
- Sensitive Gate Triacs
- 8 A RMS, 70 A Peak
- Glass Passivated Wafer
- 400 V to 800 V Off-State Voltage
- Max I<sub>GT</sub> of 5 mA (Quadrant 1)



Pin 2 is in electrical contact with the mounting base.

MDC2ACA

#### absolute maximum ratings over operating case temperature (unless otherwise noted)

| RATING                                                                                      | SYMBOL  | VALUE            | UNIT        |    |
|---------------------------------------------------------------------------------------------|---------|------------------|-------------|----|
| Repetitive peak off-state voltage (see Note 1)                                              | TIC225D |                  | 400         |    |
|                                                                                             | TIC225M | V                | 600         | V  |
|                                                                                             | TIC225S | V <sub>DRM</sub> | 700         | V  |
|                                                                                             | TIC225N |                  | 800         |    |
| Full-cycle RMS on-state current at (or below) 70°C case temperature (see Note 2)            |         |                  | 8           | Α  |
| Peak on-state surge current full-sine-wave at (or below) 25°C case temperature (see Note 3) |         |                  | 70          | Α  |
| Peak gate current                                                                           |         |                  | ±1          | Α  |
| Peak gate power dissipation at (or below) 85°C case temperature (pulse width ≤ 200 μs)      |         |                  | 2.2         | W  |
| Average gate power dissipation at (or below) 85°C case temperature (see Note 4)             |         |                  | 0.9         | W  |
| Operating case temperature range                                                            |         |                  | -40 to +110 | °C |
| Storage temperature range                                                                   |         |                  | -40 to +125 | °C |
| Lead temperature 1.6 mm from case for 10 seconds                                            |         |                  | 230         | °C |

- NOTES: 1. These values apply bidirectionally for any value of resistance between the gate and Main Terminal 1.
  - 2. This value applies for 50-Hz full-sine-wave operation with resistive load. Above 70°C derate linearly to 110°C case temperature at the rate of 200 mA/°C.
  - 3. This value applies for one 50-Hz full-sine-wave when the device is operating at (or below) the rated value of on-state current. Surge may be repeated after the device has returned to original thermal equilibrium. During the surge, gate control may be lost.
  - 4. This value applies for a maximum averaging time of 20 ms.

#### electrical characteristics at 25°C case temperature (unless otherwise noted)

|                  | PARAMETER                         |                                            | TEST CONDIT        | IONS                      | MIN | MIN TYP MAX |     |    |
|------------------|-----------------------------------|--------------------------------------------|--------------------|---------------------------|-----|-------------|-----|----|
| I <sub>DRM</sub> | Repetitive peak off-state current | $V_D = \text{rated } V_{DRM}$              | I <sub>G</sub> = 0 | T <sub>C</sub> = 110°C    |     |             | ±2  | mA |
| I <sub>GT</sub>  |                                   | V <sub>supply</sub> = +12 V†               | $R_L = 10 \Omega$  | t <sub>p(g)</sub> > 20 μs |     | 2.3         | 5   | mA |
|                  | Gate trigger                      | $V_{\text{supply}} = +12 \text{ V}\dagger$ | $R_L = 10 \Omega$  | $t_{p(g)} > 20 \mu s$     |     | -3.8        | -20 |    |
|                  | current                           | $V_{\text{supply}} = -12 \text{ V}\dagger$ | $R_L = 10 \Omega$  | $t_{p(g)} > 20 \ \mu s$   |     | -3          | -10 |    |
|                  |                                   | V <sub>supply</sub> = -12 V†               | $R_L = 10 \Omega$  | t <sub>p(g)</sub> > 20 μs |     | 6           | 30  |    |

<sup>†</sup> All voltages are with respect to Main Terminal 1.

