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Abstract

Given a knowledge base KB containing first-order and statistical facts, we consider a
principled method, called the random-worlds method, for computing a degree of belief that
some formula ¢ holds given KB. If we are reasoning about a world or system consisting of
N individuals, then we can consider all possible worlds, or first-order models, with domain
{1,..., N} that satisfy KB, and compute the fraction of them in which ¢ is true. We define
the degree of belief to be the asymptotic value of this fraction as N grows large. We show
that when the vocabulary underlying ¢ and KB uses constants and unary predicates only,
we can naturally associate an entropy with each world. As N grows larger, there are many
more worlds with higher entropy. Therefore, we can use a mazimum-entropy computation
to compute the degree of belief. This result is in a similar spirit to previous work in physics
and artificial intelligence, but is far more general. Of equal interest to the result itself are
the limitations on its scope. Most importantly, the restriction to unary predicates seems
necessary. Although the random-worlds method makes sense in general, the connection to
maximum entropy seems to disappear in the non-unary case. These observations suggest
unexpected limitations to the applicability of maximum-entropy methods.

1. Introduction

Consider an agent (or expert system) with some information about a particular subject, such
as internal medicine. Some facts, such as “all patients with hepatitis exhibit jaundice”, can
be naturally expressed in a standard first-order logic, while others, such as “80% of patients
that exhibit jaundice have hepatitis”, are statistical. Suppose the agent wants to use this
information to make decisions. For example, a doctor might need to decide whether to
administer antibiotics to a particular patient Eric. To apply standard tools of decision
theory (see (Luce & Raiffa, 1957) for an introduction), the agent must assign probabilities,
or degrees of belief, to various events. For example, the doctor may need to assign a degree
of belief to an event such as “Eric has hepatitis”. We would therefore like techniques for
computing degrees of belief in a principled manner, using all the data at hand. In this paper
we investigate the properties of one particular formalism for doing this.

The method we consider, which we call the random-worlds method, has origins that go
back to Bernoulli and Laplace (1820). It is essentially an application of what has been
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called the principle of indifference (Keynes, 1921). The basic idea is quite straightforward.
Suppose we are interested in attaching a degree of belief to a formula ¢ given a knowledge
base KB. One useful way of assigning semantics to degrees of belief formulas is to use
a probability distribution over a set of possible worlds (Halpern, 1990). More concretely,
suppose for now that we are reasoning about N individuals, 1,..., N. A world is a complete
description of which individuals have each of the properties of interest. Formally, a world
is just a model, or interpretation, over our first-order language. For example, if our lan-
guage consists of the unary predicates Hepatitis, Jaundice, Child, and BlueFyed, the binary
predicate Infected-By, and the constant Fric, then a world describes which subset of the
N individuals satisfies each of the unary predicates, which set of pairs is in the Infected-By
relation, and which of the N individuals is Fric. Given a prior probability distribution
over the set of possible worlds, the agent can obtain a degree of belief in ¢ given KB by
conditioning on KB to obtain a posterior distribution, and then computing the probability
of ¢ according to this new distribution. The random-worlds method uses the principle of
indifference to choose a particular prior distribution over the set of worlds: all the worlds
are taken to be equally likely. It is easy to see that the degree of belief in ¢ given KB is
then precisely the fraction of worlds satisfying KB that also satisfy .

The approach so far described applies whenever we actually know the precise domain
size N; unfortunately this is fairly uncommon. In many cases, however, it is reasonable to
believe that N is “large”. We are thus particularly interested in the asymptotic behavior of
this fraction; that is, we take our degree of belief to be the asymptotic value of this fraction
as N grows large.

For example, suppose we want to reason about a domain of hospital patients, and KB
is the conjunction of the following four formulas:

o Va(Hepatiltis(z) = Jaundice(x)) (“all patients with hepatitis exhibit jaundice”),

o ||Hepatitis(z)|Jaundice(z)||; ~ 0.8 (“approximately 80% of patients that exhibit jaun-
dice have hepatitis”; we explain this formalism and the reason we say “approximately
80%” rather than “exactly 80%” in Section 2),

o ||BlueEyed(z)||; = 0.25 (“approximately 25% of patients have blue eyes”),
o Jaundice( Eric) A Child( Eric) (“Eric is a child who exhibits jaundice”).

Let ¢ be Hepatitis( Eric); that is, we want to ascribe a degree of belief to the statement “Eric
has hepatitis”. Suppose the domain has size N. Then we want to consider all worlds with
domain {1,..., N} such that the set of individuals satisfying Hepatitis is a subset of those
satisfying Jaundice, approximately 80% of the individuals satisfying Jaundice also satisfy
Hepatitis, approximately 25% of the individuals satisfy BlueEyed, and (the interpretation
of) Eric is an individual satisfying Jaundice and Child. 1t is straightforward to show that, as
expected, Hepatitis( Eric) holds in approximately 80% of these structures. Moreover, as N
gets large, the fraction of structures in which Hepatitis( Eric) holds converges to exactly 0.8.

Since 80% of the patients that exhibit jaundice have hepatitis and Eric exhibits jaundice,
a degree of belief of 0.8 that Eric has hepatitis seems justifiable. Note that, in this example,
the information that Eric is a child is essentially treated as irrelevant. We would get the
same answer if we did not have the information Child(Eric). It can also be shown that
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the degree of belief in BlueEyed( Eric) converges to 0.25 as N gets large. Furthermore,
the degree of belief of BlueEyed(Eric) A Jaundice( Eric) converges to 0.2, the product of
0.8 and 0.25. As we shall see, this is because the random-worlds method treats BlueFyed
and Jaundice as being independent, which is reasonable because there is no evidence to
the contrary. (It would surely be strange to postulate that two properties were correlated
unless there were reason to believe they were connected in some way.)

Thus, at least in this example, the random-worlds method gives answers that follow
from the heuristic assumptions made in many standard Al systems (Pearl, 1989; Pollock,
1984; Spiegelhalter, 1986). Are such intuitive results typical? When do we get convergence?
And when we do, is there a practical way to compute degrees of belief?

The answer to the first question is yes, as we discuss in detail in (Bacchus, Grove,
Halpern, & Koller, 1994). In that paper, we show that the random-worlds method is re-
markably successful at satisfying the desiderata of both nonmonotonic (default) reasoning
(Ginsberg, 1987) and reference class reasoning (Kyburg, 1983). The results of (Bacchus
et al., 1994) show that the behavior we saw in the example above holds quite generally,
as do many other properties we would hope to have satisfied. Thus, in this paper we do
not spend time justifying the random-worlds approach, nor do we discuss its strengths and
weaknesses; the reader is referred to (Bacchus et al., 1994) for such discussion and for
an examination of previous work in the spirit of random worlds (most notably (Carnap,
1950, 1952) and subsequent work). Rather, we focus on the latter two questions asked
above. These questions may seem quite familiar to readers aware of the work on asymp-
totic probabilities for various logics. For example, in the context of first-order formulas,
it is well-known that a formula with no constant or function symbols has an asymptotic
probability of either 0 or 1 (Fagin, 1976; Glebskii, Kogan, Liogon’kii, & Talanov, 1969).
Furthermore, we can decide which (Grandjean, 1983). However, the 0-1 law fails if the
language includes constants or if we look at conditional probabilities (Fagin, 1976), and we
need both these features in order to reason about degrees of belief for formulas involving
particular individuals, conditioned on what is known.

In two companion papers (Grove, Halpern, & Koller, 1993a, 1993b), we consider the
question of what happens in the pure first-order case (where there is no statistical informa-
tion) in greater detail. We show that as long as there is at least one binary predicate symbol
in the language, then not only do we not get asymptotic conditional probabilities in general
(as was already shown by Fagin (1976)), but almost all the questions one might want to ask
(such as deciding whether the limiting probability exists) are highly undecidable. However,
if we restrict to a vocabulary with only unary predicate symbols and constants, then as
long as the formula on which we are conditioning is satisfiable in arbitrarily large models
(a question which is decidable in the unary case), the asymptotic conditional probability
exists and can be computed effectively.

In this paper, we consider the much more useful case where the knowledge base has
statistical as well as first-order information. In light of the results of (Grove et al., 1993a,
1993b), for most of the paper we restrict attention to the case when the knowledge base is
expressed in a unary language. Our major result involves showing that asymptotic condi-
tional probabilities can often be computed using the principle of mazimum entropy (Jaynes,
1957; Shannon & Weaver, 1949).
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To understand the use of maximum entropy, suppose the vocabulary consists of the
unary predicate symbols P, ..., P,. We can consider the 2% atoms that can be formed from
these predicate symbols, namely, the formulas of the form P/ A ... A P/, where each P/ is
either P; or = FP;. We can view the knowledge base as placing constraints on the proportion
of domain elements satisfying each atom. For example, the constraint || Pi(z)|Pa(z)||z = 1/2
says that the proportion of the domain satisfying some atom that contains P as a conjunct
is twice the proportion satisfying atoms that contain both P; and P, as conjuncts. Given a
model of KB, we can define the entropy of this model as the entropy of the vector denoting
the proportions of the different atoms. We show that, as N grows large, there are many
more models with high entropy than with lower entropy. Therefore, models with high
entropy dominate. We use this concentration phenomenon to show that our degree of belief
in ¢ given KB according to the random-worlds method is closely related to the assignment
of proportions to atoms that has maximum entropy among all assignments consistent with
the constraints imposed by KB.

The concentration phenomenon relating entropy to the random-worlds method is well-
known (Jaynes, 1982, 1983). In physics, the “worlds” are the possible configurations of
a system typically consisting of many particles or molecules, and the mutually exclusive
properties (our atoms) can be, for example, quantum states. The corresponding entropy
measure is at the heart of statistical mechanics and thermodynamics. There are subtle but
important differences between our viewpoint and that of the physicists. The main one lies in
our choice of language. We want to express some intelligent agent’s knowledge, which is why
we take first-order logic as our starting point. The most specific difference concerns constant
symbols. We need these because the most interesting questions for us arise when we have
some knowledge about—and wish to assign degrees of belief to statements concerning—a
particular individual. The parallel in physics would address properties of a single particle,
which is generally considered to be well outside the scope of statistical mechanics.

Another work that examines the connection between random worlds and entropy from
our point of view—computing degrees of belief for formulas in a particular logic—is that of
Paris and Vencovska (1989). They restrict the knowledge base to consist of a conjunction of
constraints that (in our notation) have the form ||a(z)|3(z)||; & r and ||a(z)||; ~ 7, where 3
and a are quantifier-free formulas involving unary predicates only, with no constant symbols.
Not only is most of the expressive power of first-order logic not available in their approach,
but the statistical information that can be expressed is quite limited. For example, it is not
possible to make general assertions about statistical independence. Paris and Vencovska
show that the degree of belief can be computed using maximum entropy for their language.
Shastri (1989) has also shown such a result, of nearly equivalent scope. But, as we have
already suggested, we believe that it is important to look at a far richer language. Our
language allows arbitrary first-order assertions, full Boolean logic, arbitrary polynomial
combinations of statistical expressions, and more; these are all features that are actually
useful to knowledge-representation practitioners. Furthermore, the random-worlds method
makes perfect sense in this rich setting. The goal of this paper is to discover whether the
connection to maximum entropy also holds. We show that maximum entropy continues
to be widely useful, covering many problems that are far outside the scope of (Paris &
Vencovska, 1989; Shastri, 1989).
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On the other hand, it turns out that we cannot make this connection for our entire
language. For one thing, as we hinted earlier, there are problems if we try to condition on a
knowledge base that includes non-unary predicates; we suspect that maximum entropy has
no role whatsoever in this case. In addition, we show that there are subtleties that arise
involving the interaction between statistical information and first-order quantification. We
feel that an important contribution of this paper lies in pointing out some limitations of
maximum-entropy methods.

The rest of this paper is organized as follows. In the next section, we discuss our formal
framework (essentially, that of (Bacchus, 1990; Halpern, 1990)). We discuss the syntax
and semantics of statistical assertions, issues involving “approximately equals”, and define
the random-worlds method formally. In Section 3 we state the basic results that connect
maximum entropy to random-worlds, and in Section 4 we discuss how to use these results
as effective computational procedures. In Section 5 we return to the issue of unary versus
non-unary predicates, and the question of how widely applicable the principle of maximum
entropy is. We conclude in Section 6 with some discussion.

2. Technical preliminaries

In this section, we give the formal definition of our language and the random-worlds method.
The material is largely taken from (Bacchus et al., 1994).

2.1 The language

We are interested in a formal logical language that allows us to express both statistical
information and first-order information. We therefore define a statistical language L7,
which is a variant of a language designed by Bacchus (1990). For the remainder of the
paper, let ® be a finite first-order vocabulary, consisting of predicate and constant symbols,
and let X’ be a set of variables.!

Our statistical language augments standard first-order logic with a form of statistical
quantifier. For a formula (z), the term ||¢(z)||; is a proportion expression. It will be
interpreted as a rational number between 0 and 1, that represents the proportion of domain
elements satisfying 1 (z). We actually allow an arbitrary set of variables in the subscript
and in the formula . Thus, for example, ||Child(z,y)||. describes, for a fixed y, the
proportion of domain elements that are children of y; ||Child(z,y)||, describes, for a fixed
x, the proportion of domain elements whose child is ; and ||Child(z,y)||5,, describes the
proportion of pairs of domain elements that are in the child relation.?

We also allow proportion expressions of the form |[¢(z)|0(z)||, which we call conditional
proportion expressions. Such an expression is intended to denote the proportion of domain
elements satisfying v from among those elements satisfying . Finally, any rational number
is also considered to be a proportion expression, and the set of proportion expressions is
closed under addition and multiplication.

1. For simplicity, we assume that ® does not contain function symbols, since these can be defined in terms
of predicates.

2. Strictly speaking, these proportion expression should be written with sets of variables in the subscript,
as in || Child(z,y)||{s,y}- However, when the interpretation is clear, we often abuse notation and drop
the set delimiters.
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One important difference between our syntax and that of (Bacchus, 1990) is the use of
approzimate equality to compare proportion expressions. There are both philosophical and
practical reasons why exact comparisons can be inappropriate. Consider a statement such
as “80% of patients with jaundice have hepatitis”. If this statement appears in a knowledge
base, it is almost certainly there as a summary of a large pool of data. So it would be wrong
to interpret the value too literally, to mean that ezactly 80% of all patients with jaundice
have hepatitis. Furthermore, this interpretation would imply (among other things) that the
number of jaundiced patients is a multiple of five! This is unlikely to be something we intend.
We therefore use the approach described in (Bacchus et al., 1994; Koller & Halpern, 1992),
and compare proportion expressions using (instead of = and <) one of an infinite family of
connectives =z; and <;, for i = 1,2,3... (“i-approximately equal” or “i-approximately less
than or equal”). For example, we can express the statement “80% of jaundiced patients
have hepatitis” by the proportion formula ||Hep(z)|Jaun(z)||; ~1 0.8. The intuition behind
the semantics of approximate equality is that each comparison should be interpreted using
some small tolerance factor to account for measurement error, sample variations, and so
on. The appropriate tolerance will differ for various pieces of information, so our logic
allows different subscripts on the “approximately equals” connectives. A formula such as
||Fly(z)|Bird(z)||- =1 1 A ||Fly(z)|Bat(z)||z ~2 1 says that both ||Fly(z)|Bird(z)||, and
| Fly(z)| Bat(z)|| are approximately 1, but the notion of “approximately” may be different
in each case. The actual choice of subscript for &~ is unimportant. However, it is important
to use different subscripts for different approximate comparisons unless the tolerances for
the different measurements are known to be the same.

We can now give a recursive definition of the language £%.

Definition 2.1: The set of terms in L¥ is X UC where C is the set of constant symbols in
®. The set of proportion expressionsis the least set that

(a) contains the rational numbers,

(b) contains proportion terms of the form ||¢||x and ||¢|| x for formulas ¢,8 € £¥ and
a finite set of variables X C X', and

(c) is closed under addition and multiplication.
The set of formulas in £¥ is the least set that

(a) contains atomic formulas of the form R(ty,...,t,), where R is a predicate symbol in
® U {=} of arity r and {1, ...,t, are terms,

(b) contains proportion formulas of the form ¢ ~; (' and { <; ¢/, where ¢ and (' are
proportion expressions and ¢ is a natural number, and

(c) is closed under conjunction, negation, and first-order quantification. I

Note that £¥ allows the use of equality when comparing terms, but not when comparing
proportion expressions.

This definition allows arbitrary nesting of quantifiers and proportion expressions. As
observed in (Bacchus, 1990), the subscript # in a proportion expressions binds the variable
z in the expression; indeed, we can view ||-||, as a new type of quantification.
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We now need to define the semantics of the logic. As we shall see below, most of the
definitions are fairly straightforward. The two features that cause problems are approxi-
mate comparisons and conditional proportion expressions. We interpret the approximate
connective ( ~; (' to mean that ( is very close to (’. More precisely, it is within some very
small tolerance factor. We formalize this using a tolerance vector ¥ = (11, 73,...), 71 > 0.
Intuitively ¢ ~; ¢ if the values of { and (' are within 7; of each other. Of course, one prob-
lem with this is that we generally will not know the value of 7;. We postpone discussion of
this issue until the next section.

Another difficulty arises when interpreting conditional proportion expressions. The
problem is that [|1|0||x cannot be defined as a conditional probability when there are
no assignments to the variables in X that would satisfy 8, because we cannot divide by
zero. When standard equality is used rather than approximate equality this problem is
easily overcome, simply by avoiding conditional probabilities in the semantics altogether.
Following (Halpern, 1990), we can eliminate conditional proportion expressions altogether
by viewing a statement such as ||¢|f||x = « as an abbreviation for ||¢ A 8]|x = «al|f]|x.
Thus, we never actually form quotients of probabilities. This approach agrees completely
with the standard interpretation of conditionals so long as [|0||x # 0. If ||8]|x = 0, it
enforces the convention that formulas such as ||¥]0||x = a or ||¢|0||x < a are true for any
a. (Note that we do not really care much what happens in such cases, so long as it is
consistent and well-defined. This convention represents one reasonable choice.)

We used the same approach in an earlier version of this paper (Grove, Halpern, &
Koller, 1992) in the context of a language that uses approximate equality. Unfortunately,
as the following example shows, this has problems. Unlike the case for true equality, if we
multiply by ||8]|x to clear all quotients, we do not obtain an equivalent formula even if
||0]|x is nonzero.

