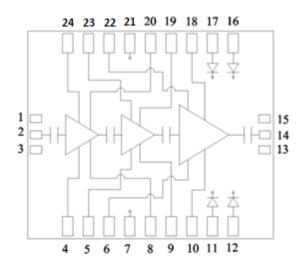


17 - 20 GHz 10 W GaN Power Amplifier

Product Overview

Qorvo's TGA4548-SM is a high frequency, high power MMIC amplifier fabricated on Qorvo's production 0.15um GaN on SiC process (QGaN15). The TGA4548-SM operates from 17 – 20 GHz and typically provides 10 W saturated output power with power-added efficiency of 30% and large-signal gain of 22 dB. This combination of high frequency performance provides the flexibility designers are looking for to improve system performance while reducing size and cost. The TGA4548-SM also has an integrated power detector to support system diagnostics and other needs.


The TGA4548-SM is offered in a small 5x5.5 mm surface mount package, matched to 50Ω and has integrated DC blocking capacitors on both RF ports allowing for simple system integration. The frequency coverage and operational flexibility allows it support satellite communication as well as point to point data links.

The TGA4548-SM is 100% DC and RF tested to ensure compliance to electrical specifications.

Lead-free and RoHS compliant.

Evaluation boards are available upon request.

Functional Block Diagram

24-Lead 5.0 x 5.5 x 1.7 mm Package

Key Features

• Frequency Range: 17 – 20 GHz

Power: 40 dBm PsatSmall Signal Gain: 27 dBLarge Signal Gain: 22 dB

Integrated Power Detector
PAE: 30% at P_{IN} = 12 dBm

 Bias: VD1 = VD2 = VD3 = +28 V, ID1 + ID2 + ID3 = 300 mA

• Package Dimensions: 5.0 x 5.5 x 1.7 mm

Performance is typical across frequency. Please reference electrical specification table and data plots for more details.

Applications

- Point-to-Point Radio
- Satellite Communications

Ordering Information

Part No.	ECCN	Description
TGA4548-SM-T/R	3A001.b.2.c	200 pieces on a 7" reel (standard)
TGA4548-SMS2	3A001.b.2.c	Waffle Tray with 4 pcs
TGA4548-SMEVB	EAR99	Evaluation Board

17 - 20 GHz 10 W GaN Power Amplifier

Absolute Maximum Ratings

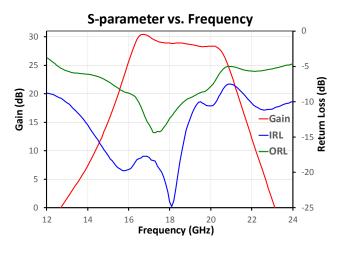
Parameter	Rating		
Drain Voltage (V _D)	29.5 V		
Gate Voltage Range (V _G)	-8 to 0 V		
RF Input Power, CW, 50 Ω, T=25 ℃	26 dBm		
Dissipated Power (P _{DISS}), CW, 85 ℃	45 W		
Storage Temperature	–55 to +150 ℃		
Mounting Temperature (30 seconds)	320 ℃		
Channel Temperature (T _{CH})	275 ℃		
Drain Current (ID1), Top or Bottom	500 mA		
Drain Current (ID2), Top or Bottom	500 mA		
Drain Current (ID3), Top and Bottom	2 A		
Forward Gate Current (I _{G1}), Top or Bottom	3 mA		
Forward Gate Current (I _{G2}), Top or Bottom	12 mA		
Forward Gate Current (I _{G3}), Top and Bottom	48 mA		
Reference Power Detect (I _{ref})	4 mA		
Power Detect Diode (I _{det})	4 mA		
Expending any one or a combination of the Absolute Maximum Dating			

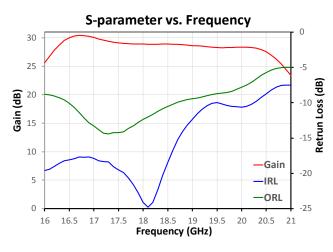
Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability.

