(Y) and O,(Y) = [u].

Let y € Y and z = ©,(y); the first return time of z to [u] is n = |O4(yo)|; thus the image of
z by the first return time transformation is 7"z = ©,,(Sy), and the lemma is proved. O

2.5 Perron’s Theorem

The Perron’s Theorem will be central in the following sections. Let A be a square matrix,
we set p(A) = max{|\|; ) eigenvalue of A}. We say a matrix is primitive whenever there
exists n € IN such that A™ has strictly positive entries.

Theorem 15 (Perron’s Theorem) Let A be a primitive n X n matriz. Then

1) p(A) > 0;

2) p(A) is an eigenvalue of A;

3) There is x € R™ with strictly positive coefficients such that Ax = p(A)x;

4) If y € R" is a strictly positive eigenvector then it is a multiple of x;

5) p(A) is an algebraically (and hence geometrically) simple eigenvalue of A;

6) |\ < p(A) for every eigenvalue A # p(A);

7) [p(A)TTA|™ — L as m — +oo, where L = xy”, Az = p(A)z, ATy = p(A)y, x>0,y >0,
and xTy = 1.

For non-negative matrices, Perron’s Theorem does not remain valid but we have the follow-
ing.

Theorem 16 Let A be a non-negative n X n matriz. Then p(A) is a eigenvalue of A and
there exists a vector x© with non-negative entries, x # 0, such that Az = p(A)z.

For more details see [HJ] or [LM]. In both case we call p(A) the dominant eigenvalue of A.
A real number A > 1 is a Perron number if it is an algebraic integer that strictly dominates
all its other algebraic conjugates. It is clear that the dominant eigenvalue of a primitive
matrix is a Perron number, and in fact from Paragraph 4.4 in [LM] the dominant eigenvalue
of a non-negative matrix is also a Perron number. Lind proved the converse is true (see [LM]
for details).

Theorem 17 Let A\ be a real number. Then, X is a Perron number if and only if there is a
primitive integral matriz A such that p(A) = A.

3 A characterization of substitutive sequences using
return words
For more informations about substitutions we refer the reader to [Qu|, [DHS] and [Ho]. This

section is devoted to the proof of Theorem 3. Moreover at the end we make some remarks
about induced systems.



3.1 Substitutive sequences

Definition 18 A substitution on the alphabet A is a morphism o : A — A* satisfying :

1. There exists a € A such that a is the first letter of o(a);
2. Forallbe A, lim,_, |0™(b)| = +o0.

In some papers (see [Pan] for example) the condition 2) is not required to be a substitution
and our definition corresponds to what Pansiot call growing substitutions.

It is classical that (6™(aa---);n € IN) converges in AN to a sequence x. The substitution o
being continuous on AN this sequence is a fized point of o, i.e. o(x) = x.

Whenever the matrix associated to 7 is primitive we say that 7 is a primitive substitution. It
is equivalent to the fact that there exists n such that for all ¢ and b in A, a has an occurrence
in o™(b). It is a substitution of constant length p if for all @ € A the length of o(a) is p.

Let B be an other alphabet, we say that a morphism ¢ from A to B* is a letter to letter
morphism when ¢(A) is a subset of B. Then the sequence ¢(x) is called substitutive, and
primitive substitutive if 7 is primitive. The matrix of 7 is non-negative and consequently
(Theorem 16) has a dominant eigenvalue a. We will say that it is the dominant eigenvalue
of 7 and that ¢(x) is a-substitutive.

Proposition 19 Let A and B be two alphabets. Let x € AN be an a-substitutive sequence
and ¢ be a morphism from A to B*. Then there exists n € IN such that the sequence ¢(x) is
a-substitutive. Moreover, if x is a-substitutive primitive then there exists n € IN such that
the sequence ¢(x) is o-substitutive primitive.

Proof. There exist a substitution ¢ with fixed point y and a letter to letter morphism p
from C to A* such that x = p(y). Setting ¢ = ¢ o p, we have p(x) = ¢(y).
Let D ={(c,k);c€ Cand0 <k < |¢(c)| — 1} and ¢ : C — D* the morphism defined by:

¥(e) = (¢,0)... (¢, ]o(c)] = 1).

There an integer n such that |("(c)| > |¢(c)| for all ¢ in C.
Let 7 be the morphism from D to D* defined by:

7((c, k) = (") kn) if 0 <k <|p(c)|—1,
and  7((c,|9(c)| = 1)) = »(C"(C)yp(e)-1)¢n(c)-1) Otherwise.

For all ¢ in C' we have

T(¥(c)) = 7((c,0) - (¢ |¢(c)] = 1)) = (¢ () p,0p) - - V(¢ ()i e)- Liem(e)l-11)
=¥(¢"(c),
hence 7(¥(y)) = ¥(¢"(y)) = ¥(y). In this way 1 (y) is the fixed point of the substitution 7

which begins with (e,0) and 7¢ = (™. From this last equality we observe that o" is the
dominant eigenvalue of 7.



Let x be the letter to letter morphism from D to B defined by x((c,k)) = ¢(c)p for all
(¢, k) in D. For all ¢ in C' we obtain

x(®(e)) = x((¢,0) -~ (¢, [9(c)] = 1)) = ¢(c),

and then x(¢(y)) = ¢(y). Consequently p(x) is a"-substitutive.

The relation 7¢ = ¥(" implies that for all £ € IN we have 7% = ¢¢*". Hence if ( is primitive
then 7 is primitive too, and, if x is a-substitutive primitive then ¢(x) is a”-substitutive
primitive. O
Example. Let A = {a,b,c} and 0 : A — A* the substitution defined by o(a) = aba,
o(b) = ¢b and o(c) = bee. Its dominant eigenvalue is (1 + 1/5)/2 and o is not primitive.
Hence its fixed point x = abacbababee... is a ((1 +/5)/ 2)-Substitutive sequence.

Let ¢ : A — {a,b}* be the morphism defined by ¢(a) = ab, ¢(b) = a and ¢(c) = bbb. Using
the construction in the proof of Proposition 19 we will obtain a substitution 7 : C' — C*,
with fixed point z, and a letter to letter morphism ¢ : C' — {a, b}* such that ¢(z) = ¢(x) =y.
Let C ={(a,1), (a,2), (b,1),(c,1),(c,2),(c,3)}. The morphisms v, 7 and ¢ are defined by :

77b(a’) = (a7 1)(&,2), w(b) = (b, 1)’ 1,[)(0) = (C, 1)(0’ 2)(Ca 3)a

7((a,1)) = Ylola)y) = ¥(@) = (a,1)(a,2),
7((a,2)) = Y(ola)p) = ¥(ba) = (b1)(a,1)(a,2),
T((6:;1)) = P(e®)n) = ¥(cb) = (¢, 1)(c,2)(c,3)(b,1),
7((e,1)) = YPlolay) = ¥b) = (5,1)(5,2)(b,3),
7((6,2)) = lolop) = ¥©b) = (b,1)(0,2)(0,3),
7((¢,3)) = (ol = ¥Ob) = (b,1)(,2)(0,3),
o((a,1)) =a, ¢((a,2)) =0, ¢((b,1)) =a,
o((c,1)) =b, ¢((c,2)) =b, ¢((c,3)) =b.
1 = (a,1)(a,2)(b,1)(a,1)(a,2)(c,1)(c, 2)(c, 3)(b,1)(a, 1)(a, 2)(b,1)(a, 1)(a, 2)(b,1) - -.
y 7 = abaabbbbaabaaba - - -
T¢
X = abacbabab - - - .

Now we give some useful results about the lengths of the iterates of a substitution.

Lemma 20 Let 0 : A — A* be a substitution. There exists a unique partition Aq,---, A; of
A such that for all1 <i <1 and all a € A;

. jo™(a)]
W @y~ ) >0

where 6(a) is the dominant eigenvalue of M restricted to A;, d(a) its Jordan order.
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Proof. See Theorem I1.10.2 in [SS]. O

We remark that © = max{f(a);a € A} is the dominant eigenvalue of o. With respect to
this lemma in [Pan] the author divides the family of (growing) substitutions into three sub-
families The family of quasi-uniform substitutions : for all a,b € A, d(a) = 0 and 6(a) = 6(b).
The family of polynomially divergent substitutions : for all a,b € A, 6(a) = 0(b) and d(a) > 0
for some a € A. The family of exponentially divergent substitutions : there exist a,b € A
such that 6(a) # 6(b).