Example 2.2: First consider the knowledge base KB = (||Fly(xz)|Penguin(z)||; ~1 0).
This says that the number of flying penguins forms a tiny proportion of all penguins.
However, if we interpret conditional proportions as above and multiply out, we obtain the
knowledge base KB’ = ||Fly(z) A Penguin(z)||, ~1 0 - || Penguin(z)||,, which is equivalent
to || Fly(z) A Penguin(z)||; &1 0. KB’ just says that the number of flying penguins is small,
and has lost the (possibly important) information that the number of flying penguins is
small relative to the number of penguins. It is quite consistent with KB’ that all penguins fly
(provided the total number of penguins is small); this is not consistent with KB. Clearly, the
process of multiplying out across an approximate connective does not preserve the intended
interpretation of the formulas. i

This example demonstrates an undesirable interaction between the semantics we have
chosen for approximate equality and the process of multiplying-out to eliminate conditional
proportions. We expect [|1|0||x =1 a to mean that ||1|0||x is within some tolerance 71 of a.
Assuming [|0]|x > 0, this is the same as saying that || A 0||x is within 7 ||0]|x of a|]0]|x.
On the other hand, the expression that results by multiplying out is |4 A 0]|x ~1 «||8]|x.
This says that [|¢» A 8]|x is within 7 (not 71|8]|x!) of a||f||x. As we saw above, the
difference between the two interpretations can be significant.

Because of this problem, we cannot treat conditional proportions as abbreviations and
instead have added them as primitive expressions in the language. Of course, we now have
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to give them a semantics that avoids the problem illustrated by Example 2.2. We would
like to maintain the conventions used when we had equality in the language. Namely,
in worlds where |[|6(z)||; # 0, we want ||¢(z)|f(z)||; to denote the fraction of elements
satisfying #(z) that also satisfy ¢(z). In worlds where ||f(z)||; = 0, we want formulas
of the form ||¢(2)|0(z)||s =; o or ||¢(2)|6(z)||z =i @ to be true. There are a number of
ways of accomplishing this. The way we take is perhaps not the simplest, but it introduces
machinery that will be helpful later. The basic idea is to make the interpretation of ~ more
explicit, so that we can eliminate conditional proportions by multiplication and keep track
of all the consequences of doing so.

We give semantics to the language £¥ by providing a translation from formulas in £¥
to formulas in a language £~ whose semantics is more easily described. The language £= is
essentially the language of (Halpern, 1990), that uses true equality rather than approximate
equality when comparing proportion expressions. More precisely, the definition of L= is
identical to the definition of £L¥ given in Definition 2.1, except that:

e we use = and < instead of =; and <;,

o we allow the set of proportion expressions to include arbitrary real numbers (not just
rational numbers),

e we do not allow conditional proportion expressions,

e we assume that £~ has a special family of variables ¢;, for i = 1,2,..., interpreted
over the reals.

The variable ¢; is used to explicitly interpret the approximate equality connectives ~; and
=;. Once this is done, we can safely multiply out the conditionals, as described above. More
precisely, every formula y € £ can be associated with a formula x* € £= as follows:

e every proportion formula ¢ <; ¢’ in x is (recursively) replaced by ¢ — (' < ¢,

e every proportion formula ¢ =; (' in x is (recursively) replaced by the conjunction

((=¢ <e) A (' =(<Le),
¢ finally, conditional proportion expressions are eliminated by multiplying out.

This translation allows us to embed £% into £=. Thus, for the remainder of the paper,
we regard L% as a sublanguage of £=. This embedding avoids the problem encountered in
Example 2.2, because when we multiply to clear conditional proportions the tolerances are
explicit, and so are also multipled as appropriate.

The semantics for £= is quite straightforward, and is similar to that in (Halpern, 1990).
We give semantics to £~ in terms of worlds, or finite first-order models. For any natural

number N, let Wy consist of all worlds with domain {1,..., N}. Thus, in Wy, we have
one world for each possible interpretation of the symbols in ® over the domain {1,..., N}.
Let W* denote Uy Wy.

Now, consider some world W € W* over the domain D = {1,..., N}, some valuation

V : X — D for the variables in X', and some tolerance vector 7. We simultaneously assign
to each proportion expression { a real number [C](W,V,%‘) and to each formula £ a truth value
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with respect to (W, V, 7). Most of the clauses of the definition are completely standard, so we
omit them here. In particular, variables are interpreted using V', the tolerance variables ¢;
are interpreted using the tolerances 7;, the predicates and constants are interpreted using W,
the Boolean connectives and the first-order quantifiers are defined in the standard fashion,
and when interpreting proportion expressions, the real numbers, addition, multiplication,
and < are given their standard meaning. It remains to interpret proportion terms. Recall
that we eliminate conditional proportion terms by multiplying out, so that we need to deal
only with unconditional proportion terms. If  is the proportion expression ||¢||Ii1w@ik
(for ©y < i3 < ...< i), then

Ko = Tprpl{dsn o ood) € D (W Vi . ). 7) = )

Thus, if |D| = N, the proportion expression ||¢)[|s,, .., denotes the fraction of the NF

Ek-tuples in D* that satisfy ¢. For example, [||Child(z, Yllzl(w,v,7) is the fraction of domain
elements d that are children of V(y).

Using our embedding of £ into £=, we now have semantics for L¥. For y € L¥, we
say that (W, V,7) = x iff (W,V,7) = x*. It is sometimes useful in our future results to
incorporate particular values for the tolerances into the formula x*. Thus, let x[7] represent
the formula that results from x* if each variable ¢; is replaced with its value according to
7, that is, 7;.3

Typically we are interested in closed sentences, that is, formulas with no free variables.
In that case, it is not hard to show that the valuation plays no role. Thus, if y is closed,
we write (W, T) |= x rather than (W,V,7) |= x. Finally, if KB and x are closed formulas,
we write KB |= x if (W,7) E KB implies (W, T) = x.

2.2 Degrees of belief

As we explained in the introduction, we give semantics to degrees of belief by considering all
worlds of size N to be equally likely, conditioning on KB, and then checking the probability
of ¢ over the resulting probability distribution. In the previous section, we defined what it
means for a sentence x to be satisfied in a world of size N using a tolerance vector 7. Given
N and 7, we define #worldsf\;(x) to be the number of worlds in Wy such that (W, 7) |= x.
Since we are taking all worlds to be equally likely, the degree of belief in ¢ given KB with
respect to Wy and 7 is

#worldsy (¢ A KB)
#worlds}, (KB)

Prii(o|KB) =
If #worldsy,(KB) = 0, this degree of belief is not well-defined.

The careful reader may have noticed a potential problem with this definition. Strictly
speaking, we should write Wy (®) rather than Wy, since the set of worlds under consider-

ation clearly depends on the vocabulary. Hence, the number of worlds in Wy also depends
on the vocabulary. Thus, both #worldsy () and #worldsy (¢ A KB) depend on the choice

3. Note that some of the tolerances 7; may be irrational; it is for this reason that we allowed irrational
numbers in proportion expressions in L.
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of ®. Fortunately, this dependence “cancels out”: If ® O @, then there is a constant c
such that for all formulas x over the vocabulary ®, #[®'] worldff\,(x) = c#[@]worldsf\,(x).
This result, from which it follows that the degree of belief Pry(¢|KB) is independent of
our choice of vocabulary, is proved in (Grove et al., 1993b).

Typically, we know neither N nor 7 exactly. All we know is that N is “large” and
that 7 is “small”. Thus, we would like to take our degree of belief in ¢ given KB to
be lim._ 5 limpy_o Priy(¢|KB). Notice that the order of the two limits over 7 and N
is important. If the limit lim. 5 appeared last, then we would gain nothing by using
approximate equality, since the result would be equivalent to treating approximate equality
as exact equality.

This definition, however, is not sufficient; the limit may not exist. We observed above
that Prfv(go KB) is not always well-defined. In particular, it may be the case that for
certain values of 7, Pri (¢|KB) is not well-defined for arbitrarily large N. In order to
deal with this problem of well-definedness, we define KB to be eventually consistent if
for all sufficiently small 7 and sufficiently large N, #worldsﬁ;(KB) > 0. Among other
things, eventual consistency implies that the KB is satisfiable in finite domains of arbitrarily
large size. For example, a KB stating that “there are exactly 7 domain elements” is not
eventually consistent. For the remainder of the paper, we assume that all knowledge bases
are eventually consistent. In practice, we expect eventual consistency to be no harder
to check than consistency. We do not expect a knowledge base to place bounds on the
domain size, except when the bound is readily apparent. For those unsatisfied with this
intuition, it is also possible to find formal conditions ensuring eventual consistency. For
instance, it is possible to show that the following conditions are suflicient to guarantee
that KB is eventually consistent: (a) KB does not use any non-unary predicates, including
equality between terms and (b) KB is consistent for some domain size when all approximate

comparisons are replaced by exact comparisons. Since we concentrate on unary languages
in this paper, this result covers most cases of interest.

Even if KB is eventually consistent, the limit may not exist. For example, it may be
the case that Prﬁ;(go KB) oscillates between a4+ 7; and a — 7; for some ¢ as N gets large. In
this case, for any particular 7, the limit as N grows will not exist. However, it seems as if
the limit as 7 grows small should, in this case, be a, since the oscillations about a go to 0.
We avoid such problems by considering the lim sup and lim inf, rather than the limit. For
any set S C IR, the infimum of §, inf 5, is the greatest lower bound of 5. The lim inf of a
sequence is the limit of the infimums; that is,

liminf ey = lim inf{a;:7 > N}.
N—oo N N—oo {Z }

The lim inf exists for any sequence bounded from below, even if the limit does not. The lim
sup is defined analogously, where sup S denotes the least upper bound of 5. If limy_ o an
does exist, then limy_oc any = liminfy_ . ay = limsupy_ ., an. Since, for any 7, the
sequence Prfv(go|KB) is always bounded from above and below, the lim sup and lim inf
always exist. Thus, we do not have to worry about the problem of nonexistence for particular
values of 7. We can now present the final form of our definition.

Definition 2.3: If
lim li]\rfninf Pri(p|KB) and lim limsup Pri(¢|KB)

-+ 2 -
7—0 7—0 N-—oo
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both exist and are equal, then the degree of belief in ¢ given KB, written Pro.(¢
defined as the common limit; otherwise Pro(¢|KB) does not exist.

KB), is

We close this section with a few remarks on our definition. First note that, even using
this definition, there are many cases where the degree of belief does not exist. However,
as some of our later examples show, in many situations the nonexistence of a degree of
belief can be understood intuitively (for instance, see Example 4.3 and the subsequent
discussion). We could, alternatively, have taken the degree of belief to be the interval
defined by lim. 5 liminfy_ o Pr} (| KB) and lim. s limsupy_ Pr}y (| KB), provided
each of them exist. This would have been a perfectly reasonable choice; most of the results
we state would go through with very little change if we had taken this definition. Our
definition simplifies the exposition slightly.

Finally, we remark that it may seem unreasonable to take limits if we know the domain
size or have a bound on the domain size. Clearly, if we know N and 7, then it seems more
reasonable to use Prjy rather than Pro, as our degree of belief. Indeed, as shown in (Bacchus
et al., 1994), many of the important properties that hold for the degree of belief defined
by Prs hold for Prﬁ;, for all choices of N and 7. The connection to maximum entropy
that we make in this paper holds only at the limit, but because (as our proofs show) the
convergence is rapid, the degree of belief Pr.. (| KB) is typically a very good approximation
to Pr]T:;(Lp|KB), even for moderately large N and moderately small 7.

3. Degrees of belief and entropy
3.1 Introduction to maximum entropy

The idea of maximizing entropy has played an important role in many fields, including
the study of probabilistic models for inferring degrees of belief (Jaynes, 1957; Shannon &
Weaver, 1949). In the simplest setting, we can view entropy as a real-valued function on
finite probability spaces. If 2 is a finite set and p is a probability measure on €, the entropy
H () is defined to be — 3" cq p(w) In p(w) (we take 0ln 0 = 0).

One standard application of entropy is the following. Suppose we know the space 2, but
have only partial information about u, expressed in the form of constraints. For example,
we might have a constraint such as p(wq) 4+ p(we) > 1/3. Although there may be many
measures p that are consistent with what we know, the principle of mazimum entropy
suggests that we adopt that p* which has the largest entropy among all the consistent
possibilities. Using the appropriate definitions, it can be shown that there is a sense in
which this #* incorporates the “least” additional information (Shannon & Weaver, 1949).
For example, if we have no constraints on p, then p* will be the measure that assigns equal
probability to all elements of 2. Roughly speaking, pu* assigns probabilities as equally as
possible given the constraints.

3.2 From formulas to constraints

Like maximum entropy, the random-worlds method is also used to determine degrees of be-
lief (i.e., probabilities) relative to a knowledge base. Aside from this, is there any connection
between the two ideas? Of course, there is the rather trivial observation that random-worlds
considers a uniform probability distribution (over the set of worlds satisfying KB), and it is
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well-known that the uniform distribution over any set has the highest possible entropy. But
in this section we show another, entirely different and much deeper, connection between
random-worlds and the principle of maximum entropy. This connection holds provided that
we restrict the knowledge base so that it uses only unary predicates and constants. In this
case we can consider probability distributions, and in particular the maximum-entropy dis-
tribution, over the set of atoms. Atoms are of course very different from possible worlds;
for instance, there are only finitely many of them (independent of the domain size N).
Furthermore, the maximum-entropy distributions we consider will typically not be uniform.
Nevertheless, maximum entropy in this new space can tell us a lot about the degrees of
belief defined by random worlds. In particular, this connection will allow us to use maxi-
mum entropy as a tool for computing degrees of belief. We believe that the restriction to
unary predicates is necessary for the connection we are about to make. Indeed, as long as
the knowledge base makes use of a binary predicate symbol (or unary function symbol), we
suspect that there is no useful connection between the two approaches at all; see Section 5
for some discussion.

Let £F be the sublanguage of £¥ where only unary predicate symbols and constant
symbols appear in formulas; in particular, we assume that equality between terms does not
occur in formulas in £F.* (Recall that in L%, we allow equality between terms, but disallow
equality between proportion expressions.) Let LT be the corresponding sublanguage of
L=. In this subsection, we show that the expressive power of a knowledge base KB in the
language L5 is quite limited. In fact, such a KB can essentially only place constraints on the
proportions of the atoms. If we then think of these as constraints on the “probabilities of the
atoms”, then we have the ingredients necessary to apply maximum entropy. In Section 3.3
we show that there is a strong connection between the maximum-entropy distribution found
this way and the degree of belief generated by random-worlds method.

To see what constraints a formula places on the probabilities of atoms, it is useful to
convert the formula to a certain canonical form. As a first step to doing this, we formalize
the definition of atom given in the introduction. Let P = {Py,..., P} consist of the unary
predicate symbols in the vocabulary ®.

Definition 3.1: An atom (over P) is conjunction of the form Pj(z) A ... A P/(x), where
each P/ is either P; or = P;. Since the variable z is irrelevant to our concerns, we typically
suppress it and describe an atom as a conjunction of the form Pj A ... A P[. |

Note that there are 2/Pl = 2% atoms over P and that they are mutually exclusive and
exhaustive. Throughout this paper, we use K to denote 2¥ and A;,..., Ax to denote the
atoms over P, listed in some fixed order.

Example 3.2: There are K = 4 atoms over P = {Py, P,}: A1 = P APy, Ay = Py A =Py,
A32—|P1/\P2,A4I—|P1/\—|P2. |

The atomic proportion terms ||A1(@)||z,...,||Ax(z)||z will play a significant role in
our technical development. It turns out that L7 is a rather weak language: a formula
KB € LT does little more than constrain the proportion of the atoms. In other words, for

4. We remark that many of our results can be extended to the case where the KB mentions equality, but
the extra complexity obscures many of the essential ideas.
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any such KB we can find an equivalent formula in which the only proportion expressions
are these unconditional proportions of atoms. The more complex syntactic machinery in
LT —proportions over tuples, first-order quantification, nested proportions, and conditional
proportions—does not add expressive power. (It does add convenience, however; knowledge
can often be expressed far more succinctly if the full power of the language is used.)

Given any KB, the first step towards applying maximum entropy is to use £LF’s lack of
expressivity and replace all proportion terms by atomic proportion terms. It is also useful
to make various other simplifications to KB that will help us in Section 4. We combine
these steps and require that KB be transformed into a special canonical form which we now
describe.

Definition 3.3: An atomic term t over P is a polynomial over terms of the form ||A(z)||,
where A is an atom over P. Such an atomic term ¢ is positive if every coefficient of the
polynomial ¢ is positive. I

Definition 3.4: A (closed) sentence x € LT is in canonical form if it is a disjunction of
conjunctions, where each conjunct is one of the following:

o t'=0,(t' >0At <te),or(t'>0A=(t <t'e;)), where t and ¢’ are atomic terms and
t' is positive,

e Jz A;(z) or -3z A;(z) some atom A;, or
o A;(c) for some atom A; and some constant c.

Furthermore, a disjunct cannot contain both A;(c¢) and A;(c) for ¢ # j as conjuncts, nor can
it contain both A;(c¢) and —3z A;(z). (Note that these last conditions are simply minimal
consistency requirements.) il

Theorem 3.5: Every formula in LT is equivalent to a formula in canonical form. More-
over, there is an effective procedure that, given a formula £ € LT, constructs an equivalent
formula & in canonical form.

The proof of this theorem, and of all theorems in this paper, can be found in the appendix.

We remark that the length of the formula E is typically exponential in the length of &.
Such a blowup seems inherent in any scheme defined in terms of atoms.

Theorem 3.5 is a generalization of Claim 5.7.1 in (Halpern, 1990). It, in turn, is a
generalization of a well-known result which says that any first-order formula with only unary
predicates is equivalent to one with only depth-one quantifier nesting. Roughly speaking,
this is because for a quantified formula such as 3z ¢’, subformulas talking about a variable
y other than z can be moved outside the scope of the quantifier. This is possible because
no literal subformula can talk about z and y together. Qur proof uses the same idea and
extends it to proportion statements. In particular, it shows that for any £ € LT there is an
equivalent f which has no nested quantifiers or nested proportions.

Notice, however, that such a result does not hold once we allow even a single binary
predicate in the language. For example, the formula Yy 3z R(z,y) clearly needs nested
quantification because R(z,y) talks about both z and y and so must remain within the
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scope of both quantifiers. With binary predicates, each additional depth of nesting really
does add expressive power. This shows that there can be no “canonical form” theorem quite
like Theorem 3.5 for richer languages. This issue is one of the main reasons why we restrict
the KB to a unary language in this paper. (See Section 5 for further discussion.)

Given any formula in canonical form we can immediately derive from it, in a syntactic
manner, a set of constraints on the possible proportions of atoms.

Definition 3.6: Let KB be in canonical form. We construct a formula I'(KB) in the lan-
guage of real closed fields (i.e., over the vocabulary {0, 1,4+, x}) as follows, where uy,...,ux
are fresh variables (distinct from the tolerance variables ¢;):

e we replace each occurrence of the formula A;(c) by u; > 0,

e we replace each occurrence of Jz A;(z) by u; > 0 and replace each occurrence of

=3z A;(z) by u; =0,
e we replace each occurrence of ||A;(z)|| by w;.. 1

Notice that I'( KB) has two types of variables: the new variables u; that we just introduced,
and the tolerance variables ¢;. In order to eliminate the dependence on the latter, we often
consider the formula I'( KB[7]) for some tolerance vector 7.