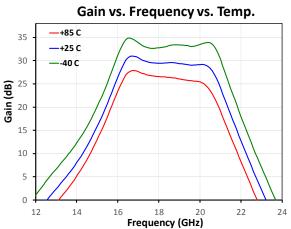
Recommended Operating Conditions

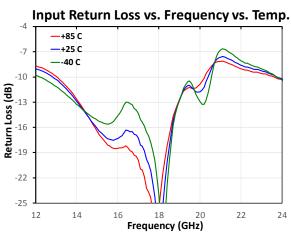
Parameter	Min	Тур	Max	Units
Drain Voltage (V _D)		+28		V
Operating Temp. Range	-40	+25	+85	℃
I _{DQ}		300		mA
V _G		-2.6		V
I _D drive (at +38dBm Pout)		930		mA

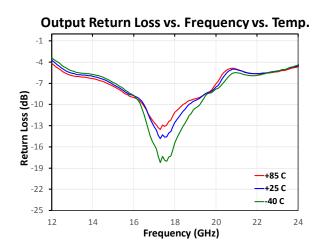
Electrical specifications are measured at specified test conditions. Specifications are not guaranteed over all recommended operating conditions.

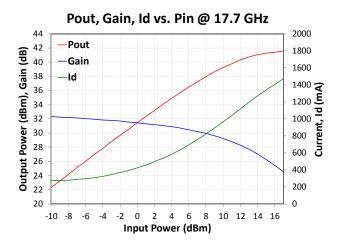

Electrical Specifications

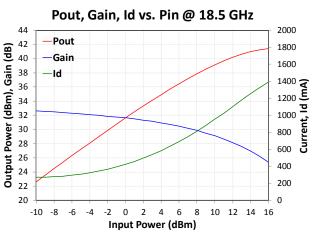

Parameter	Conditions (1)	Min	Тур	Max	Units
Operational Frequency Range		17		20	GHz
Small Signal Gain			27		dB
Input Return Loss			17		dB
Output Return Loss			10		dB
Output Power at Saturation, Psat			41		dBm
	Pin = 12 dBm, 17.7 GHz		34		
Power Added Efficiency, PAE	Pin = 12 dBm, 18.5 GHz		34		%
	Pin = 12 dBm, 19.7 GHz		28		
Third Order Intermodulation, IM3	Pout = +34 dBm/tone		-25		dBc
Gain Temperature Coefficient	T _{diff} = (85 – (–40)) °C		-0.054		dB/℃
Power Temperature Coefficient	$T_{diff} = (85 - (-40))$ °C, $P_{in} = +5 \text{ dBm}$		-0.041		dBm/℃

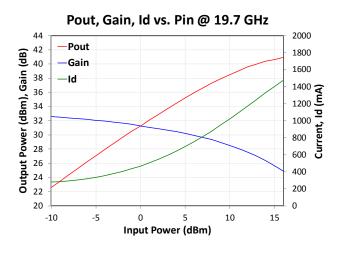

Notes:

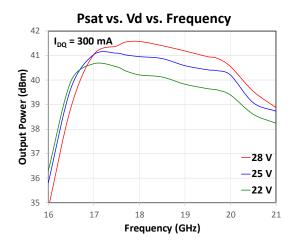

^{1.} Test conditions unless otherwise noted: VD1 = VD2 = VD3 = 28V, ID1 + ID2 + ID3 = 300mA, VG1 = VG2 = VG3 = -2.6V typical, Temp = +25 °C, Z0 = 50 Ω