If x is a fixed point of a substitution belonging to one of these sub-families then Pansiot
proved that its symbolic complexity n +— py(n) is growing like, respectively, n, nlogn or
n loglog n.

The substitutions we will consider in this paper are quasi-uniform substitutions. For this
reason and for sake of simplicity the two following lemmas are stated only for quasi-uniform
substitutions. It is clear that substitutions of constant length are quasi-uniform. It is not
difficult to check that primitive substitutions are also quasi-uniform substitutions. It mainly
comes from Perron’s Theorem (see [Qu]).

Let 0 : A — A* be a quasi-uniform substitution with dominant eigenvalue © and fixed point
x, we define

As A* - R
Uy Un—1 > Sreg o).

From Lemma 20 we deduce the following lemma.
Lemma 21 For all u € A* we have lim,,_, . [0"(u)|/O™ = A\, (u).
We will need the following Lemma in the proof of Theorem 1.

Lemma 22 Let a € A which has infinitely many occurrences in x. There ezist a positive
integer p and words u,v,w € A* such that for all n € IN the word

o™ (u)a?™ V()P D (v) - - - 6P (v)vwa
1s a prefix of x. Moreover we have

pn p(n—1) P(n=2) () ... gP
lim |oP™(u)or (v)o (v) -+ - oP(v)vwal 1

n o0 Ao (1) 0P + X, (v) g OPF

Proof. Let a € A which has infinitely many occurrences in x. We set ag = a. There exists
a; € A which has infinitely many occurrences in x and such that ag has an occurrence in
o(ay). In this way we can construct a sequence (a;;¢ € IN) of letters, where each one appears
infinitely many times in x, such that ap = a and a; occurs in o(a;41), for all i € IN.

There exist ¢ < j such that a; = a; = b. It comes that a occurs in ¢(b) and b occurs in
a’~%(b). Hence there exist uy, us,v,vy € A* such that ¢*(b) = ujaus and o?77*(b) = vibuvy.
We set p=j —i, v = 0*(v;) and w = uy. There exists u' such that u'b is a prefix of x. We

11



remark that for all n € IN the word o™ (u'b) is a prefix of x too. We set u = o%(u'). We have
oP(u'b) = o (u v bvy. Consequently for all n € IN

oP™(u )oY (01) P2 (vy) - - - 0P (1 )v1h
is a prefix of ¢"?(u'b). Then
Opn(u)ap(nfl)(v)ap(n%) (v) - - - 0P (v)vwa

is a prefix of o""*(u'b) and consequently of x, for all n € IN. The last part of the lemma
follows from Lemma 21. O

In the rest if the section we only consider primitive substitutions, i.e. substitutions which
matrices are primitive. In this case all the fixed points of o are uniformly recurrent and

generate the same minimal subshift, we call it the substitution subshift generated by o. (For
more details see [Qu] and [DHS].)

3.2 Some properties of the return words of a substitutive sequence

We say that a sequence x on a finite alphabet is linearly recurrent (with constant K € IN) if
it is recurrent and if, for every word u of x and all w € R, it holds

lw| < Klul.
Proposition 23 All primitive substitutive sequences are linearly recurrent.

Proof. It suffices to prove it for fixed points of primitive substitutions. Let 7 be a primitive
substitution on A. Let u be a word of L(7) and v be a return word to u. Proposition 21
implies that there exists a constant C' such that for all positive integers k

S = Sup{|7*(a)|;a € A} < CInf{|r*(a)|;a € A} = CI,, .

Let k£ be the smallest integer such that I > |u|. The choice of k entails that there exists
a word ab € L(7) of length 2 such that u occurs in 7%(ab). Let R be the largest difference
between two successive occurrences of a word of length 2 of L(7). We have

|v| < RSy < RCI;, < RCS1I;—1 < RCS:|u] .
The subshift spanned by 7 is linearly recurrent with constant RC'S;. ]
Proposition 24 Let x be an aperiodic linearly recurrent sequence with constant K. Then:
1. The number of distinct factors of length n of x is less or equal to Kn.
2. x is (K + 1)-power free (i.e. uf™! € L(x) if and only if u=10).
8. For allu € L(x) and for all w € R, we have % |u| < |w|.

4. For allu € L(x), Card(R,) < K(K + 1)2.

12



Proof. We begin with a remark. Let n be a positive integer and u € L(x) a word of length
(K +1)n—1. Let v € L(x) be a word of length n. The difference between two successive
occurrences of v is less than Kn, consequently u has at least one occurrence of v. We have
proved that: For each n, all words of length n occurs in each word of length (K + 1)n — 1.
From this remark we deduce 7).

Let u € L(x) be a word such that u¥** € L(x). Each factor of x of length |u| occurs in u®*!.
But in ! occurs at the most |u| distinct factors of length |u| of x. This contradicts the
aperiodicity of x.

Assume there exist u € L(x) and w € R, such that |u|/K > |w|. The word w is a return
word to u therefore u is a prefix of wu. We deduce that w’ is a prefix of u. Hence w®*!
belongs to L(x) because wu belongs to L(x). Consequently w = () and #21) is proved.

Let u be a factor of x and v € L(x) be a word of length (K + 1)?|u|. Each word of length
(K +1)|u| occurs in v, hence each return word to u occurs in v. It follows from #22) that in v
will occur at the most K (K +1)?|u|/|u| = K (K +1)? return words to u, which proves ). 0O

3.3 Proof of Theorem 3

In the rest of the section all considered substitutions and substitutive sequences will be
primitive hence we will sometimes forget to mention it. The propositions proved below will
be also useful in the next section.

Let x be a uniformly recurrent sequence.

2) implies 1)

In fact it suffices to prove that 3) implies 1).

The number of u-derivative sequence of x, u being a prefix of x, is finite. Hence there exists
a sequence of prefixes (u,;n € IN) of x such that |u,| < |up41| and Dy, (x) = D, (x) for all
n € IN). Clearly this implies, for all n € IN, that u, is a prefix of uy;. Take u = u;.

The sequence x being uniformly recurrent we can choose n so large that every factor of length
n of x has an occurrence of each return word to u. By Lemma 8 there exists a word some
v = u; such that |w| > n for all w € R,. We have R, = R,, we set R = R,. The set R, is
included in R} (Lemma 7).

The map ©, is one to one (Corollary 11). Consequently we can define the morphism 7 :
R — R with ©,7 = ©,. From the choice of u and v, for every 7, j in R, the word ©,(j)u
appears in ©,(7). This means that 7 is a primitive substitution (for every i, j in R, the letter
j appears in the word 7(7)). We have

0,7(Dy(x)) = O,7(Dy(x)) = x.

The definition of D, (x) gives that 7(Dy(x)) = Dy(x). Hence D,(x) is a fixed point of 7. As
x = Oy (Dy(x)), Proposition 19 achieves the proof.

1) implies 3)

Let 0 : A — A be a primitive substitution with fixed point y and dominant eigenvalue «,
and ¢ be a letter to letter morphism from A to B such that x = ¢(y). We recall that x is
a-substitutive.
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We easily check that if x is periodic then 1) implies 3). Hence we suppose it is not. We begin
with a proposition.

Proposition 25 Let u be a non-empty prefix of y. The derived sequence Dy(y) is the fized
point of a primitive substitution o, : R, — R, which satisfies

©,00, =000,.
Moreover D, (y) is a-substitutive.

Proof. Let u be a non-empty prefix of y and i € R,. The word u is a prefix of o(u) and
©,(7), hence 0(©,(7)) belongs to R and we can define the morphism o, : R, — R} with

©,00, =000,.

For all n € IN we have ©, o0}, = 0" 0 O, hence we easily check that o, is primitive and that
« is the dominant eigenvalue of o,. Moreover

Oy 00y (Duly)) = 00 0u(Duly)) = oly) =y.

From Corollary 11 it comes that o,(Dy(y)) = Dy(y) and Dy(y) is a-substitutive. m
The substitution o, : R, — R;, will be called return substitution.

Example. If 0 : A — A* is the substitution defined by o(a) = aba and o(b) = aa then the
return substitution o, is defined on the alphabet {1,2} by 0,(1) = 1222 and 0,(2) = 12.

Proposition 26 Let u be a prefiz of x. Then, The sequence D, (x) is o*-substitutive primi-

tive for some integer k. Moreover, there exists a morphism A\, and a prefic v of y such that
Ouly = 90, and Ay (Dy(y)) = Dy(x).