Definition 3.7: Given a formula 7 over the variables uy, ..., uk, let Sol[v] be the set of
vectors in AK = {7 € [0,1]% : YK u; = 1} satisfying v. Formally, if (as,...,ax) € AK,
then (aq,...,ax) € Sol[y] iff (IR,V) |= v, where V is a valuation such that V(u;) = a;. I

Definition 3.8: The solution space of KB given 7, denoted ST[KB], is defined to be the
closure of Sol[I'(KB[7])].° I

If KB is not in canonical form, we define I'( KB) and S7[KB] to be F(Kl\i’) and S7[KB],
respectively, where KB is the formula in canonical form equivalent to KB obtained by the
procedure appearing in the proof of Theorem 3.5.

Example 3.9: Let P be {P;, P,}, with the atoms ordered as in Example 3.2. Consider
KB =Va Pi(z) A3||Pi(z) A Py(z)||z <6 1.
The canonical formula KB equivalent to KB is:®
=3z Az(z) A -3z Ag(z) A3[JAr(2)||l — 1 < &

As expected, KB constrains both ||As(z)||z and ||A4(z)||z (i.e., uz and uq) to be 0. We also
see that ||Aq(z)||5 (i.e., u1) is (approximately) at most 1/3. Therefore:

SF[KB] = {(ul,...,U4) EA*uy <1/3475/3,u3=1uy = 0}. |

5. Recall that the closure of a set X C IR consists of all K-tuples that are the limit of a sequence of
K-tuples in X.

6. Note that here we are viewing KB as a formula in £7, under the translation defined earlier; we do this
throughout the paper without further comment.
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3.3 The concentration phenomenon

With every world W € W*, we can associate a particular tuple (uq,...,ux), where u; is
the fraction of the domain satisfying atom A; in W:

Definition 3.10: Given a world W € W*, we define 7(W) € A to be

([A1(@)lz, [[A2(@)llzs - - [[ AR (2)]])

where the values of the proportions are interpreted over W. We say that the vector =(W)
is the point associated with W. 1

We define the entropy of any model W to be the entropy of 7(W); that is, if 7(W) =
(u1,...,uK), then the entropy of Wis H(uy,...,ux). As we are about to show, the entropy
of @ turns out to be a very good asymptotic indicator of how many worlds W there are such
that 7(W) = 4. In fact, there are so many more worlds near points of high entropy that
we can ignore all the other points when computing degrees of belief. This concentration
phenomenon, as Jaynes (1982) has called it, is essentially the content of the next lemma
and justifies our interest in the maximum-entropy point(s) of S7[KB].

For any & C AK let #worldsy[S](KB) denote the number of worlds W of size N
such that (W,7) |= KB and such that 7(W) € S; for any @ € AX let #worldsy[d](KB)
abbreviate #worldsy[{@}](KB). Of course #worldsy[4](KB) is necessarily zero unless all
components of % are multiples of 1/N. However, if there are any models associated with %
at all, we can estimate their number quite accurately using the entropy function:

Lemma 3.11: There exist some function h : IN — IN and two strictly positive polynomial
functions f,g : IN — IR such that, for KB € LT and i € AX, if #worldsy[@](KB) # 0,
then

(R(N)/ f(N)eNT@D < worldsy[a](KB) < h(N)g(N)eMH @,

Of course, it follows from the lemma that tuples whose entropy is near maximum have
overwhelmingly more worlds associated with them than tuples whose entropy is further
from maximum. This is essentially the concentration phenomenon.

Lemma 3.11 is actually fairly easy to prove. The following simple example illustrates
the main idea.

Example 3.12: Suppose ® = {P} and KB = true. We have
AR = A% = {(wr,1—uy): 0<wu <1},

where the atoms are Ay = P and Ay = —P. For any N, partition the worlds in Wy
according to the point to which they correspond. For example, the graph in Figure 1 shows
us the partition of Wy. In general, consider some point @& = (r/N,(N —r)/N). The number
of worlds corresponding to @ is simply the number of ways of choosing the denotation of
P. We need to choose which r elements satisfly P; hence, the number of such worlds is
(];7 ) = % Figure 2 shows the qualitative behavior of this function for large values of

N. Tt is easy to see the asymptotic concentration around @ = (0.5,0.5).
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Figure 1: Partition of Wy according to 7(W).
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Figure 2: Concentration phenomenon for worlds of size N.

We can estimate the factorials appearing in this expression using Stirling’s approx-
imation, which asserts that the factorial m! is approximately m™ = ™™  So, after
substituting for the three factorials, we can estimate (];7) as e/VlogN—(rlogr+(N—r)log(N-r))

which reduces to eN# (@ The entropy term in the general case arises from the use of Stir-
ling’s approximation in an analogous way. (A more careful estimate is done in the proof of

Lemma 3.11 in the appendix.) 1
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Because of the exponential dependence on N times the entropy, the number of worlds
associated with points of high entropy swamp all other worlds as N grows large. This
concentration phenomenon, well-known in the field of statistical physics, forms the basis
for our main result in this section. It asserts that it is possible to compute degrees of
belief according to random worlds while ignoring all but those worlds whose entropy is near
maximum. The next theorem essentially formalizes this phenomenon.

Theorem 3.13: For all sufficiently small T, the following is true. Let Q be the points with
greatest entropy in ST[KB] and let O C IR® be any open set containing Q. Then for all
6 € L% and for im* € {lim sup, lim inf} we have

KB) = lim" #worldsN[fQ](H N KB)
N—oco  #worldsy[O](KB)

Aim” Priv(6

We remark that this is quite a difficult theorem. We have discussed why Lemma 3.11 lets
us look at models of KB whose entropy is (near) maximum. But the theorem tells us to look
at the maximum-entropy points of S7[KB], which we defined using a (so far unmotivated)
syntactic procedure applied to KB. It seems reasonable to expect that S?[KB] should tell
us something about models of KB. But making this connection precise, and in particular
showing how the maximum-entropy points of S7[KB] relate to models of KB with near-
maximum entropy, is difficult. However, we defer all details of the proof of that result to
the appendix.

In general, Theorem 3.13 may seem to be of limited usefulness: knowing that we only
have to look at worlds near the maximum-entropy point does not substantially reduce
the number of worlds we need to consider. (Indeed, the whole point of the concentration
phenomenon is that almost all worlds have high entropy.) Nevertheless, as the rest of this
paper shows, this result can be quite useful when combined with the following two results.
The first of these says that if all the worlds near the maximum-entropy points have a certain
property, then we should have degree of belief 1 that this property is true.

Corollary 3.14: For all sufficiently small 7, the following is true. Lel Q be the points with
grealest entropy in ST[KB], let O C IR be an open set containing Q, and let §[0] € L= be
an assertion that holds for every world W such that 7(W) € O. Then

Pr7_(A[O)|KB) = 1.

Example 3.15: For the knowledge base true in Example 3.12, it is easy to see that the
maximum-entropy point is (0.5,0.5). Fix some arbitrary € > 0. Clearly, there is some open
set O around this point such that the assertion 8 = ||P(z)||z € [0.5 — €,0.5 4 €] holds for
every world in . Therefore, we can conclude that

Pl (||P(2)||- € [0.5— €,0.5+ €] |[true) = 1. 1

As we show in (Bacchus et al., 1994), formulas # with degree of belief 1 can essentially
be treated just like other knowledge in KB. That is, the degrees of belief relative to KB
and KB A 6 will be identical (even if KB and KB A 6 are not logically equivalent). More
formally:
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Theorem 3.16: (Bacchus et al., 1994) If Pr7_ (8
then for any formula ¢:

KB) = 1 and lim* € {limsup, liminf},

Jim* Pri(¢|KB) = Jim* Pri(¢| KB A 8).
Proof: For completeness, we repeat the proof from (Bacchus et al., 1994) here. Basic
probabilistic reasoning shows that, for any N and 7:

Priy(¢|KB) = Priy(o|K B A 0) Priy(8|KB) + Priy(¢|K B A —8) Pri(—6

KB).

By assumption, PI'JFV(0|KB) tends to 1 when we take limits, so the first term tends to
Priy(¢|KB A ). On the other hand, Priy(—6|KB) has limit 0. Because Pri(¢| KB A —6) is
bounded, we conclude that the second product also tends to 0. The result follows. 1

As we shall see in the next section, the combination of Corollary 3.14 and Theorem 3.16
is quite powerful.

4. Computing degrees of belief

Although the concentration phenomenon is interesting, its application to actually computing
degrees of belief may not be obvious. Since we know that almost all worlds will have high
entropy, a direct application of Theorem 3.13 does not substantially reduce the number of
worlds we must consider. Yet, as we show in this section, the concentration theorem can
form the basis of a practical technique for computing degrees of belief in many cases. We
begin in Section 4.1 by presenting the intuitions underlying this technique. In Section 4.2
we build on these intuitions by presenting results for a restricted class of formulas: those
queries which are quantifier-free formulas over a unary language with a single constant
symbol. In spite of this restriction, many of the issues arising in the general case can be
seen here. Moreover, as we show in Section 4.3, this restricted sublanguage is rich enough
to allow us to embed two well-known propositional approaches that make use of maximum
entropy: Nilsson’s probabilistic logic (Nilsson, 1986) and the maximum-entropy extension
of e-semantics (Geffner & Pearl, 1990) due to Goldszmidt, Morris, Pearl (1990) (see also
(Goldszmidt, Morris, & Pearl, 1993)). In Section 4.4, we consider whether the results for
the restricted language can be extended. We show that they can, but several difficult and
subtle issues arise.

4.1 The general strategy

Although the random-worlds method is defined by counting worlds, we can sometimes find
more direct ways to calculate the degrees of belief it yields. In (Bacchus et al., 1994) we
present a number of such techniques, most of which apply only in very special cases. One
of the simplest and most intuitive is the following version of what philosophers have termed
direct inference (Reichenbach, 1949). Suppose that all we know about an individual ¢ is
some assertion ¢¥(c); in other words, KB has the form ¢(c) A KB’, and the constant ¢ does
not appear in KB’. Also suppose that KB, together with a particular tolerance 7, implies
that ||¢(z)|¥(z)||- is in some interval [a, 3]. It seems reasonable to argue that ¢ is should
be treated as a “typical” element satisfying ¢(z), because by assumption KB contains no
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information suggesting otherwise. Therefore, we might hope to use the statistics directly,
KB) € [a, B]. This is indeed the case, as the following theorem

and conclude that Pr7_(p(c)
shows.

Theorem 4.1: (Bacchus et al., 1994) Let KB be a knowledge base of the form ¥(¢) A KB’,
and assume that for all sufficiently small tolerance vectors T,

KB[T] [ [lp(@)]¢(2)]|z € [, B]-

If no constant in ¢ appears in KB', in o(%), or in ¢¥(Z), then Pry,(p(c)
degree of belief exists at all).

KB) € [a, §] (if the

This result, in combination with the results of the previous section, provides us with a
very powerful tool. Roughly speaking, we propose to use the following strategy: The basic
concentration phenomenon says that most worlds are very similar in a certain sense. As
shown in Corollary 3.14, we can use this to find some assertions that are “almost certainly”
true (i.e., with degree of belief 1) even if they are not logically implied by KB. Theorem 3.16
then tells us that we can treat these new assertions as if they are in fact known with
certainty. When these new assertions state statistical “knowledge”, they can vastly increase
our opportunities to apply direct inference. The following example illustrates this idea.

Example 4.2: Consider a very simple knowledge base over a vocabulary containing the
single unary predicate {P}:
KB = ([|P(2)]]z 21 0.3).

There are two atoms Ay and As over P, with A; = P and A3 = -~ P. The solution space of
this KB given 7 is clearly

STIKB] = {(u1,u3) € A? : uy <0347}

A straightforward computation shows that, for 7y < 0.2, this has a unique maximum-entropy
point 7= (0.3 4 71,0.7 — 7).

Now, consider the query P(c). For all € > 0, let f[¢] be the formula || P(z)||; € [(0.3 +
) — €,(0.3 + 7) + €]. This satisfies the condition of Corollary 3.14, so it follows that
Pr7_(6[€]| KB) = 1. Using Theorem 3.16, we know that for lim* € {lim inf, lim sup},

Jim* Pri(P(c)|KB) = Jim* Priy(P(c)

KB A fe]).

But now we can use direct inference. (Note that here, our “knowledge” about ¢ is vacuous,
i.e., “true(c)”.) We conclude that, if there is any limit at all, then necessarily

Pr7_(P(c)|KB A B[e]) € [(0.34 71) — ¢, (0.3 4 1) + €.
So, for all € > 0,
Prl (P(c)|KB) € (034 7) —¢,(0.3+7)+ €.

Since this is true for all ¢, the only possible value for Pr7 (P(c)|KB) is 0.3+ 1, which is the
value of u; (i.e., ||P(z)||z) at the maximum-entropy point. Note that it is also clear what

KB)is 0.3. 1

happens as 7 tends to 0: Pro,(P(c)
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This example demonstrates the main steps of one possible strategy for computing degrees
of belief. First the maximum-entropy points of the space S?[B'B] are computed as a function
of 7. Then, these are used to compute Prio(cp|KB), assuming the limit exists (if not, the
lim sup and liminf of Pry(¢|KB) are computed instead). Finally, we compute the limit of
this probability as 7 goes to zero.

Unfortunately, this strategy has a serious potential problem. We clearly cannot compute
Prio(go 'B) separately for each of the infinitely many tolerance vectors 7 and then take the
limit as 7 goes to 0. We might hope to compute this probability as an explicit function of
7, and then compute the limit. For instance, in Example 4.2 Pr’_(P(¢)|KB) was found to
be 0.3 + 71, and so it is easy to see what happens as 71 — 0. But there is no reason to
believe that Pr;(ﬂKB) is, in general, an easily characterizable function of 7. If it is not,
then computing the limit as 7 goes to 0 can be difficult or impossible. We would like to
find a way to avoid this explicit limiting process altogether. It turns out that this is indeed
possible in some circumstances. The main requirement is that the maximum-entropy points
of S7[KB] converge to the maximum-entropy points of S°[KB]. (For future reference, notice

that S°[KB] is the closure of the solution space of the constraints obtained from KB by
replacing all occurrences of ~; by = and all occurrences of <; by <.) In many such cases,
we can compute Pro.(¢|KB) directly in terms of the maximum-entropy points of Sﬁ[KB],
without taking limits at all.

As the following example shows, this type of continuity does not hold in general: the
maximum-entropy points of S7[KB] do not necessarily converge to those of SO[I&B]

Example 4.3: Consider the knowledge base
= ([I1P(@)llz #1 0.3 V[|P(2)]]z #2 0.4) A [ P(2)]] %3 0.4 .

It is easy to see that SO[BB] is just {(0.3,0.7)}: The point (0.4,0.6) is disallowed by the
second conjunct. Now, consider S7[KB] for ¥ > 0. If 7, < 73, then S7[KB] indeed does
not contain points where wu; is near 0.4; the maximum-entropy point of this space is easily
seen to be 0.3 + 7. However, if 79 > 73 then there will be points in S?[KB] where wuq is
around 0.4; for instance, those where 0.4 + 73 < u; < 0.4 + 7. Since these points have
a higher entropy than the points in the vicinity of 0.3, the former will dominate. Thus,
the set of maximum-entropy points of 5 ﬂKB] does not converge to a single well-defined
set. What it converges to (if anything) depends on how 7 goes to 0. This nonconvergence
has consequences for degrees of belief. It is not hard to show Pr’_(P(c)|KB) can be either
0.3 4 7 or 0.4+ 75, depending on the precise relationship between 7, 75, and 3. It follows
that Pro(P(c)|KB) does not exist. I

We say that a degree of belief Pr.,(p|KB) is not robust if the behavior of P17, (¢| KB) (or of
lim inf Pri,(¢| K B) and lim sup Pri (| K B)) as 7 goes to 0 depends on how 7 goes to 0. In
other worlds, nonrobustness describes situations when Pr.,(¢|KB) does not exist because
of sensitivity to the exact choice of tolerances. We shall see a number of other examples of
nonrobustness in later sections.

It might seem that the notion of robustness is an artifact of our approach. In particular,
it seems to depend on the fact that our language has the expressive power to say that the two
tolerances represent a different degree of approximation, simply by using different subscripts
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(~23 vs. &3 in the example). In an approach to representing approximate equality that does
not make these distinctions, we are bound to get the answer 0.3 in the example above, since
then ||P(z)||z %3 0.4 really would be the negation of ||[P(z)||» ~2 0.4. We would argue
that the answer 0.3 is not as reasonable as it might at first seem. Suppose one of the two
different instances of 0.4 in the previous example had been slightly different; for example,
suppose we had used 0.399 rather than 0.4 in the first of them. In this case, the second
conjunct is essentially vacuous, and can be ignored. The maximum-entropy point in S°[KB]
is now 0.399, and we indeed derive a degree of belief of 0.399 in P(c¢). Thus, arbitrarily small
changes to the numbers in the original knowledge base can cause large changes in our degrees
of belief. But these numbers are almost always the result of approximate observations; this
is reflected by our decision to use approximate equality rather than equality when referring
to them. It does not seem reasonable to base actions on a degree of belief that can change
so drastically in the face of small changes in the measurement of data. Note that, if we
know that the two instances of 0.4 do, in fact, denote exactly the same number, we can
represent this by using the same approximate equality connective in both disjuncts. In this
case, it is easy to see that we do get the answer 0.3.

A close look at the example shows that the nonrobustness arises because of the negated
proportion expression ||P(z)||; %3 0.4. Indeed, we can show that if we start with a KB
in canonical form that does not contain negated proportion expressions then, in a precise
sense, the set of maximum-entropy points of §7[KB] necessarily converges to the set of
maximum-entropy points of § 6[KB]. An argument can be made that we should eliminate
negated proportion expressions from the language altogether. It is one thing to argue
that sometimes we have statistical values whose accuracy we are unsure about, so that we
want to make logical assertions less stringent than exact numerical equality. It is harder
to think of cases in which the opposite is true, and all we know is that some statistic is
“not even approximately” equal to some value. However, we do not eliminate negated
proportion expressions from the language, since without them we would not be able to
prove an analogue to Theorem 3.5. (They arise when we try to flatten nested proportion
expressions, for example.) Instead, we have identified a weaker condition that is sufficient
to prevent problems such as that seen in Example 4.3. Essential posilivity simply tests that
negations are not interacting with the maximum-entropy computation in a harmful way.

Definition 4.4: Let FSG(K’B[ﬁ]) be the result of replacing each strict inequality in T'( KB[0])
with its weakened version. More formally, we replace each subformula of the form ¢ < 0
with ¢ < 0, and each subformula of the form ¢ > 0 with ¢ > 0. (Recall that these are the
only constraints possible in I'( KB[0]), since all tolerance variables ¢; are assigned 0.) Let
Sgﬁ[KB] be Sol[FSa(B’B[ﬁ])], where we use X to denote the closure of X. We say that
KB is essentially positive if the sets 556[1&'3] and Sﬁ[KB] have the same maximum-entropy
points. 1

Example 4.5: Consider again the knowledge base KB from Example 4.3. The constraint
formula I'( KB[0]) is (after simplification):

(u1 =03Vu = 04) A (u1 <04Vu > 04)
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—.

