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Abstract

We present the implementation and results of a model tuning and ensemble fore-
casting experiment using an ensemble Kalman filter for the simultaneous estima-
tion of 12 parameters in a low resolution coupled atmosphere-ocean Earth System
Model by tuning it to realistic data sets consisting of Levitus ocean tempera-
ture/salinity climatology, and NCEP/NCAR atmospheric temperature/humidity
reanalysis data. The resulting ensemble of tuned model states is validated by
comparing various diagnostics, such as mass and heat transports, to observational
estimates and other model results. We show that this ensemble has a very rea-
sonable climatology, with the 3-D ocean in particular having comparable realism
to much more expensive coupled numerical models, at least in respect of these
averaged indicators.

A simple global warming experiment is performed to investigate the response and
predictability of the climate to a change in radiative forcing, due to 100 years of 1%
per annum atmospheric CO; increase. The equilibrium surface air temperature
rise for this COy increase is 4.2 4+ 0.1°C, which is approached on a time scale
of 1000 years. The simple atmosphere in this version of the model is missing
several factors which, if included, would substantially increase the uncertainty of
this estimate. However, even within this ensemble, there is substantial regional
variability due to the possibility of collapse of the North Atlantic thermohaline
circulation (THC), which switches off in more than one third of the ensemble
members. For these cases, the regional temperature is not only 3-5°C colder than
in the warmed worlds where the THC remains switched on, but is also 1-2°C
colder than the current climate.

Our results, which illustrate how objective probabilistic projections of future cli-
mate change can be efficiently generated, indicate a substantial uncertainty in the
long-term future of the THC, and therefore the regional climate of western Eu-
rope. However, this uncertainty is only apparent in long-term integrations, with
the initial transient response being similar across the entire ensemble. Applica-
tion of this ensemble Kalman filtering technique to more complete climate models
would improve the objectivity of probabilistic forecasts and hence should lead to
significantly increased understanding of the uncertainty of our future climate.



1 Introduction

In contrast to short-term operational weather prediction, climate forecasts (for
a given set of boundary conditions, ie a specific scenario) depend more strongly
on parameterisations and less strongly on initial conditions. At the multi-decadal
time scale and beyond, model estimates of the response to anthropogenic forcing
(as measured by for example the typical indicator of global mean surface air tem-
perature) substantially exceed the range of natural variability (Collins & Allen,
2002). However, the magnitude of the response depends greatly on the nature of
the parameterisations contained within the model, and the particular parameter
values selected (Houghton et al., 2001). Therefore, in order to generate mean-
ingful predictions, it is important that the parameter values should be tuned to
appropriate values. Moreover, given that no deterministic prediction will ever be
exactly correct, it is also important to quantify the uncertainty associated with a
forecast, which itself depends on the confidence with which parameter values can
be determined. For these reasons, the problem of parameter estimation in climate
modelling has recently attracted a great deal of attention (eg Forest et al., 2000;
Andronova & Schlesinger, 2001; Knutti et al., 2002; Gregory et al., 2002). We have
introduced, in Annan et al. (2004) and Annan & Hargreaves (2004), a new param-
eter estimation system based on the ensemble Kalman filter (EnKF) (Evensen,
1994; Keppenne, 2000). The potential of the system was clearly demonstrated by
application to identical twin testing with a new Earth system model of intermedi-
ate complexity (EMIC). We were able to simultaneously estimate 12 parameters
from observations of the climatological mean model state, with an ensemble of
only 54 model runs. This represents a large increase in efficiency when compared
to the rather simple Bayesian and brute-force sampling methods that have been
previously used. Identical twin testing, where the model itself is used to generate
synthetic data, is a useful step in the development of assimilation methods, but
can be a rather weak test. In that type of experiment, the error statistics of the
surrogate observations are known precisely, and the perfect model assumption is
not challenged. Both of these factors may play an important role in real appli-
cations using observational data. In this paper, we demonstrate the application
of the parameter estimation method in tuning the EMIC to realistic climatology
consisting of ocean temperature and salinity, from 1945 to 1998 (Levitus, 1998),
and NCEP/NCAR atmospheric reanalysis data (surface air temperature and hu-
midity only) averaged between 1948-2002 (NCEP Reanalysis data provided by the
NOAA-CIRES Climate Diagnostics Center, Boulder, Colorado, USA, from their
Web site at http://www.cdc.noaa.gov/).