Proof. Let v be the unique prefix of y such that ¢(v) = u. If w is a return word to v then
¢(w) is a concatenation of return words to u (Lemma 7). The morphism ©, being one to
one (Proposition 11) we define the morphism \ : R, — R with O, = ¢0,. This morphism
satisfies A(D,(y)) = Dy (x). Proposition 19 and Proposition 25 achieve the proof. O

Consequently to prove that 1) implies 3) it suffices to prove that the sets {o,;v prefix of y}
and {\,; u prefix of x} are finite.

Proposition 27 The sets {o,;v prefiz of y} and {\;u prefiz of x} are finite.

Proof. The periodic case is easy to check hence we suppose that y is non-periodic. We begin
to prove that {0, : R,(y) — R} (y);v prefix of y} is finite. To do this it suffices to prove that
|R,(y)| and |o,(7)| are bounded independently of v and i € R,(y).

Let v be a non-empty prefix of y, i be an element of R,(y) and w = ©,(i) be a return word
to v.

The sequence y is linearly recurrent (with constant K). Thus, we have |w| < Klv| and
lo(v)] < S(0)K|v|, where S(o) = Sup{|o(a)|;a € A}. The length of each element of
R, (y) is larger than |v|/K (Proposition 24). Thus we can decompose o(w) in at the most
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S(o)K? elements of R,(y), so |o,(7)] < S(o)K? Moreover we know from Proposition 24
that |R,(y)] < K(K + 1)2. It ends the first part of the proof.
Let u € L(x) and v be the unique prefix of y such that ¢(v) = u. We have

A ()| (1/ K u] < [A(@)[Inf{w];w € Ru(x)} < [Oxu(Au(i))]
=[Oy, (9)| < Sup{|wl|;w € Ry(y)} < Klv| = M|ul.
Hence |\, (7)| < K?2. This completes the proof. O
3) implies 2)

We start with some notation. Let ¢ be a word which prefix is s. By s7't we mean the word
r such that ¢ = sr. In this way we have ss 't = t.

Let K be the constant given by Proposition 23.

Let u be a word of x and v such that vu is a prefix of x and u has exactly one occurrence in
vu. From Proposition 24 it comes that |vu| < (K + 1)|u|.

If w is a return word to vu then u is a prefix of v 'wv and v~'wvu is a word of x, hence
v lwv is a concatenation of return words to u. Thus, we can define ¢, , : R,, — R, with

@uqsv,u(z) = Ufl@vu (’i)’U,

for all i € R,,. We remark that ¢,,(Dyu(x)) = Du(x). The set {Dy(x);u = X, n > 0}
being finite, it suffices to prove that the following set is finite to conclude

H = {$ou : Rou = Rusuv = X, [vu| < (K +1)lul,n > 0},
For all 7= € Ry, we have
1 o [Ouu()]
|po,u(7)] <
|ul /K

Moreover |R,| < K(K + 1)? for all words s € L(x) hence H is finite. m

< K*K +1).

3.4 Induced systems of substitutions subshifts

We obtain as a direct consequence of Theorem 3 and Proposition 14 the following theorem.

Theorem 28 Let (X,T) be a minimal subshift. Then, it is a substitution subshift if and
only if the set of its induced systems on cylinders is finite.

This result is due to Holton and Zamboni [HZ1] but they obtain it in a different way. They
remarked that if a minimal subshift is such that the set of its induced systems on cylinders
is finite then it is periodic.

To study induced systems of minimal dynamical systems (X, S), where X is a Cantor set
(i.e. X has a countable basis of clopen sets and no isolated point) it is often relevant to
use Bratteli diagrams. For example, in the case of substitution subshift it gives a very short
proof of the following result which puts in evidence the “self-similar” behavior of substitution
subshifts.
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Proposition 29 Let (X,T) be a minimal subshift. If (Y, S) is some induced systems on a
clopen set of (X,T) then there ezists a clopen set U C'Y such that (X,T) is isomorphic to
(U, Su).

Of course a dynamical system with positive entropy can not have this property. In fact,
this property characterized minimal subshifts that are substitution subshifts. But we do not
know what to say about a zero entropy dynamical system having this property. Is it a factor
of a substitution subshift ? Is it measure theoretically conjugate to a substitution subshift ?
Can it have nothing to do with substitutions ?

4 Cobham Theorems for primitive substitutions

In this section all substitutions and substitutive sequences will be primitive hence we will
sometimes forget to mention it. We prove the following theorems, the first one is the partial
answer to the conjecture announced in the introduction and from the second one we will
deduce Theorem 2.

Theorem 30 Let x be a sequence and « and 3 be two multiplicatively independent Perron
numbers. Then, x 1s both a-substitutive primitive and [-substitutive primitive if and only x
18 periodic.

Theorem 31 Let x and y be two sequences and o and 3 be two multiplicatively independent
Perron numbers. Then, x and y are respectively a-substitutive primitive and [-substitutive
primitive sequences such that L(x) = L(y) if and only if x is periodic.

4.1 A Cobham Theorem for sequences

Here we prove Theorem 30. First we establish some morphism relations between the sub-
stitutions and their return substitutions, and we find their common eigenvalues. Then we
obtain some technical results about return substitutions and derivative sequences. We end
with the proof.

Eigenvalues and return words. In this section 7 is a primitive substitution, x one of its
prefixes and u and v two prefixes of x such that |u| < |v|. We recall that we have

©0,7, =70, and ©,7, = 760,. (1)
It comes that 7, 7, and 7, have the same dominant eigenvalue.
The word u is a prefix of v, hence a return word to v is a concatenation of return words to
u. The morphism ©, being one to one, this allows us to define the morphism A, from R, to

R}, by ©,A = ©,. Thus we obtain the relation

TuA = ATy.
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Let k£ be an integer such that |v| < |7%(u)|. The image by 7% of a return word to u is
a concatenation of return words to v. We define a new morphism &, from R, to R;, by
O,k = 70,. We deduce the following morphism relations:

ToK = KTy,
kA = 1F and
A = 7k

-
Consequently we have the following proposition:

Proposition 32 Then there exist an integer k > 1 and two morphisms X : R, — R} and
k: R, — R} such that

Tok = KTy, Tul = ATy, KA = Tf and \x = Tf.

Corollary 33 All the return substitutions of a primitive substitution have all the same non-
zero eigenvalues.

Proof. This is a straightforward consequence of Proposition 32 and of the Perron’s Theorem.
The details are left to the reader. 0

Working a little bit more we can obtain the following result (see [Du2]).

Proposition 34 Let 7 be a primitive substitution, x one of its fixed point and u a prefix of
x. The substitutions T and 7, have the same eigenvalues, except perhaps 0 and roots of the
unity.

It is easy to check that if 7 : {0,1} — {0,1}" is the Fibonacci substitution, i.e. 7(0) = 01
and 7(1) = 0, then we have 7 = 7¢;. Hence 7 and 7y; have the same eigenvalues. On the
other hand the set of eigenvalues of the Morse substitution, ¢(0) = 01 and o(1) = 10, is
{0,2} and the eigenvalues of 0g;; are 0,0, —1 and 2.

Some technical results. For convenience in the sequel we will use alphabets {1,2,---, k}.

Proposition 35 Let 7 : A — A* be a primitive substitution, x be one of its fixed points and
u be a prefix of x such that:

1. For all letters b of A, 7(b) begins by 1,

2. The substitutions T and 1, are defined on the same alphabet and are identical,
3. The fized point of T is non-periodic,

4. For all letters b and c of A, b has at least one occurrence in ©,(c).

Let J be an infinite set of positive integers. Then there exist an infinite subset I of J, a
strictly increasing sequence of positive integers (I,)per and a morphism v : A — A% such
that for all p in I.

Oy =0y =17
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Proof. Hypothesis 2 says that A = R,,. It is easy to check that the morphism ©, : A — A*
defines a substitution. We put © = ©,. Hypothesis 4 implies that this substitution is
primitive.

As the substitutions 7, and 7 are identical (hypothesis 2), they have the same fixed point
x. We have seen that the fixed point of 7, is D,(x) (Proposition 25), hence D,(x) = x.
Consequently, we have x = ©(x), i.e. x is a fixed point of ©. Moreover we can remark that
7O = Or.