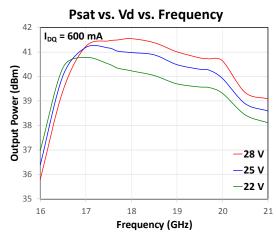


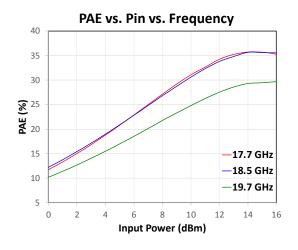


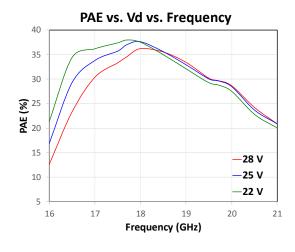


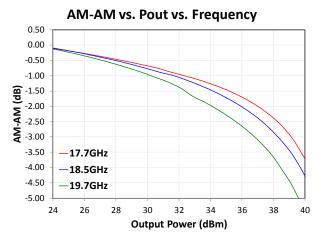


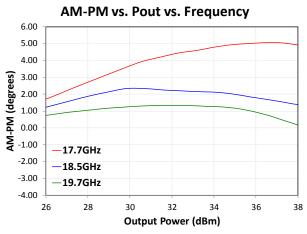


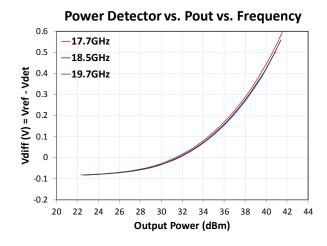


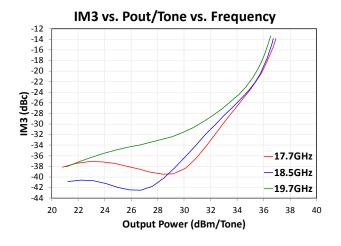


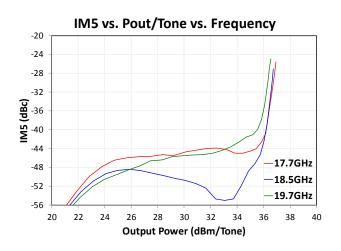




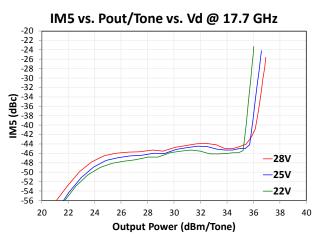




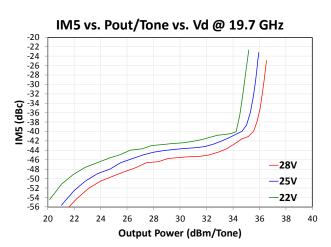




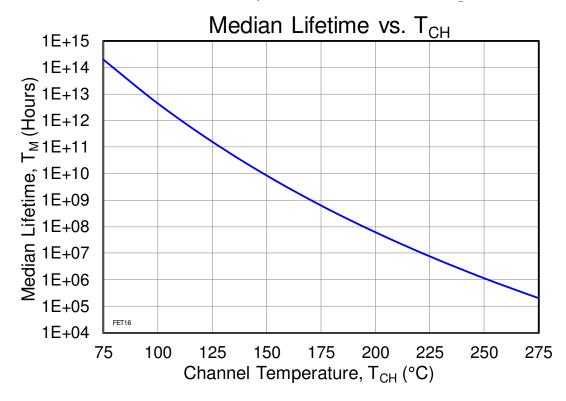






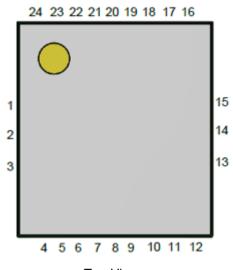


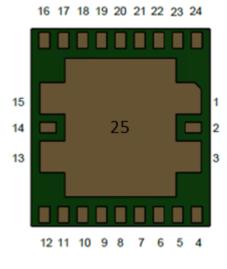
Thermal and Reliability Information


Parameter	Test Conditions	Value	Units
Thermal Resistance (θ _{JC}) (1)	CW	3.57	ºC/W
Channel Temperature, T _{CH} (I _{DQ})	$T_{baseplate} = +85 ^{\circ}\text{C}, V_{D} = +28 \text{V}, I_{D} = 300 \text{mA},$	115	℃
Median Lifetime (T _M)	P _{DISS} = 8.4 W	5.7 x 10 ¹¹	Hrs
Thermal Resistance (θ _{JC}) ⁽¹⁾	CW	3.61	ºC/W
Channel Temperature, T _{CH} (Under RF)	$T_{\text{baseplate}} = +85 ^{\circ}\text{C}, V_{\text{D}} = +28 \text{V}, I_{\text{D}} = 1050 \text{mA},$	155	℃
Median Lifetime (T _M)	Pout = 40 dBm, Poiss = 19.4 W	4.9 x 10 ⁹	Hrs

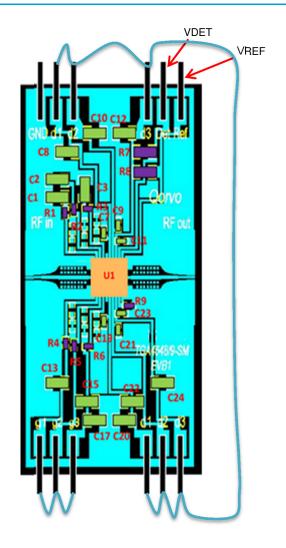
Notes:

1. Channel operating temperature will directly affect the device median lifetime (Tm). For maximum life, it is recommended that the channel temperatures be maintained at the lowest possible levels.