Its “weakened” version is FSG(KB[O]):
(u1 = 0.3V uy = 0.4) A (ug < 0.4V uy > 0.4),

which is clearly equivalent to w; = 0.3V u; = 0.4. Thus, Sﬁ[KB] = {(uy,uz) € A?
u; < 0.3} whereas SSU[KB] = SY[KB]U {(0.4,0.6)}. Since the two spaces have different
maximum-entropy points, the knowledge base KB is not essentially positive. Il

As the following result shows, essential positivity suffices to guarantee that the maximum-
entropy points of §7[KB] converge to those of S°[KB].

Proposition 4.6: Assume thal KB is essentially positive and let Q be the set of mazimum-
entropy points of S°[KB] (and thus also of SS°[KB]). Then for all ¢ > 0 and all sufficiently
small tolerance vectors T (where “sufficiently small” may depend on €), every mazimum-
entropy point of SF[KB] ts within € of some maximum-entropy point in Q.

4.2 Queries for a single individual

We now show how to compute Pro,(¢|KB) for a certain restricted class of first-order for-
mulas ¢ and knowledge bases KB. The most significantly restriction is that the query ¢
should be a quantifier-free (first-order) sentence over the vocabulary P U {c}; thus, it is a
query about a single individual, ¢. While this class is rather restrictive, it suffices to express
many real-life examples. Moreover, it is significantly richer than the language considered
by Paris and Vencovska (1989).

The following definition helps define the class of interest.

Definition 4.7: A formula is essentially propositional if it is a quantifier-free and proportion-
free formula in the language L¥({P,..., Px}) (so that, in particular, it has no constant
symbols) and has only one free variable z. 1

We say that ¢(c) is a simple query for KB if:
e (z) is essentially propositional,

e KB is of the form ¢(c) A KB’, where ¢)(z) is essentially propositional and KB’ does
not mention c.

Thus, just as in Theorem 4.1, we suppose that ¢(¢) summarizes all that is known about
c. In this section, we focus on computing the degree of belief Pr.,(¢(c)|KB) for a formula
¢(c) which is a simple query for KB.

Note that an essentially propositional formula £(z) is equivalent to a disjunction of
atoms. For example, over the vocabulary {P;, P}, the formula Pi(z)V Py(z) is equivalent
to Ay(z)V Ay(x)V As(z) (where the atoms are ordered as in Example 3.2). For an essentially
propositional formula &, we take A(£) be the (unique) set of atoms such that £ is equivalent
to V4 eaqe Aile).

If we view a tuple & € AKX as a probability assignment to the atoms, we can extend @ to
a probability assignment on all essentially propositional formulas using this identification
of an essentially propositional formula with a set of atoms:
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Definition 4.8: Let £ be an essentially propositional formula. We define a function Fi :
AR — IR as follows:

For essentially propositional formulas (z) and 9(z) we define the (partial) function Fj,y :
AKX — IR to be:

Note that this function is undefined when Fj, (@) = 0. 11

As the following result shows, if ¢ is a simple query for KB (of the form ¢(¢)A KB'), then
all that matters in computing Pt (p|KB) is Fj, (%) for tuples @ of maximum entropy.
Thus, in a sense, we are only using KB’ to determine the space over which we maximize
entropy. Having defined this space, we can focus on ¥ and ¢ in determining the degree of

belief.

Theorem 4.9: Suppose p(c) is a simple query for KB. For all T sufficiently small, if Q
is the sel of mazimum-entropy points in ST[KB] and Fry (%) > 0 for all ¥ € Q, then for
lim* € {lim sup, liminf} we have

lim* Pri, (¢(c)

N—co

KB) € | il Fojy(7), su Foyy(7)
The following is an immediate but important corollary of this theorem. It asserts that, if

the space S7[KB] has a unique maximum-entropy point, then its value uniquely determines
the probability Prl (¢(c)|KB).

Corollary 4.10: Suppose ¢(c) is a simple query for KB. For all T sufficiently small, if ¥
is the unique mazimum-entropy point in ST[KB] and Fiy)(7) > 0, then

Prl, (@(e)| KB) = Fgpy (7).

We are interested in Pro,(¢(c)|KB), which means that we are interested in the limit of
Prl (¢(c)|KB) as T — 0. Suppose KB is essentially positive. Then, by the results of the
previous section and the continuity of Fjy), it is enough to look directly at the maximum-

entropy points of Sﬁ[KB]. More formally, by combining Theorem 4.9 with Proposition 4.6,
we can show:

Theorem 4.11: Suppose ¢(c) is a simple query for KB. If the space Sﬁ[KB] has a unique
mazimum-entropy point v, KB is essentially positive, and Fy)(¥) > 0, then

Prao (o(c)

[(B) = F[(PW](?_;)

We believe that this theorem will turn out to cover a lot of cases that occur in practice.
As our examples and the discussion in the next section show, we often do get simple queries
and knowledge bases that are essentially positive. Concerning the assumption of a unique
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maximum-entropy point, note that the entropy function is convex and so this assumption
is automatically satisfied if S°[KB] is a conver space. Recall that a space S is convex if
for all @, € S, and all @ € [0, 1], it is also the case that aii + (1 — )@’ € 5. The space
S 6[KB] is surely convex if it is defined using a conjunction of linear constraints. While it
is clearly possible to create knowledge bases where S 6[[(B] has multiple maximum-entropy
points (for example, using disjunctions), we expect that such knowledge bases arise rarely in
practical applications. Perhaps the most restrictive assumption made by this theorem is the
seemingly innocuous requirement that FM(?T) > 0. This assumption is obviously necessary
for the theorem to hold; without it, the function Fj,y) is simply not defined. Unfortunately,
we show in Section 4.4 that this requirement is, in fact, a severe one; in particular, it prevents
the theorem from being applied to most examples derived from default reasoning, using our
statistical interpretation of defaults (Bacchus et al., 1994).
We close this subsection with an example of the theorem in action.

Example 4.12: Let the language consist of P = { Hepatilis, Jaundice, Blue Fyed} and the
constant Eric. There are eight atoms in this language. We use Apspsp; to denote the atom
P{(z)APy(z) A Pi(z), where P{ is either H (denoting Hepatitis) or H (denoting — Hepatitis),
P} is J or J (for Jaundice and —Jaundice, respectively), and P4 is B or B (for BlueEyed
and — BlueFyed, respectively).

Consider the knowledge base KBj.,:

Va (Hepatitis(x) = Jaundice(x)) A
|| Hepatitis(z)|Jaundice(z)||; ~1 0.8 A
|| Blue Eyed(z)|| =2 0.25 A

Jaundice( Eric).
If we order the atoms as AgyB, Ay ;545784475 A7 8954578 - 47575, then it
is not hard to show that I'(KB},,) is:

Uus =0 A
(7} =0 A
(uy 4 ug) < (0.8+¢e1)(ur +ug +us +ug) A
(u1 + ug) > (0.8 —¢e1)(ur 4+ ug +us +ug) A
(w1 +us +us+ur) < (0254 ¢3) A
(ur + us +us +ur) > (0.25—¢e3) A
(w1 + ug +us +ug) > 0.

To find the space Sﬁ[KBhep] we simply set ¢ = €3 = 0. Then it is quite straightforward to
find the maximum-entropy point in this space, which, taking v = 2, is:

1 3 0.0 1 3 v 3y )
547754+ T4(5+7) 454+7)45+7) 45+7)/

(Ulv U2, Us, V4, Us, Vg, U7, US) = (

Using @, we can compute various asymptotic probabilities very easily. For example,

Proo(Hepatitz.S(EriCNI(Bhep) = F[HepatitisUaundice](ﬁ)
v1 + v
v+ v2 + U5 + vs
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1 4 3
_ 5+ + 5+ =0.8
- 1 3 -

55+ 56t aGE) 168
as expected. Similarly, we can show that Pr. (BlueEyed(Eric)|KB}.,) = 0.25 and that
Pro(BlueEyed( Eric) N Hepatitis( Eric)| KBje,) = 0.2. Note that the first two answers also
follow from the direct inference principle (Theorem 4.1), which happens to be applicable
in this case. The third answer shows that BlueFyed and Hepalilis are being treated as
independent. It is a special case of a more general independence phenomenon that applies
to random worlds; see (Bacchus et al., 1994, Theorem 5.27). 1

4.3 Probabilistic propositional logic

In this section we consider two variants of probabilistic propositional logic. As the following
discussion shows, both can easily be captured by our framework. The embedding we discuss
uses simple queries throughout, allowing us to appeal to the results of the previous section.

Nilsson (1986) considered the problem of what could be inferred about the proba-
bility of certain propositions given some constraints. For example, we might know that
Pr(fly|bird) > 0.7 and that Pr(yellow) < 0.2, and be interested in Pr(fly|bird A yellow).
Roughly speaking, Nilsson suggests computing this by considering all probability distri-
butions consistent with the constraints, and then computing the range of values given to
Pr(fly|bird A yellow) by these distributions. Formally, suppose our language consists of &
primitive proposition, pi,..., pr. Consider the set Q of K = 2* truth assignments these
propositions. We give semantics to probabilistic statements over this language in terms of
a probability distribution g over the set € (see (Fagin, Halpern, & Megiddo, 1990) for de-
tails). Since each truth assignment w €  determines the truth value of every propositional
formula §, we can determine the probability of every such formula:

Pr,(8) = 3 ulw).

wEp

Clearly, we can determine whether a probability distribution p satisfies a set A of proba-
bilistic constraints. The standard notion of probabilistic propositional inference would say
that A |= Pr(8) € [A1, Ag] if Pr, () is within the range [Aq, Ag] for every distribution g that
satisfies the constraints in A.

Unfortunately, while this is a very natural definition, the constraints that one can derive
from it are typically quite weak. For that reason, Nilsson suggested strengthening this no-
tion of inference by applying the principle of maximum entropy: rather than considering all
distributions p satisfying A, we consider only the distribution(s) p* that have the greatest
entropy among those satisfying the constraints. As we now show, one implication of our
results is that the random-worlds method provides a principled motivation for this introduc-
tion of maximum entropy to probabilistic propositional reasoning. In fact, the connection
between probabilistic propositional reasoning and random worlds should now be fairly clear:

e The primitive propositions p1, ..., pr correspond to the unary predicates Pi,..., P.

e A propositional formula 3 over pq, ..., pi corresponds uniquely to an essentially propo-
sitional formula £g as follows: we replace each occurrence of the propositional symbol
p; with P;(z).
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e The set A of probabilistic constraints corresponds to a knowledge base KB'[A]—a
constant-free knowledge base containing only proportion expressions. The correspon-
dence is as follows:

— A probability expression of the form Pr(f) appearing in A is replaced by the
proportion expression ||{3()||;. Similarly, a conditional probability expression

Pr(B|8') is replaced by ||£s()|€g(2)]| -

— Each comparison connective = is replaced by =; for some 7, and each < with <;.
(The particular choices for the approximate equality connectives do not matter
in this context.)

The other elements that can appear in a proportion formula (such as rational num-
bers and arithmetical connectives) remain unchanged. For example, the formula
Pr(fly|bird) > 0.7 would correspond to the proportion formula ||Fly(z)|Bird(z)||: >
0.7.

o There is a one-to-one correspondence between truth assignments and atoms: the truth
assignment w corresponds to the atom A = P/ A...A P} where P/ is P; if w(p;) = true
and —P; otherwise. Let wy,...,wg be the truth assignments corresponding to the
atoms Aq,..., Ax, respectively.

e There is a one-to-one correspondence between probability distributions over the set
Q of truth assignments and points in AX. For each point %@ € AKX let g denote the
corresponding probability distribution over 0, where pz(w;) = u;.

Remark 4.13: Clearly, w; |= 8 iff A; € A(£3). Therefore, for all %, we have
Fleg (@) = Pryy (B). B

The following result demonstrates the tight connection between probabilistic proposi-
tional reasoning using maximum entropy and random worlds.

Theorem 4.14: Let A be a conjunction of constraints of the form Pr(B|3') = X or
Pr(B|p") € [A1,A2]. There is a unique probability distribution p* of maximum entropy
salisfying A. Moreover, for all 3 and ', if Pr,«(3") > 0, then

Proo(€5(0)]€(c) A KBIA]) = P, (B]3).

Theorem 4.14 is an easy corollary of Theorem 4.11. To check that the preconditions
of the latter theorem apply, note that the constraints in A are linear, and so the space
SY[KB'[A]] has a unique maximum-entropy point 7. In fact, it is easy to show that ugz is
the (unique) maximum-entropy probability distribution over  satisfying the constraints
A. In addition, because there are no negated proportion expressions in A, the formula
KB = £g:(c) A KB'[A] is certainly essentially positive.

Most applications of probabilistic propositional reasoning consider simple constraints
of the form used in the theorem, and so such applications can be viewed as very special
cases of the random-words approach. In fact, this theorem is essentially a very old one.
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The connection between counting “worlds” and the entropy maximum in a space defined
as a conjunction of linear constraints is very well-known. It has been extensively studied
in the field of thermodynamics, starting with the 19th century work of Maxwell and Gibbs.
Recently, this type of reasoning has been applied to problems in an Al context by Paris and
Vencovska (1989) and Shastri (1989). The work of Paris and Vencovska is particularly rele-
vant because they also realize the necessity of adopting a formal notion of “approximation”,
although the precise details of their approach differ from ours.

To the best of our knowledge, most of the work on probabilistic propositional reason-
ing and all formal presentations of the entropy/worlds connection (in particular, those of
(Paris & Vencovska, 1989; Shastri, 1989)) have limited themselves to conjunctions of lin-
ear constraints. Our more general language gives us a great deal of additional expressive
power. For example, it is quite reasonable to want the ability to express that properties
are (approximately) statistically independent. For example, we may wish to assert that
Bird(z) and Yellow(z) are independent properties by saying ||Bird(z) A Yellow(z)||, ~
|| Bird(z)||; - || Yellow(z)||z. Clearly, such constraints are not linear. Nevertheless, our The-
orem 4.11 covers such cases and much more.

A version of probabilistic propositional reasoning has also been used to provide proba-
bilistic semantics for default reasoning (Pearl, 1989). Here also, the connection to random
worlds is of interest. In particular, it follows from Corollary 4.10 that the recent work of
Goldszmidt, Morris, and Pearl (1990) can be embedded in the random-worlds framework.
In the rest of this subsection, we explain their approach and the embedding.

Consider a language consisting of propositional formulas over the propositional variables
P1,- .., Pk, and default rules of the form B — C (read “B’s are typically C’s”), where B
and C' are propositional formulas. A distribution g is said to e-satisfy a default rule B — C'
if f(C'|B) > 1 — €. In addition to default rules, the framework also permits the use of
material implication in a rule, as in B = (. A distribution g is said to satisfy such a rule
if u(C|B) = 1. A parameterized probability distribution (PPD) is a collection {g.}eso of
probability distributions over €, parameterized by €. A PPD {u.}.>0 e-satisfies a set R of
rules if for every e, u. e-satisfies every default rule r € R and satisfies every non-default
rule r € R. A set R of default rules e-entails B — C' if for every PPD that e-satisfies R,
lim, o ue(C|B) = 1.

As shown in (Geffner & Pearl, 1990), e-entailment possesses a number of reasonable
properties typically associated with default reasoning, including a preference for more spe-
cific information. However, there are a number of desirable properties that it does not have.
Among other things, irrelevant information is not ignored. (See (Bacchus et al., 1994) for
an extensive discussion of this issue.)

To obtain additional desirable properties, e-semantics is extended in (Goldszmidt et al.,
1990) by an application of the principle of maximum entropy. Instead of considering all
possible PPD’s, as above, we consider only the PPD {,LL;R}OO such that, for each e,
¢z has the maximum entropy among distributions that e-satisfy all the rules in K. (See
(Goldszmidt et al., 1990) for precise definitions and technical details.) Note that, since the
constraints used to define p7 5 are all linear, there is indeed a unique such point of maximum
entropy. A rule B — C is an MFE-plausible consequence of R if lim._,ou’ (C|B) = 1.
The notion of ME-plausible consequence is analyzed in detail in (Goldszmidf et al., 1990),
where it is shown to inherit all the nice properties of e-entailment (such as the preference
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for more specific information), while successfully ignoring irrelevant information. Equally
importantly, algorithms are provided for computing the ME-plausible consequences of a set
of rules in certain cases.

Our maximum-entropy results can be used to show that the approach of (Goldszmidt
et al., 1990) can be embedded in our framework in a straightforward manner. We simply
translate a default rule r of the form B — C into a first-order default rule

07“ —def ch(x)|5B($)Hz ~1 17

as in our earlier translation of Nilsson’s approach. Note that the formulas that arise under
this translation all use the same approximate equality connective ;. The reason is that
the approach of (Goldszmidt et al., 1990) uses the same ¢ for all default rules. We can
similarly translate a (non-default) rule r of the form B = C into a first-order constraint
using universal quantification:

07“ —def Va (fB(l‘) = €C($))
Under this translation, we can prove the following theorem.

Theorem 4.15: Let ¢ be a constant symbol. Using the translation described above, for a
sel R of defeasible rules, B — C' is an MFE-plausible consequence of R iff

fB(C)A /\ OT) =1.

reR

Pro ({C(c)

In particular, this theorem implies that all the computational techniques and results
described in (Goldszmidt et al., 1990) carry over to this special case of the random-worlds
method. It also shows that random-world provides a principled justification for the approach
(Goldszmidt et al., 1990) present (one which is quite different from the justification given
in (Goldszmidt et al., 1990) itself).

4.4 Beyond simple queries

In Section 4.2 we restricted attention to simple queries. Our main result, Theorem 4.11,
needed other assumptions as well: essential positivity, the existence of a unique maximum-
entropy point @, and the requirement that Fjy (%) > 0. We believe that this theorem is useful
in spite of its limitations, as demonstrated by the discussion in Section 4.3. Nevertheless,
this result allows us to take advantage of only a small fragment of our rich language. Can
we find a more general theorem? After all, the basic concentration result (Theorem 3.13)
holds with essentially no restrictions. In this section we show that it is indeed possible to
extend Theorem 4.11 significantly. However, there are serious limitations and subtleties.
We illustrate these problems by means of examples, and then state an extended result.
Our attempt to address these problems (so far as is possible) leads to a rather com-
plicated final result. In fact, the problems we discuss are as interesting and important as
the theorem we actually give: they help us understand more of the limits of maximum
entropy. Of course, every issue we discuss in this subsection is relatively minor compared
to maximum entropy’s main (apparent) restriction, which concerns the use of non-unary
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predicates. For the reader who is less concerned about the other, lesser, issues we remark
that it is possible to skip directly to Section 5.

We first consider the restrictions we placed on the KB, and show the difficulties that
arise if we drop them. We start with the restriction to a single maximum-entropy point. As
the concentration theorem (Theorem 3.13) shows, the entropy of almost every world is near
maximum. But it does not follow that all the maximum-entropy points are surrounded by
similar numbers of worlds. Thus, in the presence of more than one maximum-entropy point,
we face the problem of finding the relative importance, or weighting, of each maximum-
entropy point. As the following example illustrates, this weighting is often sensitive to the
tolerance values. For this reason, non-unique entropy maxima often lead to nonrobustness.