The word u is a prefix of D, (x), hence we can consider the sequences (D} (x)),>1 defined by

D} (x) = D,(x) and D" (x) = D,(D"(x)) for all n > 1.
Let us prove by induction that for all n > 1 we have:
1) D(x) = Dy, (x) = x, with w, = "' (u) ---O(u)u,
un) O" =0,, and
W) T = Ty, -

For n =1 it suffices to remark that w; = w.
Now suppose that points 1), 12) and 221) are satisfied for some positive integer n. We have

Dy (%) = Du(Dy(x)) = Du(x) =x
and Proposition 13 implies that:
o D" (x) = Dy(Dy, (x)) = Dy(x) and
® O, =0,,0p, (xu=0"0, =O"!
where
w = Oy, (Ww, = O0"(1)O" ' (u) - O(u)u = wy:.

Hence points ¢) and ) are satisfied for n + 1.

The substitution 7,,,, is the return substitution to u of 7,,, consequently O, , = 7,,0;
that is to say ©7,, ., = 70. But O7, = 70 and the map © is one to one hence 7, ., =7, = 7.
This completes the proof by induction of points 1), 22) and ).

We denote the dominant eigenvalues of M, and Mg respectively by a and 5. From Lemma
21 there exists a positive number r such that for all bin A and all k£ in IN

1 1
;ak < |Tk(b)| < ra¥ and ;Bk < |@k(b)| < rgk.

From this we deduce that there exists two constants ¢; and ¢, such that for all positive
integers n
18" < |wa| = 10" (1) - - O(u)u| < 5"

From hypothesis 1 it follows that there exists an integer kg such that u is a prefix of all
images of letters by 7%°. For every integer k, larger than kg, we define [;, to be the greatest
integer n such that w, is a prefix of 75-1(1). For all positive integers we have

e <y | < |7 11| < |wiy 4] < eaB% T
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Thus we obtain

Bes

|7_k71(1)| < C_Clﬂlk < 602
1

?|wlk |-

Let k be an integer larger than ko. For all letters b of A the word wy, is a prefix of 7%(b).
Hence all images by 7% of words are concatenations of return words to w;,. This remark
allows us to define the morphism ~;, from A to A™, by ®wzk7k = 7*. We have:

kQl bk
Ouw, WwOuw,, =7 0" =O%*71".

The map ©,, = ©' is one to one hence 7;0,, = 7* and finally

®wlk7k = ’)/k@wlk- (2)
The substitution 7 is linearly recurrent (with constant K'), hence for all b in A we have

5 O)] + lwi | _ 28elr*(b)] _ 2cr”af
Kluwy| T Kol (1) — Ka

where H; is the constant given by Theorem 23. We have proved that the length of the images
by 7 of letters are bounded independently of k. Hence the set {vx; k > ko} is finite. Thus
there exists an infinite set I, included in J, such that v, = ~, for all elements p and ¢ of I.
Let p be an element of I, we write 7 = v,. Equality (2) gives Oy = 7O = 7P. From this
last equality it follows that the sequence (I,)pes is strictly increasing. m

)] = Ly, (FO)ur,) = 1 <

Lemma 36 LetT7: A — A* and o : A — A* be two primitive substitutions having the same
non-periodic fized point x. There exist an integer I, a prefix v of x, and an arbitrarily long
prefiz u of Dy(x) such that the word u and the substitution 7! , and u and the substitution
al, both satisfy the hypothesis of Proposition 35.

Proof. Let (x(");n € IN) be the sequences defined by: x© = x and x("*Y is the derived
sequence of x™ on the word 1 (the first letter of x(™). For all integers n we call A™ the
alphabet of x™. Let (u(™),>; be the sequence of words defined by:

u® =1 and o™ = ®x,u(n)(1)u(n)'

According to Proposition 13, for all integers n larger than 1, the word u(™ is a prefix of x
such that

04,1051 1+ Oxn-1) 1 = Oy ym) and x(n) = Dyiny ().

The sets {7,;u prefix of x} and {o,;u prefix of x} are finite by Proposition 27. Hence, there
exists an infinite set I of positive integers such that for all integers p and ¢ of I, we have
Tu) = Ty and o,e) = 0,«. We remark that a fixed point of the substitutions 7, and
Oy is XP) =D, (x).

Let p and ¢ be two elements of I with p < ¢. By definition of (x™);n € IN) we have

x9 =D,---D, (X(p))
—_———
(g—p) times

Hence (Proposition 13) there exists a prefix u of x(?) such that
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° 'Du (X(p)) — X(Q)’
® O, 100411 " Oga-11 = Oxr y
L4 ®x(1’),u7-u(‘1) = Tu(l’) (—)x(l’),u a‘nd (—)X(P),uo-u@) = Uu(?) ®x(17),u'

From the last equalities it is clear that (7,e) )y = T, and (0,e) )u = Oy@; Where (7,6) ), and
(0um )u are respectively the return substitutions to u of 7,4 and o,0).
From the definition of (u(™),>; we deduce that the sequence (|u{™]),> is strictly increasing.
Thus it follows from Lemma 8 that

Hm min{|0,0) o) (B)] = |Og@ 1Oy 1+ Ogin 1 (B) ;b € AVTV} = +o0.

j—+oo
and consequently that

lim min{]©,1,1 04,1+ Ot (B)];b € ATV} = oo

‘7 o0 ) ) )

Therefore we can suppose that ¢, and consequently wu, is such that each letter of A®) (the

alphabet of x(?)) has at least one occurrence in each return word to u of x®). (We recall that

the set of return words to u of x) is {O,) ,,(b) = O, 1Oxe+1) 1+ - Oxia 1)1 (b); b € AD})

The word @X’u(p)(l)u(p) is a prefix of x hence we can choose an integer [ such that the word

O um (1)u® is a prefix of 7'(1) and o!(1). Thus the first letter of each image of 7, and
l .

o, 18 1.

We set v = uP and v = 7!, The substitution v and the prefix u of x(P) (which is a fixed

point of «) fulfill the hypotheses of Proposition 35. Indeed we chose the integer [ to satisfy

hypothesis 1. Hypothesis 2 is also satisfied because

Yu = (Tu(p))u = Tyle) = Ty =7,

where 7, is the return substitution to u. Hypothesis 3 does not set any difficulty. Hypothesis
4 follows from the choice of gq.
It is clear that !, and u also satisfy the same hypotheses. O

Theorem 37 If two primitive substitutions have the same non-periodic fized point, then
they have some powers which have the same eigenvalues, except perhaps 0 and roots of the
unity.

Proof. It follows from Proposition 35 and Lemma 36. O

Proof of Theorem 30. To begin we suppose that x is a non-periodic sequence which is
both a-substitutive primitive and S-substitutive primitive. We will prove that o and [ are
multiplicatively independent. Let A be the alphabet of x. There exist fixed points y and z
of, respectively, the substitutions 7 : B — B* and o : C' — C*, a morphism ¢, from B to A,
and a morphism ¢ from C to A such that ¢(y) = ¢(z) = x.

Recall that by Theorem 3, if a sequence is primitive substitutive then its set of derived
sequences is finite. Hence there exist three sequences, (u(™;n € IN), (v(™;n € IN) and
(w("); n € IN), of prefixes of respectively y, x and z such that for all integers n we have:
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® Dy (y) = Dy (y),
® Dy (x) = Dyt (%),
® Dy (2) = Dy (2),
o $(u™) = p(w™) = o™ and [p®] < [p+D)].

Let n be an integer. The images of words by ¢O,») are concatenations of return words to
v™. The map O, : R}, — A" being one to one, this allows us to define a morphism
An by ©,0) Ay = 9O,»). In the same way we define the morphism 7, by O, v, = O, ) -
From Proposition 27 we know that the sets {\,;n € IN} and {v,;n € IN} are finite. For this
reason we can suppose that for all integers n we have A\, = \,,1 and v, = Y41

Let i be an integer. The sequence y (resp. z) is non-periodic and uniformly recurrent. Hence,
according to Lemma 8, there exists an integer j larger than i such that each word wu(,
where w is a return word to u(?, has at least one occurrence in each return word to u®).
Consequently we can define a primitive substitution § by 0, = ©,u). In the same way
we define a primitive substitution p by ©,up = 0,u). We have pA; = A;6. Indeed

@,U(i)p)\j = @,U(j))\j = ¢@u(j) = ¢@ )5 = @,U(i))\i(s = @,U(-L)Aj(s.

u(i

A standard application of Perron’s Theorem (Theorem 15) shows that ¢ and p have the same
dominant eigenvalue.

We recall that D, (y) = D,u) (y). Hence § has the same fixed point as 7,), that is to say
D, (y). It follows from Theorem 37 and Proposition 34 that the dominant eigenvalues of §
and 7 are multiplicatively dependent.