### PRODUCT INFORMATION



### electrical characteristics at 25°C case temperature (unless otherwise noted) (continued)

|                                 | PARAMETER                | TEST CONDITIONS                                                                                |                                        |                                                | MIN | TYP         | MAX     | UNIT         |
|---------------------------------|--------------------------|------------------------------------------------------------------------------------------------|----------------------------------------|------------------------------------------------|-----|-------------|---------|--------------|
|                                 | Gate trigger             | V <sub>supply</sub> = +12 V†                                                                   | $R_L = 10 \Omega$<br>$R_L = 10 \Omega$ | $t_{p(g)} > 20 \mu s$<br>$t_{p(g)} > 20 \mu s$ |     | 0.7<br>-0.7 | 2<br>-2 |              |
| $V_{GT}$                        | voltage                  | $V_{\text{supply}} = +12 \text{ V}^{\dagger}$<br>$V_{\text{supply}} = -12 \text{ V}^{\dagger}$ | $R_L = 10 \Omega$                      | $t_{p(g)} > 20 \mu s$<br>$t_{p(g)} > 20 \mu s$ |     | -0.7        | -2      | V            |
|                                 |                          | $V_{\text{supply}} = -12 \text{ V}\dagger$                                                     | $R_L = 10 \Omega$                      | $t_{p(g)} > 20 \mu s$                          |     | 0.8         | 2       |              |
| $V_{T}$                         | On-state voltage         | I <sub>T</sub> = ±12 A                                                                         | $I_G = 50 \text{ mA}$                  | (see Note 5)                                   |     | ±1.5        | ±2.1    | V            |
|                                 | Holding current          | $V_{\text{supply}} = +12 \text{ V}\dagger$                                                     | $I_G = 0$                              | Init' $I_T = 100 \text{ mA}$                   |     | 2.3         | 20      | mA           |
| l <sub>H</sub>                  | riolaling carrent        | $V_{\text{supply}} = -12 \text{ V}\dagger$                                                     | $I_G = 0$                              | Init' $I_T = -100 \text{ mA}$                  |     | -1.6        | -20     | ША           |
| I <sub>L</sub> Latching current | Latching current         | $V_{\text{supply}} = +12 \text{ V}^{\dagger}$                                                  | (see Note 6)                           |                                                |     |             | 30      | mA           |
|                                 | Latering Garrent         | $V_{\text{supply}} = -12 \text{ V}\dagger$                                                     | (000 11010 0)                          |                                                |     |             | -30     |              |
| dv/dt                           | Critical rate of rise of | V <sub>DBM</sub> = Rated V <sub>DBM</sub>                                                      | I <sub>G</sub> = 0                     | T <sub>C</sub> = 110°C                         |     | ±20         |         | V/µs         |
| av/at                           | off-state voltage        | VDRM = Hated VDRM                                                                              | 'G = 0                                 | 1C = 110 O                                     |     | 120         |         | <b>ν</b> /μο |
| d. /dt                          | Critical rise of         | V DetectV                                                                                      | .40.4                                  | T <sub>C</sub> = 70°C                          | . 4 | . 4 5       |         | 1////        |
| dv/dt <sub>(c)</sub>            | commutation voltage      | V <sub>DRM</sub> = Rated V <sub>DRM</sub>                                                      | $I_{TRM} = \pm 12 A$                   | (see Figure 6)                                 | ±1  | ±4.5        |         | V/µs         |

<sup>†</sup> All voltages are with respect to Main Terminal 1.

#### thermal characteristics

| PARAMETER       |                                         |  | TYP | MAX  | UNIT |
|-----------------|-----------------------------------------|--|-----|------|------|
| $R_{\theta JC}$ | Junction to case thermal resistance     |  |     | 2.5  | °C/W |
| $R_{\theta JA}$ | Junction to free air thermal resistance |  |     | 62.5 | °C/W |

NOTES: 5. This parameter must be measured using pulse techniques,  $t_p = \le 1$  ms, duty cycle  $\le 2$  %. Voltage-sensing contacts separate from the current carrying contacts are located within 3.2 mm from the device body.