Median Lifetime


Test Conditions: V_D = +28 V; Failure Criteria is 10% reduction in I_{D MAX}

Pad Configuration and Description

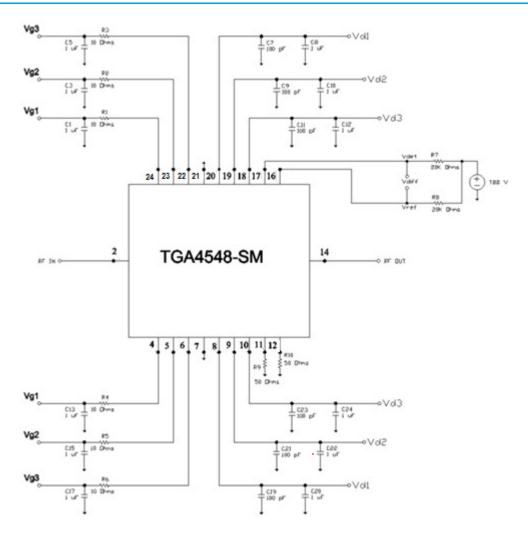

Top View

Bottom View

Pad No.	Label	Description
1, 3, 7, 13, 15, 21	GND	Ground. May be grounded on PCB.
2	RFIN	RF input, matched to 50Ω , AC coupled.
4, 24	VG1	Gate voltage. Bias network is required; can be biased from either pin, and non-biased pin can be left open; see Application Circuit on page 4 as an example.
5, 23	VG2	Gate voltage. Bias network is required; can be biased from either pin, and non-biased pin can be left open; see Application Circuit on page 4 as an example.
6, 22	VG3	Gate voltage. Bias network is required; can be biased from either pin, and non-biased pin can be left open; see Application Circuit on page 4 as an example.
8, 20	VD1	Drain voltage. Bias network is required; see Application circuit on page 4 as an example.
9, 19	VD2	Drain voltage. Bias network is required; see Application circuit on page 4 as an example.
10, 18	VD3	Drain voltage. Bias network is required; see Application circuit on page 4 as an example.
11, 17	VDET	Detector diode output voltage. Varies with RF output power.
12, 16	VREF	Reference diode output voltage
14	RFOUT	RF output, matched to 50Ω , AC coupled.
25	GND	Backside paddle. Multiple vias should be employed to minimize inductance and thermal resistance see Mounting Configuration on page 11 for suggested footprint.

Application Evaluation Board – TGA4548-SM

Notes:


1. Board Material is RO4003 0.008" thickness with ½ oz. copper cladding

Bill of Material - TGA4548-SM Evaluation board

Reference Des.	Value	Description	Manuf.	Part Number
n/a	n/a	Printed Circuit Board	Qorvo	
U1	n/a	17.7 – 19.7 GHz Power Amplifier	Qorvo	TGA4548-SM
C7, C9, C11, C19, C21, C23	100pF	Cap, 0402, 50 V, 5%, COG	various	
C1, C3, C5, C13, C15, C17	1uF	Cap, 0805, 50 V, 5%, X5R	various	
R1-R6	10Ω	Resistor, 0402, 5%, 1/16W, SMD	various	
R7, R8	20kΩ	Resistor, 0805, 5%, SMD	various	
R9	50Ω	Resistor, 0402, 5%, 1/16W, SMD	various	

Application Circuit

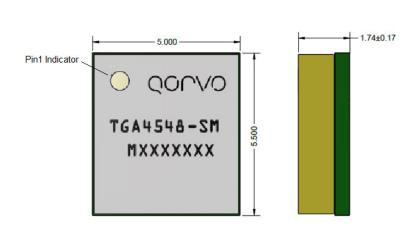
Notes:

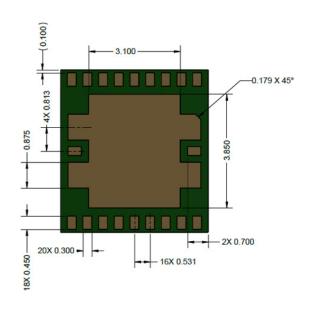
1. VG1, VG2, and VG3 can be biased from either side, and the non-biased side can be left open. VD1, VD2, and VD3 must be biased from both sides.