In the same way we prove that p and o have multiplicatively dependent dominant eigenval-
ues. This completes the first part of the proof. The second part is given by the following
proposition.

Proposition 38 Let x be a sequence on a finite alphabet and o a Perron number. If x is
periodic (resp. ultimately periodic) then it is a-substitutive primitive (resp. a-substitutive).

Proof. Let x be a periodic sequence with period p. Hence we can suppose that A = {1,---,p}
and x = (1---p)¥. Let M be a primitive matrix which dominant eigenvalue is « and
o : B — B* a primitive substitution which matrix is M. Let y be one of its fixed points. In
the sequel we construct, using o, a new substitution 7 with dominant eigenvalue «, together
with a fixed point z = 7(z), and a letter to letter morphism ¢ such that ¢(z) = x. We define
the alphabet

D={(b7);be B, 1<i<p},
the morphism v : B — D* and the substitution 7 : D — D* by

P(b) = (b,1)---(b,p) and 7((b,7)) = (¥((b)))i-1)|o®)].ilo(d) -1

for all (b,7) € D. The substitution 7 is well defined because |¢)(c(b))| = p|o(b)|- Moreover,
these morphisms are such that 7 o1 = 1 o o. Hence the substitution 7 is primitive. Its
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fixed point is z = 1)(y) and (using Perron’s Theorem and the fact that M. M, = M, M,) its
dominant eigenvalue is a.
Let ¢ : D — A be the letter to letter morphism defined by ¢((b,7)) = i. It is easy to see
that ¢(z) = x. It follows that x is a-substitutive primitive.
Suppose now that x is ultimately periodic. Then there exists two non-empty words u and v
such that x = uv“. From what precedes we know that there exists a substitution 7 : D — D*,
a fixed point z = 7(z) and a letter to letter morphism ¢ : D — A such that ¢(z) = v*. Let
E' = {a,ay, - ,ajy} be an alphabet, with |u| letters, disjoint from D and consider the
sequence t = ajas---apz € (E'UD)N = FN. Tt suffices to prove that t is a-substitutive.
We extend 7 to F setting 7(a;) = a;, 1 < i < |u|. Let G be the alphabet of the words of
length |u| + 1 of t, that is to say

G = {(tntns1 - togp);n € IN} where t =tot;---.

The sequence t = (tot; - - - tjy)) (tita - - tju41) - - (tatngr - - tyqpy) - - - is the fixed point of the
substitution ¢ : G — G* we define as follows. Let (lgl; ---ljy—1a) be an element of G. Let
5051 - - Sjuj—1 be the suffix of length |u| of 7(loly - - - ljuy—1).
If |7(a)| < |u|, we set (((lol1 - - - lju—10)) =
(s70,ul-117(@)0) (S71 w117 (@)po,11) *  * (S[r(@) -1, Jul-11 T (@)(0, (@) -11)
otherwise (((loly -+ ljy-1a)) =
(s0ut-17(@)0) -+ (81117 (@) 0, ju- 1) (T (@), u) - - (T(D) 7@ - ul - L1r(@)1- 1)
By induction we can prove that for all n € IN we have
C"((tots - ty)) = (tots - -~ tpup) (bate ) -+ (g1 Hrmn )+l —1)-
Consequently t is a fixed point of ( and p(t) =t where p: G — F is defined by
p((ror1 - -+ 7)) = To-

Moreover we remark that for all n € IN we have

| ((rory =« = rg)) | = 7" (rpu)) |-
From this and Lemma 20 it comes that for all (rory - --7}y) € D we have

. |§-n+1((7107~1 . 7«|u|))| _

n—+o0o |Cn((r07-1 e r|u|))|

Hence « is the dominant eigenvalue of ¢ and t is a-substitutive. O

Could we obtain a result analogous to Theorem 377 That is to say concerning all eigenvalues.
The answer is negative. Here is a counterexample: Let 7 and ¢ be two substitutions defined
respectively by

a — abab
a — abab
and b — acce .
b — abbb
¢ — abbc

Let x and y be their respective fixed points. Eigenvalues of the substitution 7 are 1 and 4.
Those of o are 1, -2 and 4. Let ¢ : {a,b,c} — {a,b} be the morphism defined by é(a) = a
and ¢(b) = ¢(c) = b, then ¢(y) = x. The sequence x arises from two substitutions, one has
the eigenvalue -2 and the other does not.
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4.2 A Cobham Theorem for languages

In this subsection we prove Theorem 31. First we recall some known results about primitive
substitutions.

Let 7 : A — A* be a primitive substitution, x one of its fixed points, M its matrix, « the
dominant eigenvalue of M and v = (v;;1 € A) € IR|+A| the unique eigenvector associated to «
such that Y ;c 4 v; = 1 (Theorem 15). We call it the frequency vector of T (or x). We justify
this name with the following theorem (Theorem V.13 and Corollary V.14 in [Qu]). Let u be
a word of A*, we define N(u) = (n;;i € A) the vector where n; is the number of occurrences
of the letter ¢ in the word w.

Theorem 39 Let 7 : A — A* be a primitive substitution, x one of its fized points, and
v=(v;i€ A€ R'f' its frequency vector. Then

li N (xg **  Xpeq1) _
m —— =
=400 l +1

uniformly in k.

In other words, for all 7 in A the frequency of the letter ¢ in x exists and is equal to v;.

We keep the previous notations. Let B be an alphabet, ¢ : A — B* be a letter to letter
morphism, P its matrix and y = ¢(x). We call frequency vector of y the vector Pv. We
remark that the sum of its coordinates is equal to 1. The proof of the following corollary is
immediate.

Corollary 40 Let 7 : A — A* be a primitive substitution, x one of its fized points, v =
(v;1 € A) € IRLf1| its frequency vector, B be an alphabet, ¢ : A — B* be a letter to letter
morphism, P its matriz and y = ¢(x) = (yn;n € IN). Then

N(Yi - Yit1)

l—g—rlpoo [+1 = Pv

uniformly in k.

Proof of Theorem 31. From Theorem 3 there exists a sequence of prefixes of x, (u;;4 € IN),
satisfying for all 7 € IN :

e u; is a prefix of u;,1 with u; # u;41 and
® Dy, (x) = Dy, (x) = %

We notice that X is a™-substitutive primitive for some n (Lemma 26).
Let (u;7 € IN) be such a sequence and (v;;¢ € IN) be the unique sequence of prefixes of y
verifying for all € IN :

e u; is a prefix of v; and

e v; has exactly one occurrence of u; ; we set v; = d;u;.
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The sequences x and y being uniformly recurrent, we can suppose (Proposition 8) that, for
all 7 € IN, each return word to u; (resp. v;) has an occurrence in each return word to w1
(resp. vi+1).

From Theorem 24 there exist a number K such that for all words u € L(x) = L(y) and all
words v € R, we have |u|/K < |v| < K|u|. We remark that for all i in IN the word d; is a
suffix of a return word to u;. This implies that |v;| < (K + 1)|u;| for all 7 € IN.

From Theorem 3, we can suppose that for all i € IN we have D,,(y) = D,,,,(y) =y. The
sequence y is f™-substitutive primitive for some m € IN (Lemma 26).

For all 7 € IN we have R,,,, = R,;, and R = R,,. Weset R,, = C and R,, = D and we
recall that X belongs to O and y to D'V,

Let ¢ € IN and b € D. The word ©,,(b)v; = ©,,(b)d;u; belongs to L(x) hence ©,,(b)d;
belongs to L(x) too. The word v; is a prefix of ©,,(b)v; hence there exists a word ¢ such
that ©,,(b)v; = d;tu; and such that u; is a prefix of tu;. Hence t is a concatenation of return
words to u;. In other words there exists a unique word p;(b) in R, such that ¢ = ©,p;(b).
This defined a morphism p; : D — C* verifying ©,,(b)d; = d;0,,(p;(b)). We remark that if
s is an element of L(y) then we have also d;0,(pi(s)) = ©,,(s)d;.

From Theorem 24 we obtain an upper bound for |p;(b)|.

Vi1

|©., (b)d;] < KK|Uz'| + |dy| < K(K+1)|v,~|

(1/F) ] = = wl < K(K +1)%

|pi(D)] = Lu; (B, (b)ds) <

Consequently the set {p;;¢ € IN} is finite. Hence we can suppose that p; = p,;41 = p for all
7 € IN.