Example 4.16: Suppose ® = {P, ¢}, and consider the knowledge base
KB = ([[P(z)]l: 21 0.3) V (|P(2)[|lz =2 0.7).
Assume we want to compute Pr.,(P(c)|KB). In this case, ST[KB] is
{(uy,uz) € A* : w3 <0347 oruy > 0.7 -7y},

and Sﬁ[KB] is
{(uy,uz) € A* : uy < 0.3 or ug > 0.7}.

Note that Sﬁ[KB] has two maximum-entropy points: (0.3,0.7) and (0.7,0.3).

Now consider the maximum-entropy points of S?[KB] for 7 > 0. It is not hard to show
that if 7 > 7, then this space has a unique maximum-entropy point, (0.3 4+ 7,0.7 — 7).
In this case, Prl_(P(c)|KB) = 0.3 + 1. On the other hand, if 7, < 73, then the unique
maximum-entropy point of this space is (0.7 4 72,0.3 — 73), in which case P17 (P(c)|KB) =
0.7+ 7. If 7y = 7y, then the space S7[KB] has two maximum-entropy points, and by
symmetry we obtain that Pr;(P(c) KB) = 0.5. So, by appropriately choosing a sequence
of tolerance vectors converging to 0, we can make the asymptotic value of this fraction
either 0.3, 0.5, or 0.7. Thus Pr.(P(c)|KB) does not exist.

It is not disjunctions per se that cause the problem here: if we consider instead the
database KB' = (||P(2)||z =1 0.3) V (||P(2)||z =2 0.6), then there is no difficulty. There is
a unique maximum-entropy point of SG[KB']—(O.G,O.AL)—and the asymptotic probability
Pro.(P(¢)|KB') = 0.6, as we would want.” I

In light of this example (and many similar ones we can construct), we continue to assume
that there is a single maximum-entropy point. As we argued earlier, we expect this to be
true in typical practical applications, so the restriction does not seem very serious.

We now turn our attention to the requirement that Fj;(%) > 0. As we have already
observed, this seems to be an obvious restriction to make, considering that the function
F[@M(??) is not defined otherwise. However, this difficulty is actually a manifestation of a
much deeper problem. As the following example shows, any approach that just uses the
maximum-entropy point of S°[KB] will necessarily fail in some cases where F; () = 0.

7. We remark that it is also possible to construct examples of multiple maximum-entropy points by using
quadratic constraints rather than disjunction.
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Example 4.17: Consider the knowledge base
KB = (|| Penguin(z)||z =1 0) A (|| Fly(z)| Penguin(z)||» =2 0) A Penguin( Tweety).

Suppose we want to compute Pro,( Fly( Tweety)| Penguin( Tweety)). We can easily conclude
from Theorem 4.1 that this degree of belief is 0, as we would expect. However, we cannot
reach this conclusion using Theorem 4.11 or anything like it. For consider the maximum-
entropy point of SY[KB]. The coordinates vy, corresponding to Fly A Penguin, and vy,
corresponding to = Fly A Penguin, are both 0. Hence, Fip.g4i,](¥) = 0, so that Theorem 4.11
does not apply.

But, as we said, the problem is more fundamental. The information we need (that the
proportion of flying penguins is zero) is simply not present if all we know is the maximum-
entropy point ¥. We can obtain the same space Sﬁ[KB] (and thus the same maximum-
entropy point) from quite different knowledge bases. In particular, consider KB’ which
simply asserts that (||Penguin(z)||; ~1 0) A Penguin( Tweety). This new knowledge base
tells us nothing whatsoever about the fraction of flying penguins, and in fact it is easy to
show that Pro, (Fly( Tweety)| KB') = 0.5. But of course it is impossible to distinguish this
case from the previous one just by looking at ¥. It follows that no result in the spirit of
Theorem 4.11 (which just uses the value of ¥) can be comprehensive. 1

The example shows that the philosophy behind Theorem 4.11 cannot be extended very
far, if at all: it is inevitable that there will be problems when Fj; (%) = 0. But it is natural to
ask whether there is a different approach altogether in which this restriction can be relaxed.
That is, is it possible to construct a technique for computing degrees of belief in those cases
where F; = 07 As we mentioned in Section 4.1, we might hope to do this by computing

Prio(g.o KB) as a function of 7 and then taking the limit as 7 goes to 0. In general, this
seems very hard. But, interestingly, the computational technique of (Goldszmidt et al.,
1990) does use this type of parametric analysis, demonstrating that things might not be
so bad for various restricted cases. Another source of hope is to remember that maximum
entropy is, for us, merely one tool for computing random-worlds degrees of belief. There
may be other approaches that bypass entropy entirely. In particular, some of the theorems
we give in (Bacchus et al., 1994) can be seen as doing this; these theorems will often apply
even if Fiy = 0.

Another assumption made throughout Section 4.2 is that the knowledge base has a spe-
cial form, namely ¥ (c) A KB', where 1 is essentially propositional and KB’ does not contain
any occurrences of ¢. The more general theorem we state later relaxes this somewhat, as
follows.

Definition 4.18: A knowledge base KB is said to be separable with respect to query ¢ if
it has the form ¢ A KB’, where ¢ contains neither quantifiers nor proportions, and KB’
contains none of the constant symbols appearing in ¢ or in .5 I

It should be clear that if a query ¢(c) is simple for KB (as assumed in previous subsection),
then the separability condition is satisfied.

8. Clearly, since our approach is semantic, it also suffices if the knowledge base is equivalent to one of this
form.
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As the following example shows, if we do not assume separability, we can easily run into
nonrobust behavior:

Example 4.19: Consider the following knowledge base KB over the vocabulary ® = {P, c¢}:
(||1P(2)|]z =1 0.3A P(c)) V (|| P(z)]|z =2 0.3 A = P(c)).

KB is not separable with respect to the query P(c). The space Sﬁ[KB] consists of a
unique point (0.3,0.7), which is also the maximum-entropy point. Both disjuncts of KB
are consistent with the maximum-entropy point, so we might expect that the presence
of the conjuncts P(¢) and —P(c) in the disjuncts would not affect the degree of belief.
That is, if it were possible to ignore or discount the role of the tolerances, we would
expect Pro(P(c)|KB) = 0.3. However, this is not the case. Consider the behavior of
Pr?_(P(c)|KB) for 7 > 0. If 7, > 75, then the maximum-entropy point of ST[KB] is
(0.3 4 7,0.7 — 71). Now, consider some € > 0 sufficiently small so that 75 + ¢ < 7. By
Corollary 3.14, we deduce that Pr7_((||P(z)||. > 0.3 4 )| KB) = 1. Therefore, by The-
orem 3.16, P17 (P(¢)|KB) = P17 (P(c)| KB A (||P(2)||z > 0.3 + 72)) (assuming the limit
exists). But since the newly added expression is inconsistent with the second disjunct, we
obtain that Prl (P(c)|KB) = Prl(P(c)| P(¢) A (||P(2)||, =1 0.3)) = 1, and not 0.3. On
the other hand, if 7y < 75, we get the symmetric behavior, where Prio(P(c)|B’B) = 0. Only
if 1 = 75 do we get the expected value of 0.3 for Pr;(P(c)|KB). Clearly, by appropriately
choosing a sequence of tolerance vectors converging to 0, we can make the asymptotic value
of this fraction any of 0, 0.3, or 1, or not exist at all. Again, Pr.(P(c)|KB) is not robust. 1

We now turn our attention to restrictions on the query. In Section 4.2, we restricted
to queries of the form ¢(c), where ¢(z) is essentially propositional. Although we intend to
ease this restriction, we do not intend to allow queries that involve statistical information.
The following example illustrates the difficulties.

Example 4.20: Consider the knowledge base KB = ||P(z)||. =1 0.3 and the query ¢ =
||P(2)||» /2 0.3. It is easy to see that the unique maximum-entropy point of §7[KB]is (0.3+
71,0.7 — 71). First suppose 75 < 7. From Corollary 3.14, it follows that Pr7_((||P(z)||» >
0.3 4 72)| KB) = 1. Therefore, by Theorem 3.16, P17 (| KB) = P17 (| KB A (|| P(2)|]» >
0.3+ 7)) (assuming the limit exists). The latter expression is clearly 0. On the other hand,
if 7 < 7y, then KB[7] |= ¢[7], so that Pr’_(p|KB) = 1. Thus, the limiting behavior of
PrZ (¢|KB) depends on how 7 goes to 0, so that Pr, (| KB) is nonrobust. I

The real problem here is the semantics of proportion expressions in queries. While the
utility of the & connective in expressing statistical information in the knowledge base should
be fairly uncontroversial, its role in conclusions we might draw, such as ¢ in Example 4.20, is
much less clear. The formal semantics we have defined requires that we consider all possible
tolerances for a proportion expression in ¢, so it is not surprising that nonrobustness is the
usual result. One might argue that the tolerances in queries should be allowed to depend
more closely on tolerances of expressions in the knowledge base. It is possible to formalize
this intuition, as is done in (Koller & Halpern, 1992), to give an alternative semantics for
dealing with proportion expressions in queries that often gives more reasonable behavior.
Considerations of this alternative semantics would lead us too far afield here; rather, we
focus for the rest of the section on first-order queries.
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In fact, our goal is to allow arbitrary first-order queries, even those that involve predi-
cates of arbitrary arity and equality (although we still need to restrict the knowledge base
to the unary language L£F). However, as the following example shows, quantifiers too can
cause problems.

Example 4.21: Let & = {P,c} and consider KBy = Va ~P(z), KB = ||P(z)||- =1 0, and
¢ = Jz P(z). It is easy to see that Sa[KBl] = SG[I(BQ] = {(0,1)}, and therefore the unique
maximum-entropy point in both is ¥ = (0,1). However, Pro,(¢|KB1) is clearly 0, whereas
Proo(@|KB3) is actually 1. To see the latter fact, observe that the vast majority of models
of KB, around ¥ actually satisfy 3z P(z). There is actually only a single world associated
with (0,1) at which 3z P(z) is false. This example is related to Example 4.17, because it

illustrates another case in which § 6[[(3] cannot suffice to determine degrees of belief. I

In the case of the knowledge base KB;, the maximum-entropy point (0,1) is quite
misleading about the nature of nearby worlds. We must avoid this sort of “discontinuity”
when finding the degree of belief of a formula that involves first-order quantifiers. The
notion of stability defined below is intended to deal with this problem. To define it, we first
need the following notion of a size description.

Definition 4.22: A size description (over P) is a conjunction of K formulas: for each
atom A; over P, it includes exactly one of 3z A;(z) and =3z A;(z). For & € AKX, the size
descriplion associated with 4, written o(i), is that size description which includes -3z A;(z)

if u; =0 and Jz A;(z) if w; > 0. 1

The problems that we want to avoid occur when there is a maximum-entropy point ¢
with size description o(%) such that in a neighborhood of @, most of the worlds satisfying
KB are associated with other size descriptions. Intuitively, the problem with this is that the
coordinates of ¢ alone give us misleading information about the nature of worlds near @, and
so about degrees of belief.? We give a sufficient condition which can be used to avoid this
problem in the context of our theorems. This condition is effective and uses machinery (in
particular, the ability to find solution spaces) that is needed to use the maximum-entropy
approach in any case.

Definition 4.23: Let ¥ be a maximum-entropy point of S7T[KB]. We say that % is safe
(with respect to KB and 7) if ¥ is not contained in S7[KB A ~c(%)]. We say that KB and
7 are stable for o* if for every maximum-entropy point @ € S?[KB] we have that ¢(?) = 0*
and that ¢ is safe with respect to KB and 7. 1

The next result is the key property of stability that we need.

Theorem 4.24: If KB and 7 > 0 are stable for o* then P17 (c*

KB)=1.

9. We actually conjecture that problems of this sort cannot arise in the context of a maximum-entropy point
of SF[B’B] for # > 0. More precisely, for sufficiently small 7 and a maximum-entropy point ¥ of S?[KB]
with KB € LT, we conjecture that Prio[O](a('ﬁ)H(B) = 1 where O is an open set that contains @ but
no other maximum-entropy point of S?[KB]. If this i1s indeed the case, then the machinery of stability
that we are about to introduce is unnecessary, since it holds in all cases that we need it. However, we
have been unable to prove this.
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Our theorems will use the assumption that there exists some ¢* such that, for all suf-
ficiently small 7, KB and 7 are stable for c*. We note that this does not imply that o* is
necessarily the size description associated with the maximum-entropy point(s) of SY[KB].

Example 4.25: Consider the knowledge base KB; in Example 4.21, and recall that ¢ =
(0,1) is the maximum-entropy point of S°[KB3]. The size description o(%) is =3z A1(z) A
Jz Ay(z). However the maximum-entropy point of §7[KB5] for 7 > 0is actually (71,1 —7y),
so that the appropriate o* for such a 7is Jz Ay(z) A Jz Ay(z). 11

As we now show, the restrictions outlined above and in Section 4.1 suflice for our next
result on computing degrees of belief. In order to state this result, we need one additional
concept. Recall that in Section 4.2 we expressed an essentially propositional formula ¢()
as a disjunction of atoms. Since we wish to also consider formulas ¢ using more than
one constant and non-unary predicates, we need a richer concept than atoms. This is the
motivation behind the definition of complete descriptions.

Definition 4.26: Let Z be some set of variables and constants. A complete description D
over ® and Z is an unquantified conjunction of formulas such that:

e Lor every predicate R € ® U {=} of arity r and for every z;,,...,2;, € Z, D contains
exactly one of R(z;,,...,2,) or =R(z,,...,2,) as a conjunct.

e D is consistent.'? I

Complete descriptions simply extend the role of atoms in the context of essentially proposi-
tional formulas to the more general setting. Asin the case of atoms, if we fix some arbitrary
ordering of the conjuncts in a complete description, then complete descriptions are mutu-
ally exclusive and exhaustive. Clearly, a formula £ whose free variables and constants are
contained in Z, and which is is quantifier- and proportion-free, is equivalent to some dis-
junction of complete descriptions over Z. For such a formula &, let A(£) be a set of complete
descriptions over Z such that £ is equivalent to the disjunction VDEA(&) D, where Z is the
set of constants and free variables in £.

For the purposes of the remaining discussion (except within proofs), we are interested
only in complete descriptions over an empty set of variables. For a set of constants Z, we
can view a description D over Z as describing the different properties of the constants in Z.
In our construction, when considering a KB of the form ) A KB’ which is separable with
respect to a query ¢, we define the set Z to contain precisely those constants in ¢ and in
. In particular, this means that KB’ will mention no constant in Z.

A complete description D over a set of constants Z can be decomposed into three parts:
the unary part D' which consists of those conjuncts of D that involve unary predicates
(and thus determines an atom for each of the constant symbols), the equality part D=
which consists of those conjuncts of D involving equality (and thus determines which of
the constants are equal to each other), and the non-unary part D>! which consists of
those conjuncts of D involving non-unary predicates (and thus determines the non-unary
properties other than equality of the constants). As we suggested, the unary part of such

10. Inconsistency is possible because of the use of equality. For example, if D includes z1 = z2 as well as
both R(z1,z3) and —R(zz, za), it is inconsistent.

65



GROVE, HALPERN, & KOLLER

a complete description D extends the notion of “atom” to the case of multiple constants.
For this purpose, we also extend Fiy (for an atom A) and define Fjp) for a description D.
Intuitively, we are treating each of the individuals as independent, so that the probability
that constant ¢; satisfies atom A;, and that constant ¢y satisfies A;, is just the product of
the probability that ¢; satisfies A; and the probability that c, satisfies A;,.

Definition 4.27: For a complete description D without variables whose unary part is

equivalent to A; (¢1) A ... A Aj (¢) (for distinct constants ¢q,...,¢,) and for a point
i € AK, we define

Fipy(@) = T wj,- B
=1

Note that Fipj is depends only on D!, the unary part of D.

As we mentioned, we can extend our approach to deal with formulas ¢ that also use
non-unary predicate symbols. Qur computational procedure for such formulas uses the
maximum-entropy approach described above combined with the techniques of (Grove et al.,
1993b). These latter were used in (Grove et al., 1993b) to compute asymptotic conditional
probabilities when conditioning on a first-order knowledge base KBy,. The basic idea in
that case is as follows: To compute Pro(¢|KByj,), we examine the behavior of ¢ in finite
models of KBy,. We partition the models of KBy, into a finite collection of classes such that
o behaves uniformly in each individual class. By this we mean that almost all worlds in the
class satisfy o or almost none do; i.e., there is a 0-1 law for the asymptotic probability of ¢
when we restrict attention to models in a single class. In order to compute Pro,(¢|KBy,) we
therefore identify the classes, compute the relative weight of each class (which is required
because the classes are not necessarily of equal relative size), and then decide for each class
whether the asymptotic probability of ¢ is zero or one.

It turns out that much the same ideas continue to work in this framework. In this case,
the classes are defined using complete descriptions and the appropriate size description o*.
The main difference is that, rather than examining all worlds consistent with the knowledge
base, we now concentrate on those worlds in the vicinity of the maximum-entropy points, as
outlined in the previous section. It turns out that the restriction to these worlds affects very
few aspects of this computational procedure. In fact, the only difference is in computing the
relative weight of the different classes. This last step can be done using maximum entropy,
using the tools described in Section 4.2.

Theorem 4.28: Let ¢ be a formula in L~ and let KB = ¢ A KB’ be an essentially positive
knowledge base in LT which is separable with respect to ¢. Lel Z be the sel of constants
appearing in @ or in v (so that KB' contains none of the constants in Z) and let X* be
the formula N\, .czc # ¢'. Assume that there exists a size description o such that, for

all 7 > 0, KB and T are stable for c*, and that the space Sﬁ[KB] has a unique mazimum-
entropy point ©. Then

KB) = =DeAtin) Prec (910”7 D) Fip(7)

Proo (e

—

EDGA(w/\x?‘) F[D](”)

if the denominator is positive.
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Since both ¢ and 0* A D are first-order formulas and ¢*A D is precisely of the required form
in (Grove et al., 1993b), then Pro(p|o* A D) is either 0 or 1, and we can use the algorithm
of (Grove et al., 1993b) to compute this limit, in the time bounds outlined there.

One corollary of the above is that the formula y* holds with probability 1 given any
knowledge base KB of the form we are interested in. This corresponds to a default assump-
tion of unique names, a property often considered to be desirable in inductive reasoning
systems.

While this theorem does represent a significant generalization of Theorem 4.11, it still
has numerous restrictions. There is no question that some of these can be loosened to some
extent, although we have not been able to find a clean set of conditions significantly more
general than the ones that we have stated. We leave it as an open problem whether such a
set of conditions exists. Of course, the most significant restriction we have made is that of
allowing only unary predicates in the KB. This issue is the subject of the next section.