Bias Up Procedure

- 1. Set I_D limit to 3000 mA, I_G limit to 20 mA
- 2. Apply -5 V to V_G
- 3. Apply +28 V to V_D ; ensure I_{DQ} is approx. 0 mA
- 4. Adjust V_G until $I_{DQ} = 300 \text{ mA}$ ($V_G \sim -2.3 \text{ V Typ.}$).
- 5. Turn on RF supply

Bias Down Procedure

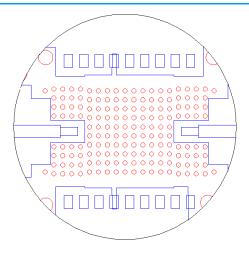

- 1. Turn off RF supply
- 2. Reduce V_G to -5 V; ensure I_{DQ} is approx. 0 mA
- 3. Set V_D to $0\,V$
- 4. Turn off V_D supply
- 5. Turn off V_G supply



Package Marking and Dimensions

Marking: Part Number - TGA4548X-SM

Vendor and Lot Code – MXXXXXXX; "M" is the vendor code, XXXXXXX represents assembly lot number.



Notes:

This package is lead-free/RoHS-compliant with an embedded heat spreader, and the plating material on the leads is NiAu. It is compatible with both lead-free (maximum 260 °C reflow temperature) and tin-lead (maximum 245 °C reflow temperature) soldering processes.

PCB Mounting Pattern

Notes:

- 1. All dimensions are in millimeters. Angles are in degrees.
- 2. Ground vias are critical for the proper performance of this device. Vias should have a final plated thru diameter of .1524 mm (.006").
- 3. For best thermal performance, vias under the ground paddle should be copper filled.
- 4. The pad pattern shown has been developed and tested for optimized assembly at Qorvo. The PCB land pattern has been developed to accommodate lead and package tolerances. Since surface mount processes vary from company to company, careful process development is recommended.

17 - 20 GHz 10 W GaN Power Amplifier

Handling Precautions

Parameter	Rating	Standard	
ESD-Human Body Model (HBM)	0B	ESDA/JEDEC JS-001-2012	Caution! ESD-Sensitive Device

Solderability

Compatible with lead-free (260 °C max. reflow temp.) soldering process.

Solder profiles available upon request. Use of no-clean solder to avoid washing after soldering is recommended.

Contact plating: NiAu

RoHS Compliance

This part is compliant with 2011/65/EU RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment) as amended by Directive 2015/863/EU.

This product also has the following attributes:

- Lead Free
- Antimony Free
- TBBP-A (C₁₅H₁₂Br₄0₂) Free
- PFOS Free
- SVHC Free

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations:

Web: <u>www.qorvo.com</u> Tel: 1-844-890-8163

Email: customer.support@qorvo.com

Notes:

- 1. Empty part cavities at the trailing and leading ends are sealed with cover tape. See EIA 481-1-A.
- 2. Labels are placed on the flange opposite the sprockets in the carrier tape.

Important Notice

The information contained herein is believed to be reliable; however, Qorvo makes no warranties regarding the information contained herein and assumes no responsibility or liability whatsoever for the use of the information contained herein. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for Qorvo products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information. THIS INFORMATION DOES NOT CONSTITUTE A WARRANTY WITH RESPECT TO THE PRODUCTS DESCRIBED HEREIN, AND QORVO HEREBY DISCLAIMS ANY AND ALL WARRANTIES WITH RESPECT TO SUCH PRODUCTS WHETHER EXPRESS OR IMPLIED BY LAW, COURSE OF DEALING, COURSE OF PERFORMANCE, USAGE OF TRADE OR OTHERWISE, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Without limiting the generality of the foregoing, Qorvo products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.

Copyright 2016 @ Qorvo, Inc. | Qorvo is a registered trademark of Qorvo, Inc.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Qorvo:

TGA4548-SM