Let 7 € IN. The return words to u; are concatenations of return words to uy and ©,, is
one-to-one (Proposition 11), we can define a substitution o; : C — C* with 0,,0; = O,,.
This substitution is primitive because each return word to uy has an occurrence in each
return word to u;. One of its fixed points is x. In fact we have

G)uoai ()N() = Guz ()N() = G)uz (Duz (X)) =T = @uo ()N()’

and O, being one to one it comes o(x) = X.

In the same way we define the primitive substitution 7; : D — D* with ©,,7; = ©,,. One
of its fixed point is . Let o et 5 be the dominant eigenvalues of, respectively, o; and 7.
It comes that X (resp. ) is a”-substitutive primitive and o'-substitutive primitive (resp.
B™-substitutive primitive and 3 -substitutive primitive). Theorem 30 implies that o™ and
o (resp. ™ and ') are multiplicatively independent. For all i € IN there two rational
numbers p; and g; such that o is the dominant eigenvalue of o; and 5% the one of 7;.

Let w € L(y), we have

|diOu;p(w)| _ |diOuyoip(w)| _ |di| | |Ousaip(w)| |oip(w)] |p(w)]
jw] |w] lw| — owp(w)|  |p(w)|  |w]|

We call v the frequency vector of y. From Theorem 39 we have

N(“’)) = 1M, = e

N
weL(),lwl++oo  |w| weL(Y),|w|—+o0 lw|
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where ||.|| is the norm defined by ||(vy,- -, v,)|| = |vi| + - -+ + |va|- We remark that o;p(w)
belongs to L(X) and we call u the frequency vector of x. Applying once more Theorem 39
we obtain

[Ou,0ip(w)] = | Mo, (u)]| = cs.
weL(§)Jul-s+oo  |oip(w)] “o
Then it comes 26
lim 4w p(w)l _ 16| |My, (w)|| = creaa®.
weL(@)jwlstoo  |w|

We note that the constants ¢; and ¢, do not depend on 7. With analogous considerations we
show there exists a constant c¢3, which does not depend on %, such that

|®Uz(w)dl| — C3qu-
weL()jws+oo  |w]
We obtain c¢icoa?’ = ¢38%. Let j be a positive integer distinct from ¢. The sequences
(pi;i € IN) and (g;;¢ € IN) tends to infinity hence we can suppose that p; < p; and ¢; < g;.
Then oPiPi = 3979 i.e. o and [ are multiplicatively dependent. ]

4.3 A Cobham Theorem for subshifts

In this subsection we prove Theorem 2. We first recall the Curtis-Hedlund-Lyndon Theorem
(Theorem 6.2.9 in [LM]).

Theorem 41 Let (X,T) and (Y,T) be two subshifts on, respectively, the alphabets A and
B, such that there ezists an isomorphism F : (X,T) — (Y,T). Then there exists a map
[ A?*Y — B such that for all i € Z and x € X we have

(F(X))Z = f(X[i—r,z'-l-r]) .

The map f : A>*! — B is called a block map. It can naturally be extended to a map from
A™ to B*", for all n > 2r + 1, in the following way : (f(u)); = f(up12,) for all u € A™,
n>2rand 0<i<n-—2r.

Let x be a sequence on the alphabet A. For each n € IN we define the sequence x(™ on the
alphabet A" = {(x; - - Tiyn_1);i € N} by xX™ = (x;- - Zin_1), for all i € IN. We recall a
result in [Qu].

Proposition 42 If x is a a-substitutive primitive sequence then x™ is also a-substitutive
primitive for all n > 1. Moreover the subshifts generated by these sequences are isomorphic.

Proof of Theorem 2. Let A and B be the alphabets of respectively (X,T) and (Y, T).
There exists an isomorphism F : (X,T) — (Y,T) and a map f : A**"' — B such that for
all i € Z and z € X we have (F(z)); = f(Zy—-ni+n]) (Theorem 41). Hence, there exists a
letter to letter morphism ¢ : A" — B such that for all z € X we have F(z) = ¢(z™). The
sequence ¢(x(™) is a-substitutive and generates (X, 7)), as well as y. Hence they have the
same language. Theorem 31 achieves the proof. ]

25



Let x be a a-substitutive primitive sequence and (X,7’) be the subshift it generates. We
set I(X,T) = @ where @ is the equivalence class of « for the equivalence relation defined in
R* with 8 = v if and only if 3 and 7 are multiplicatively dependent. Theorem 2 implies
that I(X,T) is a isomorphism invariant for subshifts generated by primitive substitutive
sequences.

Theorem 43 Let (X,T) and (Y,T) be two subshifts generated by primitive substitutive se-
quences. If (X, T) and (Y,T) are isomorphic then I(X,T) = I(Y,T).

The reciprocal is not true. The following substitutions

o(0) =010 et 7(0) =001
o(1) =01 (1) =10,

have the same dominant eigenvalue a? where o = (1 + /5)/2 but their dimension group,
respectively (Z2, {(z,y) € Z* x4+ ay > 0},(3,5)) and (Z*, {(z,y,2) € Z* oz + 2y + z >
0},(2,0,—1)), are not isomorphic (for more details see [DHS]).

4.4 Measures of cylinders

In this subsection we just want to point out a nice result of Holton and Zamboni [HZ2] that
gives a different proof of Theorem 2.

Let (X, S) be a dynamical system. An invariant measure for (X, S) is a probability measure
u, on the o-algebra B(X) of Borel sets, with u(S™'B) = u(B) for all B € B(X); the measure
is ergodic if every S-invariant Borel set has measure 0 or 1. The set of invariant measures for
(X, S) is denoted by M(X,S). The system (X, S) is uniquely ergodic if Card(M (X, S)) = 1.
It is well known ([Qu]) that the subshift generated by substitutive primitive sequences are
uniquely ergodic. In [HZ2] it is proved the following.

Theorem 44 Let (X,T) be a subshift generated by a a-substitutive primitive sequence and
u be its unique ergodic measure. Then, the measures of cylinders in X lie in a finite union
of geometric progressions. More precisely there exists a finite set of positive real numbers F
such that

{u(u))su e LX)} € | o .

neiN

They proved this using what they called directed graphs. There exists a very short proof of
this result using Bratteli diagrams.

Let F be an isomorphism from the subshift (X, 7T to the subshift (Y, T'), generated respec-
tively by an a-substitutive primitive sequence and a (-substitutive primitive sequence. We
have to prove that a and 8 are multiplicatively independent.

Let p and A be the unique ergodic measures of (X,T) and (Y, T) respectively. The measure
Fu defined by Fu(A) = p(F~*(A)), for all Borel set of Y, is ergodic and consequently equal
to A. From Theorem 44 there exists a finite set F such that {\([u]);u € L(Y)} C Upemw B "F.
In the proof of Theorem 20 in [Du4] is obtained the following result.
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Proposition 45 Let (X,T) be a subshift generated by a substitutive primitive sequence on
the alphabet A. There exists a constant K such that for all block map f : A*T' — B we
have Card(f~'({u}) < K.

Consequently from Theorem 41 there exists a finite set G such that {Fu([u]);u € L(Y)} C
Unemw @ "G. This implies that o and S have to be multiplicatively dependent.

5 Cobham Theorem for numeration systems
In this Section we prove Theorem 1. We obtain it as a corollary of the following theorem.

Theorem 46 Let « and S be two multiplicatively independent Perron numbers. Let A be a
finite alphabet. Restricted to the family of quasi-uniform sequences, a sequence x € AN s
a-substitutive and [-substitutive if and only if it is ultimately periodic.

Where “restricted to quasi-uniform substitutions” means that the sequence x is the image
by a letter to letter morphism of a fixed point of a quasi-uniform substitution. Results
about recognizability by finite automaton will not be proved but all references concerning
the proofs are given.

5.1 Finite Automata

Let A be a finite alphabet. An automaton over A, A = (Q,A,E,I,T), is a directed graph
labelled by elements of A where () is the set of states, I C @ is the set of initial states, T C Q
is the set of terminal states and F C @ X A x @ is the set of labelled edges. If (p,a,q) € F,
we write p —% ¢ . The automaton is finite if () is finite. A path in the automaton is a
sequence P = ((pn, Gn,¢n);0 < n < N) where g, = ppyq forall 0 <n < N —1. We say it
is admissible if py belongs to I and gn belongs to 7. We call L(.A) the set of all admissible
paths. The label of P is the word aga; - - - an. The set L(A) of labels of admissible paths is
called the language of A. A subset L of A* is said to be recognizable by a finite automaton
if there exists a finite automaton A such that L = L(A).