5. Beyond unary predicates

The random-worlds method makes complete sense for the full language £~ (and, indeed, for
even richer languages). On the other hand, our application of maximum entropy is limited
to unary knowledge bases. Is this restriction essential? While we do not have a theorem to
this effect (indeed, it is not even clear what the wording of such a theorem would be), we
conjecture that it is.

Certainly none of the techniques we have used in this paper can be generalized signif-
icantly. One difficulty is that, once we have a binary or higher arity predicate, we see no
analogue to the notion of atoms and no canonical form theorem. In Section 3.2 and in the
proof of Theorem 3.5, we discuss why it becomes impossible to get rid of nested quantifiers
and proportions when we have non-unary predicates. Even considering matters on a more
intuitive level, the problems seem formidable. In a unary language, atoms are useful be-
cause they are simple descriptions that summarize everything that might be known about a
domain element in a model. But consider a language with a single binary predicate R(z,y).
Worlds over this language include all finite graphs (where we think of R(z,y) as holding if
there is an edge from z to y). In this language, there are infinitely many properties that
may be true or false about a domain element. For example, the assertions “the node = has
m neighbors” are expressible in the language for each m. Thus, in order to partition the
domain elements according to the properties they satisfy, we would need to define infinitely
many partitions. Furthermore, it can be shown that “typically” (i.e., in almost all graphs
of sufficiently great size) each node satisfies a different set of first-order properties. Thus,
in most graphs, all the nodes are “different”, so a partition of domain elements into a finite
number of “atoms” makes little sense. It is very hard to see how the basic proof strat-
egy we have used, of summarizing a model by listing the number of elements with various
properties, can possibly be useful here.

The difficulty of finding an analogue to entropy in the presence of higher-arity predicates
is supported by results from (Grove et al., 1993a). In this paper we have shown that
maximum entropy can be a useful tool for computing degrees of belief in certain cases, if
the KB involves only unary predicates. In (Grove et al., 1993a) we show that there can be
no general computational technique to compute degrees of belief once we have non-unary
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predicate symbols in the KB. The problem of finding degrees of belief in this case is highly
undecidable. This result was proven without statistical assertions in the language, and in
fact holds for quite weak sublanguages of first-order logic. (For instance, in a language
without equality and with only depth-two quantifier nesting.) So even if there is some
generalized version of maximum entropy, it will either be extremely restricted in application
or will be useless as a computational tool.

6. Conclusion

This paper has had two major thrusts. The first is to establish a connection between max-
imum entropy and the random-worlds approach for a significant fragment of our language,
one far richer than that considered by Paris and Vencovska (1989) or Shastri (1989). The
second is to suggest that such a result is unlikely to obtain for the full language.

The fact that we have a connection between maximum entropy and random worlds is
significant. For one thing, it allows us to utilize all the tools that have been developed for
computing maximum entropy efficiently (see (Goldman, 1987) and the further references
therein), and may thus lead to efficient algorithms for computing degrees of belief for a large
class of knowledge bases. In addition, maximum entropy is known to have many attractive
properties (Jaynes, 1978). Our result shows these properties are shared by the random-
worlds approach in the domain where these two approaches agree. Indeed, as shown in
(Bacchus et al., 1994), the random-worlds approach has many of these properties for the
full (non-unary) language.

On the other hand, a number of properties of maximum entropy, such as its dependence
on the choice of language and its inability to handle causal reasoning appropriately, have
been severely criticized (Pearl, 1988; Goldszmidt et al., 1990). Not surprisingly, these
criticisms apply to random worlds as well. A discussion of these criticisms, and whether
they really should be viewed as shortcomings of the random-worlds method, is beyond the
scope of this paper; the interested reader should consult (Bacchus et al., 1994, Section 7)
for a more thorough discussion of these issues and additional references.

We believe that our observations regarding the limits of the connection between the
random-worlds method and maximum entropy are also significant. The question of how
widely maximum entropy applies is quite important. Maximum entropy has been gaining
prominence as a means of dealing with uncertainty both in Al and other areas. However,
the difficulties of using the method once we move to non-unary predicates seem not to
have been fully appreciated. In retrospect, this is not that hard to explain; in almost all
applications where maximum entropy has been used (and where its application can be best
justified in terms of the random-worlds method) the knowledge base is described in terms
of unary predicates (or, equivalently, unary functions with a finite range). For example, in
physics applications we are interested in such predicates as quantum state (see (Denbigh
& Denbigh, 1985)). Similarly, Al applications and expert systems typically use only unary
predicates such as symptoms and diseases (Cheeseman, 1983). We suspect that this is not an
accident, and that deep problems will arise in more general cases. This poses a challenge to
proponents of maximum entropy since, even if one accepts the maximum-entropy principle,
the discussion above suggests that it may simply be inapplicable in a large class of interesting
examples.
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Appendix A. Proofs for Section 3.2

Theorem 3.5: FEvery formula in LT is equivalent to a formula in canonical form. More-
over, there is an effective procedure that, given a formula & € LT constructs an equivalent
formula & in canonical form.

Proof: We show how to effectively transform & € LT to an equivalent formula in canonical
form. We first rename variables if necessary, so that all variables used in £ are distinct
(i.e., no two quantifiers, including proportion expressions, ever bind the same variable sym-
bol).

We next transform ¢ into an equivalent flat formula &5 € LT, where a flat formula
is one where no quantifiers (including proportion quantifiers) have within their scope a
constant or variable other than the variable(s) the quantifier itself binds. (Note that in this
transformation we do not require that £ be closed. Also, observe that flatness implies that
there are no nested quantifiers.)

We define the transformation by induction on the structure of £. There are three easy
steps:

o If ¢ is an unquantified formulas, then £ = €.
. (EVEN =gV e
o (=€) = (&)

All that remains is to consider quantified formulas of the form 3z &', ||¢']|z, or [|€'|€"||z. Tt
turns out that the same transformation works in all three cases. We illustrate the transfor-
mation by looking at the case where £ is of the form ||£’||z. By the inductive hypothesis, we
can assume that £ is flat. For the purposes of this proof, we define a basic formula to be an
atomic formula (i.e., one of the form P(z)), a proportion formula, or a quantified formula
(i.e., one of the form 3z x). Let x1,..., xx be all basic subformulas of £’ that do not mention
any variable in Z. Let z be a variable or constant symbol not in Z that is mentioned in £’.
Clearly z must occur in some basic subformula of £, say x’. By the inductive hypothesis,
it is easy to see that ¥’ cannot mention any variable in Z and so, by construction, it is in
{X1,---,x¢}. In other words, not only do {x1,..., x¢} not mention any variable in &, but
they also contain all occurrences of the other variables and constants. (Notice that this
argument fails if the language contains any high-arity predicates, including equality. For
then £ might include subformulas of the form R(z,y) or # = y, which can mix variables
outside & with those in 7.)

Now, let By, ..., Bye be all the “atoms” over x1,...,x¢. That is, we consider all formulas
X1 A ... Ax) where x! is either x; or —y;. Now consider the disjunction:
2[
V (B A 1€]]2)-
=1

This is surely equivalent to ||¢’||z, because some B; must be true. However, if we assume
that a particular B; is true, we can simplify ||£’||z by replacing all the y; subformulas by
true or false, according to B;. (Note that this is allowed only because the y; do not mention

69



GROVE, HALPERN, & KOLLER

any variable in #). The result is that we can simplify each disjunct (B;A||£||z) considerably.
In fact, because of our previous observation about {x1,..., xs}, there will be no constants
or variables outside Z left within the proportion quantifier. This completes this step of
the induction. Since the other quantifiers can be treated similarly, this proves the flatness
result.

It now remains to show how a flat formula can be transformed to canonical form. Sup-
pose £ € LT is flat. Let £ € LT be the formula equivalent to £ obtained by using the
translation of Section 2.1. Every proportion comparison in £* is of the form ¢ < t's; where ¢
and ¢’ are polynomials over flat unconditional proportions. In fact, ¢’ is simply a product of
flat unconditional proportions (where the empty product is taken to be 1). Note also that
since we cleared away conditional proportions by multiplying by ¢, if ¢ = 0 then so is {,
and so the formula ¢ < t'¢; is automatically true. We can therefore replace the comparison
by (' = 0)V (t < t'e; At > 0). Similarly, we can replace a negated comparison by an
expression of the form =(t < 'g;) At' > 0.

The next step is to rewrite all the flat unconditional proportions in terms of atomic
proportions. In any such proportion ||¢'||z, the formula ¢’ is a Boolean combination of
P(z;) for predicates P € P and z; € &. Thus, the formula & is equivalent to a disjunction
Vi(Af{(zi) A ... A A (xi,)), where each A! is an atom over P and & = {wj,,..., i, }.
These disjuncts are mutually exclusive and the semantics treats distinct variables as being
independent, so

1€l = ST 142 ).

7 i=1

We perform this replacement for each proportion expression. Furthermore, any term ¢’ in
an expression of the form ¢ < t’¢; will be a product of such expressions, and so will be
positive.

Next, we must put all pure first-order formulas in the right form. We first rewrite £ to
push all negations inwards as far as possible, so that only atomic subformulas and existential
formulas are negated. Next, note that since £ is flat, each existential subformula must have
the form Jz &', where £’ is a quantifier-free formula which mentions no constants and only
the variable z. Hence, £’ is a Boolean combination of P(z) for predicates P € P. Again,
the formula £’ is equivalent to a disjunction of atoms of the form VAeA(g) A(z), so Jz €' is
equivalent to \/AeA(f) Jz A(z). We replace Jz &’ by this expression. Finally, we must deal
with formulas of the form P(c¢) or = P(c) for P € P. This is easy: We can again replace a
formula £ of the form P(c) or —P(c) by the disjunction V 4 4¢¢) A(c).

The penultimate step is to convert £ into disjunctive normal form. This essentially brings
things into canonical form. Note that since we dealt with formulas of the form —P(¢) in
the previous step, we do not have to deal with conjuncts of the form —A4;(¢c).

The final step is to check that we do not have A;(c) and either =3z A;(z) or A;(c) for
some j # ¢ as conjuncts of some disjunct. If we do, we simply remove that disjunct. I

Appendix B. Proofs for Section 3.3

Lemma 3.11: There exist some function h : IN — IN and two strictly positive polynomial
functions f,g : IN — IR such that, for KB € LT and i € AX, if #worldsy[d](KB) # 0,

70



RANDOM WORLDS AND MAXIMUM ENTROPY

then
(A(N)/F(N )N < gworldsy[@)(KB) < h(N)g(N)eNH®,

Proof: To choose a world W € Wy satisfying KB such that #(W) = %, we must partition
the domain among the atoms according to the proportions in @, and then choose an assign-
ment for the constants in the language subject to the constraints imposed by KB. Finally,
even though KB mentions only unary predicates, if there are any non-unary predicates in
the vocabulary we must choose a denotation for them.

Suppose @& = (u1,...,ux), and let N; = u;N for ¢ = 1,..., K. The number of parti-
tions of the domain into atoms is (lej\:NK); each such partition completely determines the
denotation for the unary predicates. We must also specify the denotations of the constant
symbols. There are at most N ¢ ways of choosing these. On the other hand, we know there
is at least one model (W, ) of KB such that 7(W') = 4, so there there at least one choice. In
fact, there is at least one world W' € Wy such that (W', 7) = KB for each of the <N17~~]\~77NK)
ways of partitioning the elements of the domain (and each such world W' is isomorphic to
W). Finally we must choose the denotation of the non-unary predicates. However, @ does
not constrain this choice and, by assumption, neither does KB. Therefore the number of
such choices is some function A(N) which is independent of @.!! We conclude that:

N - N
N < T 7 d < |C| )
h(N) (1\717 - -,NK) < #worldsy[i](KB) < h(N)N <Nl, ,NK)

N N!
Ny,...,Ng) — NyINo!.. Ng!

To obtain our result, we use Stirling’s approximation for the factorials, which says that

It remains to estimate

m! =Vv2rmm™e™"(1+ O(1/m)).
It follows that exist constants L,U > 0 such that
ILmme ™ <m! < Umm™me ™

for all m. Using these bounds, as well as the fact that N; < N, we get:

L NNTIE, M N! UN NNTIE, eV
UKNEK N11K N; < N.INS! Ne!— LK _N +N; *
+ € H’L:l AVZ 1-4V2: oo IV € H’L:l E\Z

Now, consider the expression common to both bounds:

NN, eN NN

N; T K N;
eN IR, N [Tiz: N,

11. It is easy to verify that in fact

it
vy = I 2,

Re®—-9

where ¥ is the unary fragment of ® and arity(R) denotes the arity of the predicate symbol R.
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(6

=1

K
_ HeNiln(N/Ni)
=1
K -
_ €_N Zz;l u; In(u;) _ eNH(u)

We obtain that

WMLy e UN nua
U(KA;K(BNH( ) < #worlds}[u)(KB) < N|C|h(N)ﬁeNH( ),

which is the desired result. 1

We next want to prove Theorem 3.13. To do this, it is useful to have an alternative
representation of the solution space SF[KB]. Towards this end, we have the following
definition.

Definition B.1: Let I3, [KB] = {r(W) : W € Wy;(W,7) = KB}. Let I [KB] be the
limit of these spaces. Formally,

17 [KB] = {&@ : 3Ng s.t. YN > Ny 3@~ € IY[KB] s.t. lim @~ =a}. 1

N—oo
The following theorem establishes a tight connection between S7[KB] and 1I7_[KB].
Theorem B.2:
(a) For all N and 7, we have 1I3,[KB] C ST[KB].
(b) For all sufficiently small 7, we have 117 [KB] = ST[KB].

Proof: Part (a) is immediate: If @ € I3, [KB], then @ = 7(W) for some W € Wy such
that (W,7) = KB. It is almost immediate from the definitions that (W) must satisfy
I(KB[7]), so m1(W) € Sol[['( KB[7])]. The inclusion 11§;[KB] C S7[KB] now follows.

One direction of part (b) follows immediately from part (a). Recall that T [KB] C
ST[KB] and that the points in 117 [KB] are limits of a sequence of points in 115, [KB]. Since
STIKB] is closed, it follows that II7_[KB] C S7[KB].

For the opposite inclusion, the general strategy of the proof is to show the following;:

(i) If 7 is sufficiently small, then for all @ € S7[KB], there is some sequence of points
{ﬁNO,?lNOH, gNot2 ghots } C Sol[I'( KB|[7])] such that, for all N > Ny, the coor-

dinates of @V are all integer multiples of 1/N and limy_ oV = a.

(ii) if @ € Sol[I'(KB[7])] and all its coordinates are integer multiples of 1/N, then & €
5 [KB.

This clearly suffices to prove that 7 € 1I7_[KB].
We begin with the proof of (ii), which is straightforward. Suppose the point
@ = (r1/N,rg/N,...,rx/N) is in Sol[I'(KB[7])]. We construct a world W € Wy such
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that 7(W) = & as follows. The denotation of atom A; is the set of elements {1,...,7r1},
the denotation of atom A, is the set {ry + 1,...,71 + r2}, and so on. It remains to choose
the denotations of the constants (since the denotation of the predicates of arity greater
than 1 is irrelevant). Without loss of generality we can assume KB is in canonical form.
(If not, we consider I/(l\?) Thus, KB is a disjunction of conjunctions, say V;§;. Since
@ € Sol[I'(KB[7])], we must have @ € Sol[I'({;[7])] for some j. We use &; to define the
properties of the constants. If £; contains A;(c¢) for some atom A;, then we make ¢ satisfy
A;. Note that, by Definition 3.6, if {; has such a conjunct then u; > 0. If £; contains no
atomic conjunct mentioning the constant ¢, then we make ¢ satisfy A; for some arbitrary
atom with u; > 0. It should now be clear that (W, ) satisfies {;, and so satisfies KB. Note
that in this construction it is important that we started with @ in Sol[I'( KB[7])], rather
than just in the closure space S7[KB]; otherwise, the point would not necessarily satisfy

T(KB[7).

We now consider condition (i). This is surprisingly difficult to prove; the proof involves
techniques from algebraic geometry. Our job would be relatively easy if Sol[I'( KB[7])] were
an open set. Unfortunately, it is not. On the other hand, it would behave essentially like
an open set if we could replace the occurrences of < in I'(KB[7]) by <. It turns out that,
for our purposes here, this replacement is possible.

Let T<(KB|7]) be the same as I'(KB[7]) except that every (unnegated) conjunct of
the form (¢ < 7;t’) is replaced by (¢ < ;). (Notice that this is essentially the opposite
transformation to the one used when defining essential positivity in Definition 4.4.) Finally,
let S<T[KB] be Sol[I<(KB[7])]. It turns out that, for all sufficiently small 7, §<7[KB] =
ST[KB]. This result, which we label as Lemma B.5, will be stated and proved later. For
now we use the lemma to continue the proof of the main result.

Consider some % € ST[KB]. It suffices to show that for all § > 0 there exists Ny such
that for all N > Ng, there exists a point @ € Sol[['<( KB[7])] such that all the coordinates
of @V are integer multiples of 1/N and such that |1_2—?f2N| < &. (For then we can take smaller
and smaller ’s to create a sequence & converging to #.) Hence, let § > 0. By Lemma B.5,
we can find some @’ € Sol[[<(KB[7])] such that | —%'| < §/2. By definition, every conjunct
in I'S(KB[7]) is of the form ¢'(@) = 0, ¢'(@) > 0, ¢(&) < 7;¢' (W), or (W) > 7;,¢'(&), where
¢’ is a positive polynomial. Ignore for the moment the constraints of the form ¢'(w@) = 0,
and consider the remaining constraints that %’ satisfies. These constraints all involve strict
inequalities, and the functions involved (¢ and ¢’) are continuous. Thus, there exists some
6" > 0 such that for all @ for which |@’' — @] < §', these constraints are also satisfied by .
Now consider a conjunct of the form ¢'() = 0 that is satisfied by @'. Since ¢’ is positive, this
happens if and only if the following condition holds: for every coordinate w; that actually
appears in ¢, we have u! = 0. In particular, if @ and @ have the same coordinates with
value 0, then ¢'(@) = 0. It follows that for all @, if |&’ — @] < § and @ and @ have the
same coordinates with value 0, then & also satisfies T'<( KB[7]).