We briefly introduce the model, data and method in Section 2. The importance
of model error is discussed, and we describe a simple method to account for it.
In Section 3, we present the results of tuning the model to the climatological
data, and validate it by comparison with various observational and model-based



estimates of heat and mass transports. Although this model has a rather low
resolution and a highly simplified representation of many physical processes, it
appears to give a realistic description of large-scale circulation, comparable to the
much more expensive and complex models of CMIP (Coupled Model Intercom-
parion Project, http://www-pcmdi.1llnl.gov/cmip/). This in itself is a clear
illustration of the power of the tuning procedure.

We further investigate the response of the ensemble to some idealised anthro-
pogenic COy emissions scenarios in Section 4. The effect of changing atmospheric
CO, is parameterised as a direct radiative forcing of 4Wm=? for each doubling of
COg, and the model omits a large variety of carbon-cycle and atmospheric dynami-
cal feedbacks such as the highly uncertain aerosol and cloud feedback mechanisms,
so this experiment is best considered as a demonstration of the potential of the
method rather than a definitive forecast of future climate change. Even though
the globally averaged climate change is highly constrained due to the simplicity
of the model, there is significant local uncertainty due primarily to the possible
collapse of the North Atlantic thermohaline circulation (THC). The probability
of a collapse of the North Atlantic THC is quantified, with the outcome highly
sensitive to the level of CO; reached. We end with some conclusions in Section 5.

2 Model, data and method

2.1 Model

The model, C-GOLDSTEIN, was outlined in Annan et al. (2004) and is described
more fully in Edwards & Marsh (2003). Briefly, it is a prototype EMIC being con-
structed as part of the GENIE project (http://www.genie.ac.uk/). The version
used here is a coupled atmosphere-ocean general circulation model on a 36 x 36
equal-area horizontal grid. The resolution and topography along with some model
output is shown in Figures 1 and 2. The ocean is a 3-D frictional geostrophic model
on an 8-level z-coordinate grid (Edwards & Shepherd, 2002) and the atmosphere
is a 2-D energy/moisture balance model similar to that of Weaver et al. (2001).
The model also contains a simple thermodynamic and dynamic sea ice formulation
following Semtner (1976) and Hibler (1979). Further components including bio-
geochemical cycles, dynamical land ice sheets and a low-resolution 3-D dynamical
atmosphere are currently under development. A major feature of this model is its
computational efficiency, which allows integration to equilibrium (~ 2,000 model
years from a cold start) in only a few hours on a desktop computer.

We tune the same set of 12 parameters as in Edwards & Marsh (2003) and Annan
et al. (2004), and for clarity we repeat their description here. Ocean temperature



and salinity are diffused along and across isopycnal surfaces with constant diffu-
sivities, and advected by the frictional geostrophic velocity field. The frictional
drag coefficient (representing nonlinear momentum terms) is spatially variable,
increasing near steep topographic features and near the equator from a constant
interior value. To counteract the dissipative effect of the drag and the uncertainty
of the momentum flux from the atmosphere to the ocean (which depends on the
surface roughness) we allow for a scaling factor of the wind stress. In the one-layer
atmosphere, diffusivity of surface specific humidity is constant, while diffusivity
of surface temperature is an asymmetric function of latitude. Here we wish to
consider the effect of varying the width and asymmetry of this function and thus
we define the temperature diffusivity k7 via

20 + La- Sd)exp(—iézlif) _ c) ’

. ( (1)

where 6 is latitude (in radians), [; and s, are width and slope parameters and the

constant ¢ is given by
2
e=en (- (7)) )

The vertically averaged effect of atmospheric advective transport is represented
by advection with a fixed surface wind field derived from NCEP analysis, scaled
by a coefficient, following Weaver et al. (2001), which takes different values for
moisture advection and for the zonal advection of heat. There is no meridional
advection of heat in the model atmosphere. To compensate for a lack of inter-basin
moisture transport produced by our simplified atmosphere we introduce a constant
redistribution of moisture from the surface Atlantic to Pacific following the pattern
observed by Oort (1983). This ‘flux adjustment’ is an important parameter of the
model hydrological cycle, but is unrelated to the flux adjustments required in early
coupled models to prevent climate drift, which is not a problem for this model.
Sea ice height and fractional area are advected by the surface ocean currents and
diffused with constant diffusivity.

With two diffusivities in the ocean and one for sea ice, an Atlantic-Pacific mois-
ture flux adjustment, two parameters controlling wind-driven circulation and six
parameters controlling the atmospheric heat and moisture transport, we have a
set of 12 model parameters which are allowed to vary. The prior distributions
for all 12 parameters are given in Table 1, along with the results that will be
discussed in Section 3. The ranges of the distributions are chosen to cover, or
exceed, a range of reasonable choices of appropriate values for such a model as
discussed by Edwards & Marsh (2003). When the model is repeatedly run using
parameters chosen independently at random from these priors, the climatologies
produced span a large range which is generally well in excess of the uncertainty of
the true climate state (some diagnostics of this prior are mentioned in Section 3).
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Thus, we are deliberately starting from a position of substantial ignorance in order
to investigate what can be objectively determined from the data alone.