<sup>6.</sup> The triacs are triggered by a 15-V (open-circuit amplitude) pulse supplied by a generator with the following characteristics:  $R_G = 100 \ \Omega$ ,  $t_{p(g)} = 20 \ \mu s$ ,  $t_r = \le 15 \ ns$ ,  $f = 1 \ kHz$ 

#### **TYPICAL CHARACTERISTICS**

### GATE TRIGGER CURRENT vs

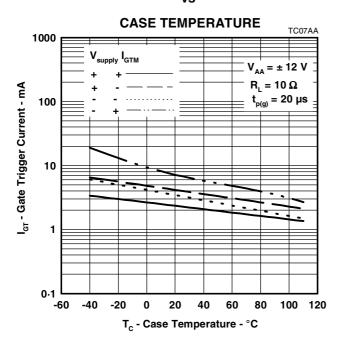



Figure 1.

# HOLDING CURRENT vs

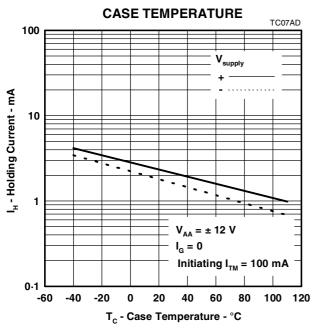
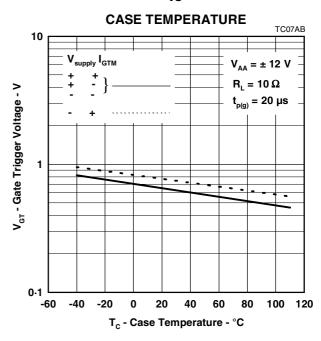
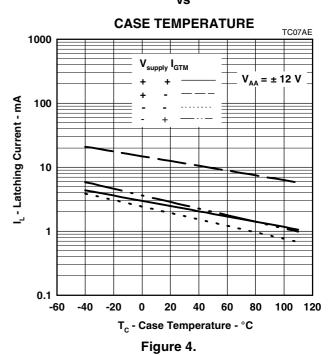
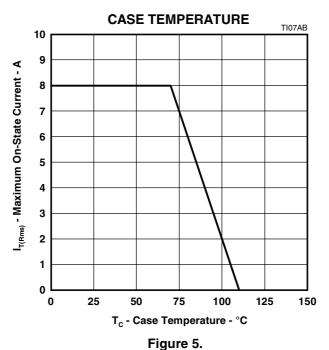


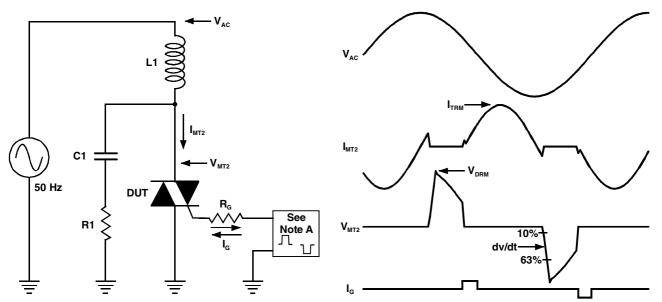

Figure 3.

### GATE TRIGGER VOLTAGE vs



Figure 2.

### LATCHING CURRENT vs




#### THERMAL INFORMATION

## MAXIMUM RMS ON-STATE CURRENT vs



### PARAMETER MEASUREMENT INFORMATION



NOTE A: The gate-current pulse is furnished by a trigger circuit which presents essentially an open circuit between pulses. The pulse is timed so that the off-state-voltage duration is approximately 800 µs.

PMC2AA

Figure 6.

### **Mouser Electronics**

**Authorized Distributor** 

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

### Bourns:

TIC225N-S TIC225S-S TIC225D-S TIC225M-S