We now construct @ that satisfies the requirements. Let #* be the index of that
component of %’ with the largest value. We define v by considering each of its components
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ufv,forlgigl(:

0 u, =0
u¥ = [Null/N i# i and ul >0

It is easy to verify that the components of @ sum to 1. All the components in @, other
than the ¢*’th, are increased by at most 1/N. The component uf\*f is decreased by at most
K/N. We will show that %" has the right properties for all N > Ny, where Ny is such that
1/Ng < min(u;«,6/2,6")/2K. The fact that K/Ng < u;+ guarantees that @ is in AX for
all N > Ng. The fact that 2K /No < §/2 guarantees that @' is within 6/2 of @', and hence
within é of @. Since 2K /Ny < &, it follows that |@’ — @"| < §'. Since @V is constructed
to have exactly the same 0 coordinates as @', we conclude that @™ € Sol[I'<(KB[7])], as
required. Condition (i), and hence the entire theorem, now follows. I

It now remains to prove Lemma B.5, which was used in the proof just given. As we
hinted earlier, this requires tools from algebraic geometry. We base our definitions on the
presentation in (Bochnak, Coste, & Roy, 1987). A subset A of IR" is said to be semi-algebraic
if it is definable in the language of real-closed fields. That is, A is semi-algebraic if there is
a first-order formula ¢(z1,...,z,) whose free variables are z1,...,2, and whose only non-
logical symbols are 0, 1, +, X, < and =, such that R = o(uq,...,us) iff (ug,...,u,) € A.12
A function f: X — Y, where X C IR" and Y C IR, is said to be semi-algebraic if its graph
(i.e., {(@, @) : f(d) = @}) is semi-algebraic. The main tool we use is the following Curve
Selection Lemma (see (Bochnak et al., 1987, p. 34)):

Lemma B.3: Suppose that A is a semi-algebraic set in IR* and @ € A. Then there exists
a conlinuous, semi-algebraic function f :[0,1] — IR® such that f(0) = 4 and f(1) € A for
all t € (0,1].

Our first use of the Curve Selection Lemma is in the following, which says that, in a
certain sense, semi-algebraic functions behave “nicely” near limits. The type of phenomenon
we wish to avoid is illustrated by z sin% which is continuous at 0, but has infinitely many
local maxima and minima near 0.

Proposition B.4: Suppose that g : [0,
such that g(u) > 0 if v > 0 and ¢(0) =
strictly increasing in the interval [0, €].

1] — IR is a continuous, semi-algebraic function
0. Then there exisls some € > 0 such that g is

Proof: Suppose, by way of contradiction, that g satisfies the hypotheses of the proposition
but there is no € such that g is increasing in the interval [0, ¢]. We define a point « in [0, 1]
to be bad if for some u’ € [0, u) we have g(u') > g(u). Let A be the set of all the bad points.
Since ¢ is semi-algebraic so is A, since v’ € A iff

T/ ((0 < ' < w) A (g(u) < g(u'))).

12. In (Bochnak et al., 1987), a set is taken to be semi-algebraic if it is definable by a quantifier-free formula
in the language of real closed fields. However, as observed in (Bochnak et al., 1987), since the theory of
real closed fields admits elimination of quantifiers (Tarski, 1951), the two definitions are equivalent.
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Since, by assumption, g is not increasing in any interval [0, €], we can find bad points
arbitrarily close to 0 and so 0 € A. By the Curve Selection Lemma, there is a continuous
semi-algebraic curve f :[0,1] — IR such that f(0) = 0 and f({) € A for all ¢ € (0,1].
Because of the continuity of f, the range of f,i.e., f([0,1]),is [0, 7] for some r € [0, 1]. By
the definition of f, (0,7] C A. Since 0 ¢ A, it follows that f(1) # 0; therefore r > 0 and so,
by assumption, ¢g(r) > 0. Since g is a continuous function, it achieves a maximum v > 0
over the range [0, r]. Consider the minimum point in the interval where this maximum is
achieved. More precisely, let « be the infimum of the set {u’' € [0,7r] : g(u') = v}; clearly,
g(u) = v. Since v > 0 we obtain that » > 0 and therefore u € A. Thus, « is bad. But that
means that there is a point u’ < u for which g(u') > g(u), which contradicts the choice of
v and u. I

We can now prove Lemma B.5. Recall, the result we need is as follows.
Lemma B.5: For all sufficiently small 7, S<"[KB] = ST[KB].

Proof: Clearly S<"[KB] C S7[KB]. To prove the reverse inclusion we consider KB,
a canonical form equivalent of KB. We consider each disjunct of KB separately. Let
£ be a conjunction that is one of the disjuncts in KB. It clearly suffices to show that
Sol[[(€[7])] € S<7[€] = Sol[I<(€[7])]. Assume, by way of contradiction, that for arbitrarily
small 7, there exists some @ € Sol[T'(¢[7])] which is “separated” from the set Sol[T'<({[7])],
i.e., is not in its closure. More formally, we say that @ is §-separated from Sol[I'<(&[7])] if
there is no @' € Sol[['<(¢[7])] such that | — @'| < é.

We now consider those 7 and those points in Sol[I'(£[7])] that are separated from

Sol[T<(¢[7])]:1?
A={(7,u,6) : T> 0,6 >0, %€ Sol[T(&£[7])] is 6-separated from Sol[T<(£[7])]}.

Clearly A is semi-algebraic. By assumption, there are points in A for arbitrarily small
tolerance vectors 7. Since A is a bounded subset of R™FE+! (
tolerance values in 7), we can use the Bolzano—Weierstrass Theorem to conclude that this
set of points has an accumulation point whose first component is 0. Thus, there is a point
(6, @,8") in A. By the Curve Selection Lemma, there is a continuous semi-algebraic function
f:00,1] = IR™E+1 such that f(0) = (0,4, 6") and f(1) € A for ¢ € (0,1].

Since f is semi-algebraic, it is semi-algebraic in each of its coordinates. By Lemma B.4,
there is some v > 0 such that f is strictly increasing in each of its first m coordinates over
the domain [0,v]. Suppose that f(v) = (7,4, ). Now, consider the constraints in I'(£[7])
that have the form ¢(@) > 7;¢/(#). These constraints are all satisfied by % and they all
involve strong inequalities. By the continuity of the polynomials ¢ and ¢’, there exists some
€ > 0 such that, for all @’ such that |7 — @'| < ¢, @ also satisfies these constraints.

where m is the number of

Now, by the continuity of f, there exists a point ' € (0,v) sufficiently close to v
such that if f(v') = (7,4',6"), then |4 — @'| < min(d,¢). Since f(v) = (7,%,6) € A and
|i—'] < &, it follows that @ ¢ Sol[I'<(£[7])]. We conclude the proof by showing that this is
impossible. That is, we show that @’ € Sol[I'<(£[7])]. The constraints appearing in T'<(£[7])
can be of the following forms: ¢'(@) = 0, ¢'(@) > 0, ¢(¥) < 7;¢'(¥), or ¢(¥) > 7;¢'(¥),

13. We consider only those components in the infinite vector 7 that actually appear in Sol[I'(¢[7])].
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where ¢’ is a positive polynomial. Since f(v') € A, we know that @' € Sol[T(£[7])]. The
constraints of the form ¢/(@) = 0 and ¢/(&) > 0 are identical in I'(£[7]) and in I'<(&[7]),
and are therefore satisfied by @'. Since |%' — | < ¢, our discussion in the previous paragraph
implies that the constraints of the form ¢(w@) > 7;¢'(%) are also satisfied by @'. Finally,
consider a constraint of the form ¢(@) < 7;¢/(@). The corresponding constraint in T'(£[7])
is q(@) < 7l¢/(w). Since @' satisfies this latter constraint, we know that ¢(@') < /¢(7').
But now, recall that we proved that f is increasing over [0, v] in the first m coordinates.
In particular, 77 < 7;. By the definition of canonical form, ¢'(i') > 0, so that we conclude
q(a') < 7iq'(¥') < 7;¢'(@'). Hence the constraints of this type are also satisfied by @'. This
concludes the proof that @' € Sol[I'<(KB[7])], thus deriving a contradiction and proving
the result. 1

We are finally ready to prove Theorem 3.13.

Theorem 3.13: For all sufficiently small 7, the following is true. Let Q be the points
with greatest entropy in S?[KB] and let © C IR® be any open set containing Q. Then for
all 8 € L% and for lim* € {lim sup, liminf} we have

lim* Prl, (0] KB) = Jim* ZLrdsnIONO A KB)

N—oo N—oo  #uworldsy[O](KB)
Proof: Let 7 be small enough so that Theorem B.2 applies and let Q@ and O be as in the
statement of the theorem. It clearly suffices to show that the set O contains almost all of
the worlds that satisfy KB. More precisely, the fraction of such worlds that are in O tends
to1las N — oo.

Let p be the entropy of the points in Q. We begin the proof by showing the existence
of pr < pu (< p) such that (for sufficiently large N) (a) every point @ € II3,[KB] where
% ¢ O has entropy at most pr, and (b) there is at least one point @ € T3 [KB] with & € O
and entropy at least py.

For part (a), consider the space ST[KB] — O. Since this space is closed, the entropy
function takes on a maximum value in this space; let this be py. Since this space does
not include any point with entropy p (these are all in @ C ), we must have p;, < p.
By Theorem B.2, II3,[KB] C S7[KB]. Therefore, for any N, the entropy of any point in
I [KB] - O is at most py,.

For part (b), let piy be some value in the interval (pr, p) (for example (pr, + p)/2) and
let @ be any point in Q. By the continuity of the entropy function, there exists some § > 0
such that for all @ with |4 — ¢] < ¢, we have H(%) > py. Because O is open we can, by
considering a smaller § if necessary, assume that |& — ¢] < é implies & € O. By the second
part of Theorem B.2, there is a sequence of points @ € H}:,[KB] such that impy_. @~ = 7.
In particular, for N large enough we have |1_ZN — 7| < 6, so that H(T_ZN) > py, proving part
(b).

To complete the proof, we use Lemma 3.11 to conclude that for all NV,

Lworldsy (KB) > #worldsy[iN](KB) > (h(N)/ f(N)eNHE) > (h(N)/f(N))eNev.
On the other hand,
#worldsiy [AK — O)(KB) < > #uworldsy[i)(KB)

1€y [KB]-0
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{@ € WG[KB]: & ¢ O} h(N)g(N)eNrr
(N + D)FR(N)g(N)eNrz.,

IN A

Therefore the fraction of models of KB which are outside @ is at most

(N 4+ DRR(N)F(N)g(N)eNer (N 4+ DR F(N)g(N)
h(lV)eNPU B eN(pv—rL) )

Since (N + 1)k f(N)g(N) is a polynomial in N, this fraction tends to 0 as N grows large.
The result follows. lI

Appendix C. Proofs for Section 4

Proposition 4.6: Assume thal KB is essentially positive and let Q be the sel of mazimum-
entropy points of SO[BB] (and thus also of S<0[BB]) Then for all € > 0 and all sufficiently
small tolerance vectors T (where “sufficiently small” may depend on €), every mazimum-
entropy point of SF[KB] 1s within € of some mazimum entropy-point in Q.

Proof: Fix ¢ > 0. By way of contradiction, assume that that there is some sequence
of tolerance vectors 7", m = 1,2,..., that converges to 0, and for each m a maximum-
entropy point @ of S$m[K'B] such that for all m, @™ is at least ¢ away from Q. Since
the space AX is compact, we can assume without loss of generality that this sequence
converges to some point %. Recall that I'(KB) is a finite combination (using “and” and
“or”) of constraints, where every such constraint is of the form ¢'(@) = 0, ¢'(@) > 0,
q(%) < g;¢'(W), or q( ) > ¢;¢'(W), such that ¢’ is a positive polynomial. Since the overall
number of constraints is finite we can assume, again without loss of generality, that all the
u"™’s satisfy precisely the same constraints. We claim that the corresponding conjuncts in
F<0(BB[O]) are satisfied by @. For a conjunct of the form ¢'(@) = 0 note that, if ¢'(2™) =0
for all m, then this also holds at the limit, so that ¢(%) = 0. A conjunct of the form
¢' (@) > 0 translates into ¢'(@) > 0 in F<O(BB[O]); such conjuncts are trivially satisfied
by any point in AK. If a conjunct of the form ¢(w) < ¢;¢'() is satisfied for all @™ and
7", then at the limit we have ¢(@) < 0, which is precisely the corresponding conjunct in
F56(B’B[6]). Finally, for a conjunct of the form ¢(@) > ¢;¢'(@), if ¢(@™) > r/"¢'(d™) for
all m, then at the limit we have ¢(%) > 0, which again is the corresponding conjunct in
F<0(BB[ ]). It follows that @ is in S<0[BB]

By assumption, all points @™ are at least ¢ away from Q. Hence, @ cannot be in Q.
If we let p represent the entropy of the points in Q, since Q is the set of all maximum-
entropy points in SSY[KB], it follows that H (%) < p. Choose pz, and py such that H (@) <
pr, < pu < p. Since the entropy function is continuous, we know that for sufficiently
large m, H(@™) < pr. Since @™ is a maximum-entropy point of 7 [KB], it follows
that the entropy achieved in this space for sufliciently large m is at most py. We derive a
contradiction by showing that for sufficiently large m, there is some point in Sol[I'( KB[7™])]
with entropy at least py. The argument is as follows. Let ¢ be some pomt in Q. Since ¥
is a maximum-entropy point of S9[KB], there are points in Sol[['( KB[0])] arbitrarily close
to #. In particular, there is some point @’ € Sol[F(KB[ﬁ])] whose entropy is at least pp.
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As we now show, this point is also in Sol[I'(KB[7])] for all sufficiently small 7. Again,
consider all the conjuncts in F(K’B[ﬁ]) satisfied by @’ and the corresponding conjuncts in
I'(KB[7]). Conjuncts of the form ¢'(w) = 0 and ¢'(«%) > 0 in T'(KB[0]) remain unchanged
in T'(KB[7]). Conjuncts of the form ¢(@) < 7;¢/(@) in T'(KB[7]) are certainly satisfied
by @', since the corresponding conjunct in F(KB[(T]), namely ¢(@) < 0, is satisfied by @,
so that ¢(@') < 0 < 7;¢/(@) (recall that ¢’ is a positive polynomial). Finally, consider a
conjunct in I'(KB[7]) of the form ¢(w@) > 7;¢'(&). The corresponding conjunct in I'( KB[0])
is q(w) > 0. Suppose ¢(@') = é > 0. Since the value of ¢’ is bounded over the compact
space AR it follows that for all sufficiently small 7;, 7;¢/(@') < é. Thus, ¢(@') > 7;¢'(@') for
all sufficiently small 7;, as required. It follows that @ is in Sol[T'( KB[7])] for all sufficiently
small ¥ and, in particular, in Sol[l( KB[7™])] for all sufficiently large m. But H(@') > py,
whereas we showed that the maximum entropy achieved in S7 [KB] is at most pr, < pp.
This contradiction proves that our assumption was false, so that the conclusion of the

proposition necessarily holds. Il

Theorem 4.9: Suppose ¢(c) is a simple query for KB. For all T sufficiently small, if Q
is the set of mazimum-entropy points in ST[KB] and Fiy) (%) > 0 for all v € Q, then for
lim* € {lim sup, liminf} we have

lim* Pri((c)

N—co

KB) € |inf Fr (%), sup Fy(7)] -
)€ |{nL Fleni(9), SUB Fiepi(9)
Proof: Let W € W*, and let % = m(W). The value of the proportion expression ||¢(z)||.

at W is clearly
Yo @l = Y u= Fy(@).
AjeA(p) AjEA(W)

If Fpy)(@) > 0, then by the same reasoning we conclude that the value of [|¢(z)|¢(z)||. at
W is equal to Figy) ().

Now, let Az, and Ag be infycg Fiypy(¥) and supgeg Figy)(¥) respectively; by our as-
sumption, Fj (%) is well-defined for all ¥ € Q. Since the denominator is not 0, Fj,y is
a continuous function at each maximum-entropy point. Thus, since F[wlw](ﬁ) € [AL, AR| for
all maximum-entropy points, the value of Fi (%) for @ “close” to some @ € Q, will either
be in the range [Ar, Ay] or very close to it. More precisely, choose any € > 0, and define
f[¢] to be the formula

le(@)[(2)lle € [AL =€ Av + €],

Since € > 0, it is clear that there is some sufliciently small open set O around Q such
that this proportion expression is well-defined and within these bounds at all worlds in O.
Thus, by Corollary 3.14, Pr7_(8[¢]|KB) = 1. Using Theorem 3.16, we obtain that for lim*
as above,

KB) = ]\}im* Priy(¢(c)

A}im* Priy(¢(c) KB A 6[¢]).

But now we can use the direct inference technique outlined earlier. We are interested in
the probability of ¢(¢), where the only information we have about ¢ in the knowledge base
is ¥(¢) and where we have statistics for ||¢(2)|¢(2)||z. These are precisely the conditions
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under which Theorem 4.1 applies. We conclude that

A}im* Priy(¢(c)|[KB) € AL — ¢, \v + €.

Since this holds for all € > 0, it is necessarily the case that
Jim* Pri(¢(¢)|KB) € A1, \vr],
as required. i

Theorem 4.11: Suppose ¢(c) is a simple query for KB. If the space Sﬁ[KB] has a unique
mazimum-entropy point v, KB is essentially positive, and Fy (%) > 0, then

Prao ((c)

KB) = Figjy)(9).

Proof: Note that the fact that Sﬁ[KB] has a unique maximum-entropy point does not
guarantee that this is also the case for SF[KB]. However, Proposition 4.6 implies that
the maximum-entropy points of the latter space are necessarily close to #. More precisely,
if we choose some ¢ > 0, we conclude that for all sufficiently small 7, all the maximum-
entropy points of ST[KB] will be within ¢ of #. Now, pick some arbitrary § > 0. Since
Fiy)(7) > 0, it follows that Fj,y is continuous at #. Therefore, there exists some ¢ > 0
such that if @ is within € of @, Fj,y)(@) is within & of Fj 4 (¥). In particular, this is the
case for all maximum-entropy points of S7[KB] for all sufficiently small 7. This allows
us to apply Theorem 4.9 and conclude that for all sufficiently small 7 and for lim* €
{lim sup, lim inf}, lim}_ .. Pri((c)|KB) is within & of Figpy)(?). Hence, this is also the
case for lim. 5 lim}y_, P} (¢(¢)|KB). Since this holds for all § > 0, it follows that

-

7—0

Thus, by definition, Pro,(¢(c)| K B) = Fi (7). 1

lim l}\rfn inf Priy(¢(c)| KB) = lim_lim sup Priy(¢(c)

7—=0 N-—oo

KB) = Fgjy)(¥)-

Theorem 4.14: Let A be a conjunction of constraints of the form Pr(8|3") = A or
Pr(B|3") € [A1,A2]. There is a unique probability distribution p* of mazimum entropy
salisfying A. Moreover, for all § and ', if Pr «(8') > 0, then

Pros(€s(c)l€p(c) A KB'[A]) = Pry«(8]8").

Proof: Clearly, the formulas ¢(z) = £g(x) and ¥(x) = {z/(x) are essentially propositional.
The knowledge base KB'[A] is in the form of a conjunction of simple proportion formulas,
none of which are negated. As a result, the set of constraints associated with KB =
¥(c) A KB'[A] also has a simple form. KB'[A] generates a conjunction of constraints which
can be taken as having the form ¢(@) < e;¢/(@). On the other hand, ¢(c) generates
some Boolean combination of constraints all of which have the form w; > 0. We begin by
considering the set SSG[KB] (rather than SG[KB]), so we can ignore the latter constraints
for now.