5.2 Numeration systems

A numeration system is a strictly increasing sequence of integers U = (Up;n € IN) such that
1. UO = 1,

2. the set {UI’}—:H n € IN} is bounded.

Let U = (U,;n € IN) be a numeration system and ¢ be the upper bound of {Ugjl ;n € IN}.

Let Ay be the alphabet {0, --- ¢ — 1} where ¢ is the upper integer part of ¢. Using the
Euclid algorithm we can write in a unique way each integer = as follows

r = aiUi + ai,lUi,l + -+ (L()Uo;
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i is the unique integer such that U; <z < Uj4; and z; = 2, z; = a;U; + 251, j € {1,-- -, i},
where a; is the quotient of the Euclidean division of z; by U; and z; ; the remainder, and
ap = xo. We will say that py(z) = a; - - aq is the U-representation of  and we set

L(U)={0"py(x);n € IN,z € IN}.

We say a set E C IN is U-recognizable if the language 0*py(E) = {0"py(z);n € IN,z € E}
is recognizable by a finite automaton. We say that U is linear if it is defined with a linearly
recurrent relation, i.e. if there exists k € IN*, dy,---,dy € Z, di # 0, such that for all n > k

Up=diUy1+ -+ dpUpy.

The polynomial P(X) = X*¥ —d; X¥=1 — ... —d; | X —dy is called characteristic polynomial
of U.
When U = (p™;n € IN) we say that E is p-recognizable and we set py = p, and U = U,,.

5.3 Some examples

Now we can give some examples to illustrate the Second Cobham’s Theorem. Let
k
E, ={2n;n € IN}, E; ={2";n €N}, E3 = {n €IN;> € =0[2], pa(n) = € - --eleo}.
i=0
We have 0*py(E;) = {w0;w € {0,1}*},

k
0" pa(Ez) = {0™10™;n,m € IN} and 0% pa(Es) = {wo- - wy € {0,115 & = 02]}.
=0

Hence these sets are 2-recognizable, respectively, by the following automata.

Where an arrow going into a state means that this state is an initial state and an arrow
going outside of a state means that this state is a terminal state.

The set E5 being an arithmetic progression, the First Cobham’s Theorem asserts that £ is 3-
recognizable. We have 0*ps(E;) = {wq - - -wy € {0,1,2}*; 5% &, = 0[2]} and the automaton
recognizing this set is the following.
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The Second Cobham’s Theorem asserts that for each of these sets we can find some substitu-
tions of constant length that generate their characteristic sequences. We labelled the states
to construct these substitutions. Let the set of states be the alphabet A of the substitution.
The image of the state a is the word wy - - - w4 where w; is the state you reach starting from
a and passing through the arrow labelled by i. The substitutions we obtain are :

oy 1 a — ab o, : a — aba o9 : a — ab o3 : a — ab
b — ab b — bab b — bc b — ba
c — cc

Now call, for each substitution, x the unique fixed point starting with the letter ¢ and
identified to 1 the initial states and to 0 the other states. You obtained the characteristic
sequence y of the corresponding set of integers E. For E3 we obtain the well-known Morse
sequence y :

= abbabaabba---

X
!
y = 1001011001---
/[\

E : 0123456789---.

5.4 Bertrand numeration systems

A Bertrand numeration system U [Ber2] is a numeration system satisfying for all n € IN :
w € L(U) if and only if w0" € L(U).

It is a natural condition because all numeration systems in base p > 2 satisfy it.
Let a > 1 be a real number. All z € [0,1] can be uniquely written in the following way :

=Y a,a ", (3)
n>1
with ; = z and for all n > 1, a, = [ax,] and z,,1 = {ax,}, where [.] is the integer part
and {.} the fractional part. We call a-ezpansion of x the sequence d,(z) = (a,;n € IN*) and
L(a) the set of finite words having an occurrence in some sequences d,(x), x € [0, 1]. If d,(1)
is ultimately periodic we say a is a S-number (for more details or informations about these
numbers see [Par] or [Fr|). We remark that integers greater or equal to 2 are S-numbers.
Bertrand-Mathis proved the following results :

Theorem 47 [Ber2] Let U be a numeration system. It is a Bertrand numeration system if
and only if there exists a real number o > 1 such that L(U) = L(«). In this case, if U is
linear then « is a root of the characteristic polynomial of U.

Theorem 48 [Berl| Let a > 1 be a real number. The language L(c) is recognizable with a
finite automaton if and only if o is a B-number.
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5.5 w,y-substitutive sequences

We recall that when « is an integer we have a characterization of U,-recognizable sets of
integers by means of substitutions of constant length (this is the second Theorem of Cobham),
where U = (a™;n € IN). We will see we have the same kind of characterization for Bertrand
numeration systems corresponding to some non integral S-numbers.

Let U be a Bertrand numeration system such that L(U) = L(«) where « is a non integral
fB-number. It is not very difficult to be convinced that, in the case where d, (1) is periodic, IN
is recognizable by the finite automaton given in the next Figure. In the ultimately periodic
case the same kind of automaton could be given.

From this automaton in [Fab2] the author defines a substitution he called w,. The importance
of these substitutions is justified by Theorem 49. They will allow us to applied results of the
previous sections and to prove Theorem 1.

o If dy(1) =ay---a,0¥ an, # 0, then (wq, {1,---,n},1) is defined by

1 — 1m2;

n—1 —1%1p;
n — 197

o Ifdy(1) = a1 an(@ni1Gnyi2 - - Gyim)®, where n and m are minimal and where a, 1+
Unio + -+ Gpym # 0, then (wq, {1,---,n 4+ m}, 1) is defined by

1 — 1912;

n+m—1 — 1%+m1(n+m);
n+m — 1947 (n + 1);
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We remark in both cases the substitution w,, is primitive and « is the dominant eigenvalue
of M, . Let 0 : A— A* and 7 : B — B* be two substitutions, we say that o projects on 7 if
there exists a letter to letter morphism ¢ : A — B* such that goo = 70¢. A substitution that
projects on w, is called wg-substitution and we call w,-substitutive sequence («a-automatic
sequence in [Fab2]) each sequence which is the image under a letter to letter morphism of a
fixed point of a w,-substitution. In [Fab2] (Corollary 1) Fabre proved the following result :

Theorem 49 Let U be a Bertrand numeration system such that L(U) = L(a) where «
is a B-number. A set E C IN is U-recognizable if and only if its characteristic sequence
(Xn;n € IN) (x, =1 if n € E and x,, = 0 otherwise) is w,-substitutive.

We remark that ¢ o 0™ = 7™ o ¢. If 7 is primitive (and consequently quasi-uniform) then it
comes that o is quasi-uniform. We obtain the following corollary (see [Du3]).

Corollary 50 Let U be a Bertrand numeration system such that L(U) = L(«) where « is
a B-number. If the set E C IN is U-recognizable then its characteristic sequence (xp;n € IN)
(xn =1 if n € E and x, = 0 otherwise) is the image under a letter to letter morphism of a
fized point of a quasi uniform substitution which dominant eigenvalue is .

5.6 An application to numeration systems

To prove Theorem 46 we first prove that the letters appearing infinitely many times in x
appears with bounded gaps. From this we deduce the same result for the words. And
to conclude we use a particular matrix decomposition into primitive diagonal blocks and
Theorem 31.

Words appear with bounded gaps. Let a and § be two multiplicatively independent
Perron numbers. Let o and 7 be two uniform substitutions on the alphabets A and B, with
fixed points y and z respectively. Let ¢ : A — C and ¥ : B — C be two letter to letter
morphisms such that ¢(y) = ¢¥(z) = x. We recall that two real numbers o and 3 are said
to be multiplicatively independent if and only if for all k.l € Z, o # B'. The following
well-known theorem will be crucial in this section (see [HW]).

Theorem 51 Let o and B be two multiplicatively independent positive numbers. Let d and
e be two non-negative integers. Then the set

an
—:n,m € IN
{5"’ }

Proposition 52 The letters of C which have infinitely many occurrences in x appear with
bounded gaps in X.

is dense in RT.

