

Distributed by:

www.Jameco.com ♦ 1-800-831-4242

The content and copyrights of the attached
material are the property of its owner.

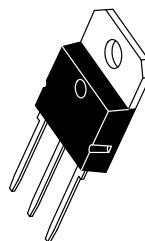
Jameco Part Number 211385

Complementary Silicon Power Transistors

... designed for general-purpose switching and amplifier applications.

- DC Current Gain — $h_{FE} = 20-70$ @ $I_C = 4.0$ Adc
- Collector-Emitter Saturation Voltage — $V_{CE(sat)} = 1.1$ Vdc (Max) @ $I_C = 4.0$ Adc
- Excellent Safe Operating Area

MAXIMUM RATINGS


Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V_{CEO}	60	Vdc
Collector-Emitter Voltage	V_{CER}	70	Vdc
Collector-Base Voltage	V_{CB}	100	Vdc
Emitter-Base Voltage	V_{EB}	7.0	Vdc
Collector Current — Continuous	I_C	1.5	Adc
Base Current	I_B	7.0	Adc
Total Power Dissipation @ $T_C = 25^\circ\text{C}$ Derate above 25°C	P_D	90 0.72	Watts W/ $^\circ\text{C}$
Operating and Storage Junction Temperature Range	T_J, T_{stg}	-65 to +150	$^\circ\text{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	1.39	$^\circ\text{C}/\text{W}$
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	35.7	$^\circ\text{C}/\text{W}$

NPN
TIP3055
PNP
TIP2955

15 AMPERE
POWER TRANSISTORS
COMPLEMENTARY
SILICON
60 VOLTS
90 WATTS

CASE 340D-02

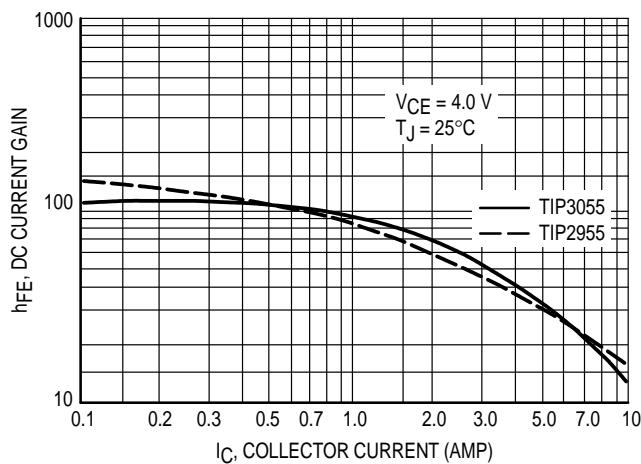
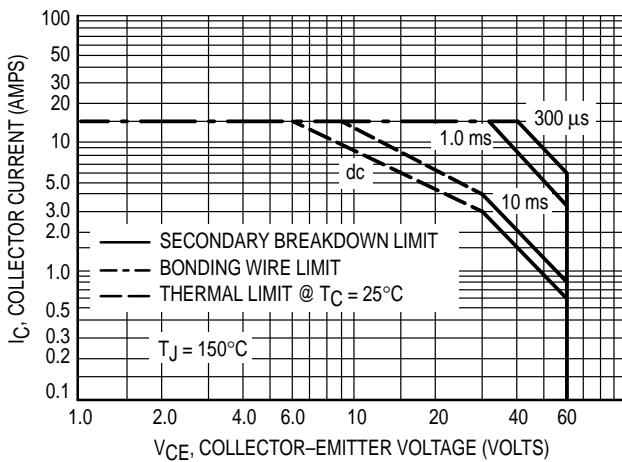


Figure 1. DC Current Gain

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector-Emitter Sustaining Voltage (1) (I _C = 30 mA, I _B = 0)	V _{CEO(sus)}	60	—	Vdc
Collector Cutoff Current (V _{CE} = 70 Vdc, R _{BE} = 100 Ohms)	I _{CER}	—	1.0	mA
Collector Cutoff Current (V _{CE} = 30 Vdc, I _B = 0)	I _{CEO}	—	0.7	mA
Collector Cutoff Current (V _{CE} = 100 Vdc, V _{BE(off)} = 1.5 Vdc)	I _{CEV}	—	5.0	mA
Emitter Cutoff Current (V _{BE} = 7.0 Vdc, I _C = 0)	I _{EBO}	—	5.0	mA
ON CHARACTERISTICS (1)				
DC Current Gain (I _C = 4.0 Adc, V _{CE} = 4.0 Vdc) (I _C = 10 Adc, V _{CE} = 4.0 Vdc)	h _{FE}	20 5.0	70 —	—
Collector-Emitter Saturation Voltage (I _C = 4.0 Adc, I _B = 400 mA) (I _C = 10 Adc, I _B = 3.3 Adc)	V _{CE(sat)}	— —	1.1 3.0	Vdc
Base-Emitter On Voltage (I _C = 4.0 Adc, V _{CE} = 4.0 Vdc)	V _{BE(on)}	—	1.8	Vdc