S<Y[KB] is defined by a conjunction of linear constraints which (as discussed earlier)
implies that it is convex, and thus has a unique maximum-entropy point, say ¢. Let p* = ug
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be the distribution over €2 corresponding to #. It is clear that the constraints of Ffﬁ(B'B[ﬁ])
on the points of AX are precisely the same ones as those of A. Therefore, p* is the unique
maximum-entropy distribution satisfying the constraints of A. By Remark 4.13, it follows
that Fe (%) = p*(B’). Since we have assumed that p*(0') > 0, we are are almost in a
position to use Theorem 4.11. It remains to prove essential positivity.

Recall that the difference between I'SY( KB[0]) and T'( KB[0]) is that the latter may have
some conjuncts of the form w; > 0. Checking definitions 3.4 and 3.6 we see that such terms
can appear only due to £g(c) and, in fact, together they assert that F[gﬁ,](zﬁ) > 0. But we

have assumed that F[gﬁ,](ﬁ) > 0 and so ¥ is a maximum-entropy point of Sﬁ[KB] as well.
Thus, essential positivity holds and so, by Theorem 4.11,

Proo(p(e)|ib(c) A KB'[A]) = Figpyy(p”) = Prys (516
as required. 1

Theorem 4.15: Lel ¢ be a constant symbol. Using the translation described in Section 4.3,
for a sel R of defeasible rules, B — C' is an MFE-plausible consequence of R iff

EB(c) A /\ HT) =1.

re€R

Pro (EC(C)

Proof: Let KB’ denote A\ g 6,. For all sufficiently small 7 and for ¢ = 7y, let * denote
te - It clearly suffices to prove that

Pr7, (60(e)|€n(c) A KB') = Pr,(C|B),

where by equality we also mean that one side is defined iff the other is also defined. It is
easy to verify that a point @ in AX satisfies I'( KB'[7]) iff the corresponding distribution
i e-satisfies R. Therefore, the maximum-entropy point @ of SF[KB’] (which is unique,
by linearity) corresponds precisely to p*. Now, there are two cases: either p*(B) > 0 or
p*(B) = 0. In the first case, by Remark 4.13, Pr,»(€g(c)) = Fie,y())(¥), so the latter is
also positive. This also implies that ¥ is consistent with the constraints I'(¢(¢)) entailed
by (c) = €g(c), so that 7 is also the unique maximum-entropy point of S7[KB] (where
KB = £g(c) A KB'). We can therefore use Corollary 4.10 and Remark 4.13 to conclude that
P17 (éc(c)|KB) = Flec(0)les(e)(F) = Prus(C]B) and that all three terms are well-defined.
Assume, on the other hand, that p*(B) = 0, so that Pr,+(C|B) is not well-defined. In this
case, we can use a known result (see (Paris & Vencovska, 1989)) for the maximum-entropy
point over a space defined by linear constraints, and conclude that for all p satisfying R,
necessarily p(B) = 0. Using the connection between distributions u satisfying R and points
% in ST[KB'], we conclude that this is also the case for all @ € ST[KB']. By part (a) of
Theorem B.2, this means that in any world satisfying KB’, the proportion ||¢g(z)||, is
necessarily 0. Thus, KB is inconsistent with g(c), and Pt (éc(c)|€p(c) A KB') is also not
well-defined. 1

Appendix D. Proofs for Section 4.4
Theorem 4.24: If KB and 7 > 0 are stable for o* then Prl_(c*|KB) = 1.

80



RANDOM WORLDS AND MAXIMUM ENTROPY

Proof: By Theorem 3.14, it suffices to show that there is some open neighborhood con-
taining Q, the maximum-entropy points of S qKB], such that every world W of KB in this
neighborhood has o(W) = ¢*. So suppose this is not the case. Then there is some sequence
of worlds Wy, Wy, ... such that (W;,7) = KB A —¢* and lim;_o mingeg |7(W;) — 7] = 0.
Since AKX is compact the sequence 7(Wy), 7(W3),... must have at least one accumulation
point, say %. This point must be in the closure of the set Q. But, in fact, Q is a closed
set (because entropy is a continuous function) and so @ € Q. By part (a) of Theorem B.2,
T(W;) € ST[KB A =0*] for every i and so, since this space is closed, @ € ST[KB A —0*] as
well. But this means that @ is an unsafe maximum-entropy point, contrary to the definition
and assumption of stability. il

In the remainder of this section we prove Theorem 4.28. For this purpose, fix KB =
v A KB', ¢, and * to be as in the statement of this theorem, and let ¢ be the unique
maximum-entropy point of S°[KB].

Let Z = {e1,...,¢,} be the set of constant symbols appearing in ¢ and in ¢. Due to
the separability assumption, KB’ contains none of the constant symbols in Z. Let y# be
the formula A;; ¢; # ¢;. We first prove that X% has probability 1 given KB'.

Lemma D.1: For x* and KB’ as above, Pr.,(x#

KB')=1.

Proof: We actually show that Pr. (-x#|KB’) = 0. Let ¢ and ¢’ be two constant symbols
in {c1,...,¢n} and consider Pro, (¢ = ¢/| KB'). We again use the direct inference technique.
Note that for any world of size N the proportion expression ||z = z'||; ,» denotes exactly
1/N. It is thus easy to see that Pro (|| = 2'||z ~; 0|KB’) = 1 (for any choice of ¢). Thus,
by Theorem 3.16, Pro(c = ¢/| KB') = Proo(c = ¢/| KB' A||z = 2'||;2 = 0). But since ¢ and
KB') = 0.

It is straightforward to verify that, since —x# is equivalent to a finite disjunction, each

¢’ appear nowhere in KB’ we can use Theorem 4.1 to conclude that Pr(c = ¢

disjunct of which implies ¢ = ¢’ for at least one pair of constants ¢ and ¢/, we must have
Proo (=7 |KB') = 0. I

As we stated in Section 4.4, our general technique for computing the probability of an
arbitrary formula ¢ is to partition the worlds into a finite collection of classes such that ¢
behaves uniformly over each class and then to compute the relative weights of the classes.
As we show later, the classes are essentially defined using complete descriptions. Their

relative weight corresponds to the probabilities of the different complete descriptions given
KB.

Proposition D.2: Let KB = KB' A and @ be as above. Assume that Pro. (¢
Let D be a complete description over Z that is consistent with 1.

KB') > 0.

(a) If D is inconsistent with x#, then Pro,(D

KB) = 0.
(b) If D is consistent with x*, then

Fipy(7)
Yo DreA(wny?) Fpn(7)

Pro(D|KB) =
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Proof: First, observe that if all limits exist and the denominator is nonzero, then

Pro.(=x” A ¢|KB')
Pr..(¢|KB')

By hypothesis, the denominator is indeed nonzero. Furthermore, by Lemma D.1, Pro, (=7 A
V|KB') < Proo(-Xx7|KB') = 0. Hence Pro,(x*|KB) = Pro.(x*|KB' A ) = 1. We can
therefore use Theorem 3.16 to conclude that

Proo(-x7 | A KB') =

Pro.(D|KB) = Proo(D|KB A X7).

Part (a) of the proposition follows immediately.

To prove part (b), recall that ¢ is equivalent to the disjunction VEGA(¢) E. By simple
probabilistic reasoning, the assumption that Pr.,(¢)|KB’) > 0, and part (a), we conclude
that

Pro. (D6 A KB') = Prm(DA¢,[€B/) _ Proo(D/\wKB’)r .
Proo(GIKB) Y peawnes) Pl EIKB)
By assumption, D is consistent with x* and is in A(#). Since D is a complete description,
we must have that D = 1 is valid. Thus, the numerator on the right-hand side of this
equation is simply Pr.,(D|KB'). Hence, the problem of computing Pr..(D|KB) reduces to
a series of computations of the form Pr.,(F|KB') for various complete descriptions E.
Fix any such description FE. Recall that £ can be decomposed into three parts: the
unary part ', the non-unary part £>!, and the equality part E=. Since E is in A(x7),
we conclude that 7 is equivalent to £=. Using Theorem 3.16 twice and some probabilistic
reasoning, we get:

Proo(E”* A E' A ET E>YANEYA ET|KB' A x7)
E>Y A EYKB' A x7)
E>YKB' AXT A EY) - Pro (B!
E>YEKB' A x* A EY)-Pro (B!

KB') Pr
Pro
Pro

= Pro

KB' A x7)
KB').

o~ o~ =~

In order to simplify the first expression, recall that none of the predicate symbols in £>!
occur anywhere in KB’ A y* A E'. Therefore, the probability of E>! given KB’ A x¥ is
equal to the probability that the elements denoting the | Z| (different) constants satisfy some
particular configuration of non-unary properties. It should be clear that, by symmetry, all
such configurations are equally likely. Therefore, the probability of any one of them is a
constant, equal to 1 over the total number of configurations.!* Let p denote the constant
which is equal to Pro (E>Y KB’ A x* A EY) for all E.

The last step is to show that, if £ is equivalent to Nj=1 Ai;(¢j), then Proo(E!
F[D](T_)))

m m m

Proo(/\ Ai;(¢;)|KB") = Proo(Ay ()| )\ Ai;(cj) AN KB') - Proo(Ay, ()| J\ Ai;(c;) N KB')

=1 i=2 =3

KB') =

14. Although we do not need the value of this constant in our calculations below, it is in fact easy to verify
1 ATILY(R)

that its value is HRe(@—\P) 2 , where m = |Z|.
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+ Prog(Aiy,_y (em-1)|Ai (em) A KB') - Proo(As, ()

-v;, (using Theorem 4.11; see below)

B

= Fip)(?).

The first step is simply probabilistic reasoning. The second step uses m applications of
Theorem 4.11. It is easy to see that A; (c;) is a simple query for A; (cjy1) A ... A
A;, () N KB'. We would like to show that

Proo(Ai](CjN /\ Ai[(Cg) A f(B/) = PI’OO(AZ'J(C]'NI(B/) = v,
{=7+1

where Theorem 4.11 justifies the last equahty To prove the first equality, we show that for
all 7, the spaces SO[BB] and SO[/\K i11 Aiy(¢;) A KB'] have the same maximum-entropy
point, namely #. This is proved by backwards induction; the j = m case is trivially true.
The difference between the (j — 1)st and jth case is the added conjunct A; (c;), which
amounts to adding the new constraint w;; > 0. There are two possibilities. First, if v;; > 0,
then @ satisfies this new constraint anyway and so remains the maximum-entropy point,
completing this step of the induction. If v;; = 0 this is not the case, and indeed, the
property we are trying to prove can be false (for j < m). But this does not matter, because
we then know that Pro, (A;;(¢;)| AJZ;1q Ai(er) NKB') = Proo(A; (¢;)|KB') = v;; = 0. Since
both of the products in question include a 0 factor, it is irrelevant as to whether the other
terms agree.
We can now put everything together to conclude that

‘B') _ Fipy(9)
) Ymeawa?) Fim(9)

Proof(
EEEA(w/\X;‘) Prog(

Proo(

B) =

proving part (b). 11

We now address the issue of computing Pr..(¢|KB) for an arbitrary formula ¢. To do
that, we must first investigate the behavior of Pr7_(|KB) for small 7. Fix some sufficiently
small 7 > 0, and let @ be the set of maximum-entropy points of S?[KB]. Assume KB and
7 are stable for o*. By definition, this means that for every @ € Q, we have o(%) = o*. Let
I be the set of ¢’s for which ¢* contains the conjunct JzA;(z). Since o(¥) = ¢* for all 7,
we must have that v; > 0 for all « € I. Since Q is a closed set, this implies that there exists
some € > 0 such that for all ¥ € Q and for all ¢ € I, we have v; > €. Let 0[¢] be the formula

A NAi(@)]]e > e

el

The following proposition is now easy to prove:

Proposition D.3: Suppose that KB and 7 are stable for o* and that Q, i, 0[e], and x#
are as above. Then

Prl (g

AB[e] Ao* A D)-Prl(

B)= Y. Pri(y ‘B).

DeA(®)
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Proof: Clearly, 0[¢] satisfies the conditions of Corollary 3.14, allowing us to conclude that
Prio(H[e] KB) = 1. Similarly, by Theorem 4.24 and the assumptions of Theorem 4.28,
we can conclude that Prl (¢*|KB) = 1. Since the conjunction of two assertions that have
probability 1 also has probability 1, we can use Theorem 3.16 to conclude that PI‘;(QO KB) =
P17 (| KB A 0[] A ™).

Now, recall that @ is equivalent to the disjunction VDEAW)D- By straightforward
probabilistic reasoning, we can therefore conclude that

Pri(e

KB MGl Ao*AD)-Prl (D

KB A O[e] Ao™).

KBAO[e] No™) = Z Prl_ (¢
DeA(Y)

By Theorem 3.16 again, Prio(D
follows. I

KBAB[e]Ac*) = Prl_(D

KB). The desired expression now

We now simplify the expression Prl_(p|KB A 6[e] A o* A D).
Proposition D.4: For ¢, KB, 0*, D, and 0[¢] as above, if Prio(D

Pri (e
and its value is either 0 or 1. Note thatl since the lalter probability only refers to first-order
formulas, it is independent of the tolerance values.

KB) > 0, then

KBAO[e)No™ AND) = Pro(plo* A D),

Proof: That the right-hand side is either 0 or 1 is proved in (Grove et al., 1993b), where it
is shown that the asymptotic probability of any pure first-order sentence when conditioned
on knowledge of the form o* A D (which is, essentially, what was called a model description
in (Grove et al., 1993b)) is either 0 or 1. Very similar techniques can be used to show that
the left-hand side is also either 0 or 1, and that the conjuncts KB A f[¢] do not affect this
limit (so that the left-hand side and the right-hand side are in fact equal). We briefly sketch
the relevant details here, referring the reader to (Grove et al., 1993b) for full details.

The idea (which actually goes back to Fagin (1976)) is to associate with a model descrip-
tion such as 0* A D a theory T which essentially consists of extension azioms. Intuitively,
an extension axiom says that any finite substructure of the model defined by a complete
description D’ can be extended in all possible ways definable by another description D”. We
say that a description D" extends a description D’ if all conjuncts of D’ are also conjuncts in
D". An extension axiom has the form Vzq,...,z; (D' = 32,41 D"), where D' is a complete
description over X = {z1,...,2;} and D" is a complete description over X' U {z;4+1}, such
that D" extends D', both D' and D" extend D, and both are consistent with o*. It is
then shown that (a) 7" is complete (so that for each formula &, either 7' |= € or T |= =€)
and (b) if £ € T then Pro(§|c* A D) = 1. From (b) it easily follows that if 7" |= £, then
Proo(§lo* A D) is also 1. Using (a), the desired 0-1 law follows. The only difference from
the proof in (Grove et al., 1993b) is that we need to show that (b) holds even when we
condition on KB A 0[e] A 0* A D, instead of just on o* A D.

So suppose £ is the extension axiom Vaq,...,z; (D’ = Jzj41 D). We must show that
Proo(§|KB A 0[] A 6* A D) = 1. We first want to show that the right-hand side of the
conditional is consistent. As observed in the previous proof, it follows from Theorem 3.16
that Pro,(D|KB) = P17 (| KB Af[] Ac*). Since we are assuming that Pr. (D|KB) > 0, it
follows that Proo( KB Afle] Ao* A D) > 0, and hence KB Af[e] A o™ A D must be consistent.
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Fix a domain size N and consider the set of worlds satisfying KB A 8[¢] A 0* A D. Now
consider some particular j domain elements, say dy,...,d;, that satisfy D’. Observe that,
since D' extends D, the denotations of the constants are all among dy, ..., d;. For a given
d ¢ {dy,...,d;},let B(d)denote the event that dy,...,d;,d satisfy D", given that dy,...,d;
satisfy D’. What is the probability of B(d) given KB A 8[¢] Ao* A D? First, note that since
d does not denote any constant, it cannot be mentioned in any way in the knowledge base.
Thus, this probability is the same for all d. The description D" determines two types
of properties for z;41. The unary properties of ;4 itself—i.e., the atom A; to which
zj41 must belong—and the relations between z;4; and the remaining variables z,...,z;
using the non-unary predicate symbols. Since D" is consistent with ¢*, the description o*
must contain a conjunct 3z A;(z) if D" implies A;(z;41). By definition, §[¢] must therefore
contain the conjunct ||A;(z)||. > €. Hence, the probability of picking d in A; is at least
€. For any sufliciently large N, the probability of picking d in A; which is different from

di,...,d; (as required by the definition of the extension axiom) is at least ¢/2 > 0. The
probability that dy,...,d;,d also satisfy the remaining conjuncts of D", given that d is
in atom A; and dy,...,d; satisfy D', is very small but bounded away from 0. (For this

to hold, we need the assumption that the non-unary predicates are not mentioned in the
KB.) This is the case because the total number of possible ways to choose the properties
of d (as they relate to dy,...,d;) is independent of N. We can therefore conclude that the
probability of B(d) (for sufficiently large N), given that dy,...,d; satisfy D, is bounded
away from 0 by some A independent of N. Since the properties of an element d and its
relation to dy,...,d; can be chosen independently of the properties of a different element
d', the different events B(d), B(d'),... are all independent. Therefore, the probability that
there is no domain element at all that, together with dy,...,d;, satisfies D" is at most
(1 — \)N=7. This bounds the probability of the extension axiom being false, relative to
fixed dy,...,d;. There are (];7) ways of these choosing j elements, so the probability of the

axiom being false anywhere in a model is at most (]]V)(l —A)N=7. This tends to 0 as N goes

to infinity. Therefore, the extension axiom Vai,...,z; (D’ = da;4; D"”) has asymptotic
probability 1 given KB A 8[e] A 0* A D, as desired. 1

Finally, we are in a position to prove Theorem 4.28.

Theorem 4.28: Let ¢ be a formula in L~ and let KB = KB' A ¢ be an essentially
positive knowledge base in LT which is separable with respect to ¢. Lel Z be the sel of
constanls appearing in @ or in ¢ (so that KB' conlains none of the constants in Z) and
let x* be the formula Necez ¢ # . Assume that there exists a size description o* such

that, for all T > 0, KB and T are stable for ¢*, and that the space Sﬁ[KB] has a unique
mazimum-entropy point ¥. Then

KB) = ZDeAtin) Prec(910” A D) Fip(7)
EDGA(w/\x?‘) F[D](ﬁ)

Proo (e

if the denominator is positive.
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Proof: Assume without loss of generality that ¢» mentions all the constant symbols in ¢,
so that A(v A x*) C A(¢). By Proposition D.3,

KB) = Y Pilip
DeA(W)

Pl (¢ KB AB[| A o™ AD)-Pr7 (D

KB).

KB AB[e] Ao* A D) as 7 goes to 0, because
this expression depends on #[¢] and the value of € used depends on the choice of 7. However,
applying Proposition D.4, we get

Note that we cannot easily take limits of Pr’_(¢p

Prl (¢

KB)= Y Pro(plo*AD)-Prl (D
DeA(y)

KB).

We can now take the limit as 7 goes to 0. To do this, we use Proposition D.2. The
hypotheses of the theorem imply that Pro(¢|KB’) > 0 (for otherwise, the denominator
2 DeA(wnx#) F{p)(¥) would be zero). Part (a) of the proposition tells us we can ignore those
complete descriptions that are inconsistent with y#. We can now apply part (b) to get the
desired result. 1
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