
- High Current Triacs
- 12 A RMS
- Glass Passivated Wafer
- 400 V to 800 V Off-State Voltage
- Max I_{GT} of 50 mA (Quadrants 1 3)

Pin 2 is in electrical contact with the mounting base.

MDC2ACA

absolute maximum ratings over operating case temperature (unless otherwise noted)

RATING			VALUE	UNIT
	TIC236D		400	
Repetitive peak off-state voltage (see Note 1)	TIC236M	W	600	V
	TIC236S	V_{DRM}	700	
	TIC236N		800	
Full-cycle RMS on-state current at (or below) 70°C case temperature (see Note 2)			12	Α
Peak on-state surge current full-sine-wave at (or below) 25°C case temperature (see Note 3)			100	Α
Peak gate current			±1	Α
Operating case temperature range			T _C -40 to +110	
Storage temperature range			-40 to +125	°C
Lead temperature 1.6 mm from case for 10 seconds			230	°C

- NOTES: 1. These values apply bidirectionally for any value of resistance between the gate and Main Terminal 1.
 - This value applies for 50-Hz full-sine-wave operation with resistive load. Above 70°C derate linearly to 110°C case temperature at the rate of 300 mA/°C.
 - 3. This value applies for one 50-Hz full-sine-wave when the device is operating at (or below) the rated value of peak reverse volta ge and on-state current. Surge may be repeated after the device has returned to original thermal equilibrium.

electrical characteristics at 25°C case temperature (unless otherwise noted)

PARAMETER			TEST CONDITIONS			TYP	MAX	UNIT
I _{DRM}	Repetitive peak off-state current	V _D = Rated V _{DRM}	I _G = 0	T _C = 110°C			±2	mA
I _{GT}		$V_{\text{supply}} = +12 \text{ V}\dagger$	$R_L = 10 \Omega$	t _{p(g)} > 20 μs		12	50	
	Gate trigger	$V_{\text{supply}} = +12 \text{ V}\dagger$	$R_L = 10 \Omega$	$t_{p(g)} > 20 \mu s$		-19	-50	mA
	current	$V_{\text{supply}} = -12 \text{ V}\dagger$	$R_L = 10 \Omega$	$t_{p(g)} > 20 \mu s$		-16	-50	
		$V_{\text{supply}} = -12 \text{ V}\dagger$	$R_L = 10 \Omega$	$t_{p(g)} > 20 \mu s$		34		
V _{GT}		$V_{\text{supply}} = +12 \text{ V}^{\dagger}$	$R_L = 10 \Omega$	t _{p(g)} > 20 μs		0.8	2	
	Gate trigger	$V_{\text{supply}} = +12 \text{ V}\dagger$	$R_L = 10 \Omega$	$t_{p(g)} > 20 \mu s$		-0.8	-2	V
	voltage	$V_{\text{supply}} = -12 \text{ V}\dagger$	$R_L = 10 \Omega$	$t_{p(g)} > 20 \mu s$		-0.8	-2	
		$V_{\text{supply}} = -12 \text{ V}\dagger$	$R_L = 10 \Omega$	$t_{p(g)} > 20 \mu s$		0.9	2	
V _T	On-state voltage	I _{TM} = ±17 A	$I_G = 50 \text{ mA}$	(see Note 4)		±1.4	±2.1	V

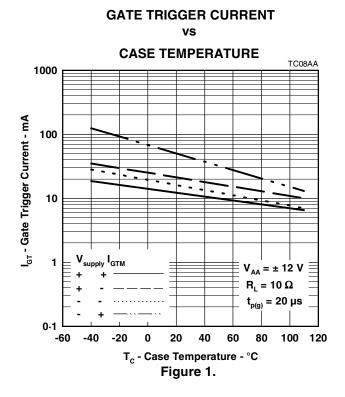
[†] All voltages are with respect to Main Terminal 1.

NOTE 4: This parameter must be measured using pulse techniques, t_p = ≤ 1 ms, duty cycle ≤ 2 %. Voltage-sensing contacts separate from the current carrying contacts are located within 3.2 mm from the device body.

PRODUCT INFORMATION

electrical characteristics at 25°C case temperature (unless otherwise noted) (continued)

	PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
I _H	Holding current	V _{supply} = +12 V†	I _G = 0	Init' I _{TM} = 100 mA		22	40	mA
		$V_{\text{supply}} = -12 \text{ V}^{\dagger}$	$I_G = 0$	Init' $I_{TM} = -100 \text{ mA}$		-12	-40	111/4
IL	Latching current	$V_{\text{supply}} = +12 \text{ V}^{\dagger}$	(see Note 5)				80	mA
	Laterling Current	$V_{\text{supply}} = -12 \text{ V}\dagger$	(see Note 5)				-80	ША
dv/dt	Critical rate of rise of	V _D = Rated V _D	I _G = 0	T _C = 110°C		±400		V/µs
	off-state voltage					±400		ν/μδ
dv/dt _(c)	Critical rise of	$V_D = Rated V_D$		$T_C = 80^{\circ}C$	±1.2	±9		V/µs
	commutation voltage	$di/dt = 0.5 I_{T(RMS)}/ms$		$I_{T} = 1.4 I_{T(RMS)}$				ν/μδ
di/dt	Critical rate of rise of	$V_D = Rated V_D$	$I_{GT} = 50 \text{ mA}$ $T_C = 110^{\circ}\text{C}$	T. = 110°C		±100		A/µs
	on -state current	$di_G/dt = 50 \text{ mA/}\mu\text{s}$		10 - 110 0		±100		<i>Α</i> /μδ

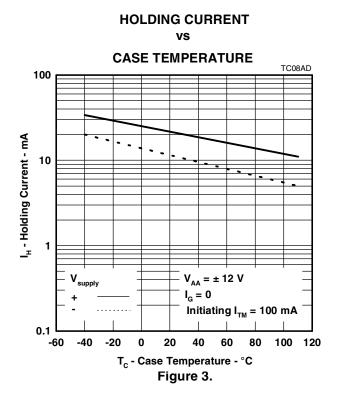

[†] All voltages are with respect to Main Terminal 1.

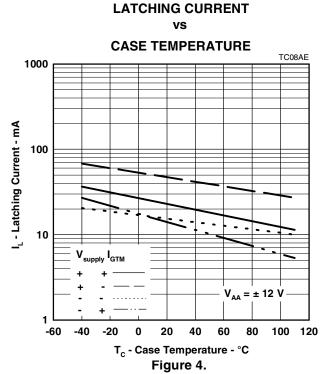
NOTE 5: The triacs are triggered by a 15-V (open-circuit amplitude) pulse supplied by a generator with the following characteristics: $R_G = 100 \ \Omega$, $t_{p(g)} = 20 \ \mu s$, $t_r = \le 15 \ ns$, $f = 1 \ kHz$.

thermal characteristics

PARAMETER		MIN	TYP	MAX	UNIT
$R_{\theta JC}$	Junction to case thermal resistance			2	°C/W
$R_{\theta JA}$	Junction to free air thermal resistance			62.5	°C/W

TYPICAL CHARACTERISTICS




vs **CASE TEMPERATURE** TC08AB 10 $V_{\rm gr}$ - Gate Trigger Voltage - V supply GTM = ± 12 V $R_1 = 10 \Omega$ t_{p(g)} = 20 μs -60 -40 -20 0 20 40 60 80 100 120 T_c - Case Temperature - °C Figure 2.

GATE TRIGGER VOLTAGE

PRODUCT INFORMATION

TYPICAL CHARACTERISTICS