SECOND BREAKDOWN

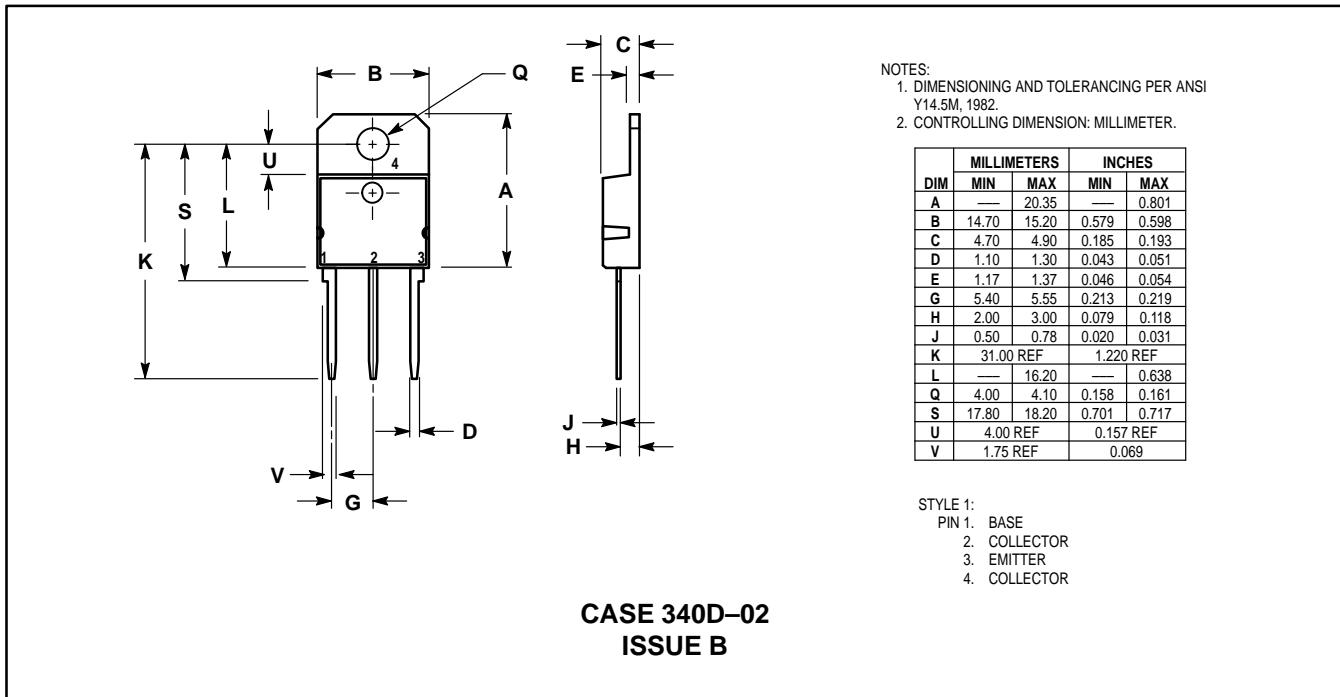

Second Breakdown Collector Current with Base Forward Biased (V _{CE} = 30 Vdc, t = 1.0 s; Nonrepetitive)	I _{s/b}	3.0	—	Adc
---	------------------	-----	---	-----

DYNAMIC CHARACTERISTICS

Current Gain — Bandwidth Product (I _C = 0.5 Adc, V _{CE} = 10 Vdc, f = 1.0 MHz)	f _T	2.5	—	MHz
Small-Signal Current Gain (V _{CE} = 4.0 Vdc, I _C = 1.0 Adc, f = 1.0 kHz)	h _{fe}	15	—	kHz

(1) Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%.

NOTE: For additional design curves, refer to electrical characteristics curves of 2N3055.



**Figure 2. Maximum Rated Forward Bias
Safe Operating Area**

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate I_C – V_{CE} limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 2 is based on T_C = 25°C; T_{J(pk)} is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated for temperature.

PACKAGE DIMENSIONS

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE/ Locations Not Listed: Motorola Literature Distribution;
P.O. Box 20912; Phoenix, Arizona 85036. 1-800-441-2447 or 602-303-5454

MFAX: RMFAX0@email.sps.mot.com – **TOUCHTONE** 602-244-6609
INTERNET: <http://Design-NET.com>

JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, 6F Seibu-Butsuryu-Center,
3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 03-81-3521-8315

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