Proof. Let ¢ € C which has infinitely many occurrences. Let X = {n € IN;x,, = ¢}. Assume
that the letter ¢ do not appear with bounded gaps. Then there exists a € A with infinitely
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many occurrences in y and a strictly increasing sequence (p,;n € IN) of positive integers such
that in ¢(oP(a)) do not appear the letter ¢. Let A" be the set of such letters. Fix a € A".
Let u € A* such that ua is a prefix of y. Of course we can suppose that u is non-empty.
For all n € IN we call ,, C A the set of letters appearing in 0?*(a). There exists two distinct
integers ny < ng such that Q,, = Q,,. Let 2 be the set of letters appearing in P21 (Q,,, ).
It is easy to show that Q2 = €2, = Q,,.

Consequently the set of letters appearing in oPr27P~1(2) is equal to €2 and for all £ € IN
the set of letters appearing in ap"1+k(p"2_p"1)(A) is equal to 2. We set p = p,, and g =
Pn, — DPn,- We remark that the letter ¢ do not appear in the word ¢(o?™*9(a)) and that
[loPtk9 ()], |oPE9 (ua)|[NX = 0, for all k € IN. Let v = oP(u) and w = oP(a), we have

[l (v)], [o* (vw)|[NX = 0. (4)

We have A\,(v) < A,(vw). Consequently there exists an € > 0 such that

Ao (0)(1+€) < As(vw)(1 — ).
From Lemma 21 we obtain that there exists ky such that for all £ > k¢ we have

|04 (v)]

|o* (vw)|
aky ’

aky

<A(v)(1+€) < As(vw)(1—€) < (5)

From Lemma 22 applied to 7 we have that there exists s,¢,t € B* and h € IN* such that
for all n € IN
w(y[Th"(s)Th(“_l)(t)“-Th(t)tt’]) =¢

From the second part of Lemma 22 it comes that there exists v € R such that

. (s) D (@) - ()]

From Theorem 51 it comes that there exist two strictly increasing sequences of integers,
(my;i € IN) and (ng; 4 € IN), and [ € R such that

6mih

Vg i Le A (v)(1+e€), A (vw)(1 —€)].

And consequently

[P (7D 0) 1R (OH] [ ) 0 o)t |
a™idg 'Yﬁmlh am™iy

—i—s4o0 l. (6)
From (5) and (6) there exists i € IN such that
09 (0)| < [ ()M @) - T (O8] < [0 (o),

which means that |[77™i(s)r?m=1(¢)...7%(t)tt' | belongs to X and is consequently in con-
tradiction with (4). O
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Corollary 53 The words having infinitely many occurrences in x appear in X with bounded
gaps.

Proof. Let u be a word having infinitely many occurrences in x. We set |u| = n. To prove
that u appears with bounded gaps in x it suffices to prove that the letter 1 appears with
bounded gaps in the sequence t € {0,1}N defined by

ti=1 if Xjin-1y=u

and 0 otherwise. In the sequel we prove that t is a and S-substitutive.
The sequence y™ = ((y;**yitn_1);7 € IN) is a fixed point of the substitution o,, : A, — A*
where A, is the alphabet A", defined for all (a; - - a,) in A, by

Un((al e an)) = (bl ce bn)(bQ ce bn—l—l) ce (b|g(a1)| ce b|a(a1)|+n71)

where o(ay - -~ a,) = by - - - b (for more details see Section V.4 in [Qu]).

Let p : A, — A* be the letter to letter morphism defined by p((by---b,)) = by for all
(bi---by) € A,. We have po o, = 0o p, and then M,M, = M,M, Consequently the
dominant eigenvalue of o, is @ and y™ is a-substitutive.

Let f : A, — {0,1} be the letter to letter morphism defined by f((by---b,)) =1ifby---b, =
u and 0 otherwise. It is easy to see that f (y(")) =t hence t is a-substitutive.

In the same way we show that t is S-substitutive and Theorem 52 achieves the proof. 0

Decomposition of a substitution into sub-substitutions. The following proposition
is a consequence of the paragraph 4.4 and the Proposition 4.5.6 in [LM].

Proposition 54 Let M = (m; )ijca be a matriz with non-negative coefficients and no
column equal to 0. There exists there positive integer p # 0, q, I, where ¢ < 1 — 1, and a
partition {A; 1 < i <1} of A such that

A, Ay o Ay Agn Age o A
A M, 0 .- 0 0 0 - 0
A | My My 0 0 0 - 0
oA | My My o M, 0 0 0 -
Aq+1 Ml,q+1 M2,q+1 T Mq,q+1 Mq+1 0 T 0 |’
Agpo | Migrs Mogyo -0 Mggo 0 Mg -+ 0
A, My My - My 0 0 - M

where the matrices M;, 1 <i < q (resp. ¢+ 1 <1i<1), are primitive or equal to zero (resp.
primitive), and such that for all 1 < i < q there ezists i + 1 < j < | such that the matriz
M, ; is different from 0.

In what follows we keep the notations of Proposition 54. We will say that {A4;;1 <i <[} is
a primitive component partition of A (with respect to M ). If i belongs to {¢g+1,---,1} we
will say that A; is a principal primitive component of A (with respect to M ).
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Let 7: A — A* be a substitution and M = (m;); jea its matrix. Let i € {¢+1,---,1}. We
denote 7; the restriction T}’ 4, + Ai > A" of 7P to A;. Because 7;(A;) is included in A} we can
consider that 7; is a morphism from A; to A} which matrix is M;. Let i € {1,---,¢} such
that M; is not equal to 0. Let ¢; be the morphism from A to A} defined by ¢(b) = b if b
belongs to A; and the empty word otherwise. Let consider the map 7; : A; — A* defined
by 7i(b) = ¢i(7P(b)) for all @ € A;. We remark as previously that 7;(A;) is included in A},
consequently 7; defines a morphism from A; to A} which matrix is M.

We will say that the substitution 7 : A — A* satisfy the condition (C) if:

C1. The matrix M, itself, is of the types (7) (i.e. p=1);

C2. The matrices M; are equal to 0 or with positive coefficients if 1 < ¢ < ¢ and with
positive coefficients otherwise ;

C3. For all matrices M; different from 0, with 7 € {1,-- -1}, there exists a; € A; such that
7;(a;) = a;u; where u; is a non-empty word of A* if M; # [1] and empty otherwise.

From Proposition 54 every substitution 7 : A — A* has a power 7% satisfying condition (C).
The definition of substitutions implies that for all ¢ +1 <14 <[ we have M; # [1].

Let 7: A — A* be a substitution satisfying condition (C) (we keep the previous notations).
For all 1 < i < [ such that M; is different from 0 and [1], the map 7; : A; — A! defines
a substitution we will call main sub-substitution of 7 if i € {¢ + 1,---,1} and non-main
sub-substitution of T otherwise. Moreover matrix M; has positive coefficients which implies
that the substitution 7; is primitive. We remark that there exists at least one main sub-
substitution.

In [Du3] the following results were obtained and will be used in the sequel.

Lemma 55 Let 0 : A — A* et 7 : B — B* be two substitutions satisfying condition (C),
D an alphabet, ¢ : A — D* and ¢ : B — D* two letter to letter morphisms such that
o(L(1)) = ¢(L(0)). If o is a main sub-substitution of o then there exists a main sub-
substitution T of T such that (L(T)) = ¢(L(7))-

Proof of Theorem 46. We take the notations of the first lines of the part 5.6.

Let 7 : A — A" be a main sub-substitution of o. From Lemma 55 there exists a main
sub-substitution 7 of 7 such that ¢(L(7)) = ¥(L(7)) = L. From Theorem 31 it comes that
L is periodic, i.e. there exists a word u such that L = L(u”) where |u| is the least period.
There exists an integer N such that all the words of length |u| appear infinitely many times
in XyXyi1---. We set t = xyxyy1--- and we will prove that t is periodic and consequently
x will be ultimately periodic.

The word u appear infinitely many times, consequently it appears with bounded gaps. Let
R, be the set of return words to u (a word w is a return word to u if wu € L(x), u is a prefix
of wu and u has exactly two occurrences in wu). It is finite. There exists an integer N such
that all the words w € R, N L(xyXy41--+) appear infinitely many times in x. Hence these
words appear with bounded gaps in x. We set t = xyxyy1::- and we will prove that t is
periodic and consequently x will be ultimately periodic. We can suppose that u is a prefix of
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t. Then t is a concatenation of return words to u. Let w be a return word to u. It appears
with bounded gaps hence it appears in some ¢(c"(a)) and there exits two words, p and ¢,
and an integer ¢ such that wu = pu'q. As |u| is the least period of L it comes that wu = u’.
It follows that t = u®. O

Proof of Theorem 1. It is a consequence of Theorem 46, Theorem 50 and of the Second

Cobham’s Theorem. 0
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