2.2 Method

The assimilation method is an iterative application of the EnKF, and is described
more fully in Annan et al. (2004). The climatological parameter estimation prob-
lem studied in this paper is a steady state problem, somewhat different in detail
(and in principle simpler) than the more conventional time-varying implemen-
tations of the EnKF. However, the prior assumption of substantial ignorance,
combined with the nonlinearity of the model and high dimensionality of the pa-
rameter space being explored, means that a direct solution of the steady state
problem does not work well. Therefore, an iterative scheme has been developed
which repeats a cycle of ensemble inflation (in which the spread of the ensemble
is increased by increasing the distance from each member to the ensemble mean
by a fixed multiplicative factor), data assimilation and model integration over
a specified time interval, in order to converge to the final solution. As demon-
strated in Annan et al. (2004) and Annan & Hargreaves (2004), this iterative
method converges robustly to the correct solution in identical twin testing. All
of the experiments described here used an assimilation cycle of 100 years length,
with an expansion factor of 5%, and an ensemble size of 54, all of these values
(which do not significantly affect the converged solution) being chosen primarily
for computational convenience.

Using only steady state data eliminates any information concerning the rate of
change that may be contained in recent time series of observational data. This
is clearly undesirable, especially since the ultimate purpose of the tuning is to
estimate the rate of future climate change. In principle, the assimilation method
used here can also be applied to time series data, since the augmented model
state method allows for arbitrary asynoptic observations to be used (note that
climatological observations are themselves asynoptic). Further development of
the method to this end is under way.

There is one important detail in the assimilation that should be explained here.
The previous work considered only an identical twin experiment in which the
‘strong constraint’ assumption of a perfect model is not violated. In any real
application, the model will contain some inaccuracies and approximations over
and above those relating to imperfect parameter values; for example numerical
diffusion, truncation errors, and, more generally, many approximations to the
processes being modelled. This ‘model error’ formally violates the assumptions
underlying many analysis and estimation algorithms (including this implementa-
tion of the EnKF), and on a practical level, if the model error is significant, then
this can degrade the quality and reliability of the results. In particular, the results
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will tend to have an unrealistically narrow uncertainty associated with them —
the problem of ‘false confidence” which was illustrated in Hargreaves & Annan
(2002). In that work, the true forecast (and even hindcast) error was substan-
tially greater than the width of the ensemble generated by an objective estimation
scheme. A simple diagnostic for the occurrence of this problem is to examine the
residuals after fitting the model. If they are larger than expected (as defined by
a high x-square value (Press et al., 1994, 15.2)) or are significantly correlated in
time and/or space, then these are indications that the model contains significant
structural errors that should be accounted for. Thacker (2003) discusses the de-
tection of model-data incompatibility in more detail. One possible approach to
account for this problem is to consider the discrepancy between model and data
as ‘representation error’: that is, the model does not represent the real system
perfectly, but rather is a somewhat erroneous approximation to it. In this case,
the model state does not represent an estimate of the truth but rather can only be
considered to be an estimate of the projection of truth onto the manifold spanned
by the model. The correct treatment of representation error (where it cannot be
filtered from the data, as in for example de-tiding of sea surface elevation data) is
to add it to the estimated observation error of the data (Fukumori, 2001), thereby
effectively decreasing the assumed accuracy of the observations and consequently
increasing the width of the estimated pdf. Since the magnitude and correlation
length scale of the representation error are not known a priori but can only be di-
agnosed though an a posteriori examination of the differences between the model
and data, this remains a somewhat tunable factor in this application, and we
have validated our choice by comparing the width of the resulting ensemble to the
uncertainty of various observational estimates in Section 3. A largely equivalent
technique to limit data influence that is sometimes adopted in assimilation studies
is to use a temporally and/or geographically sparse subset of the data, but here
the model resolution is so low that we do not wish to artificially generate any
data-free regions or other artefacts due to subsampling.

2.3 Data

Figures 1 and 2 show some of the data, averaged onto the model grid. The ocean
data set used consists of fully three-dimensional temperature and salinity fields,
but only the top level is shown here. The atmospheric data are two-dimensional
(surface air temperature and humidity). Both data sets represent an average over
roughly five decades with a near-complete overlap. During this time, there has
been significant anthropogenic perturbation to the atmospheric CO, concentra-
tion. Since the response of the atmosphere and upper ocean is much more rapid
than that of the deep ocean, these data sets do not precisely represent a steady-
state climatology appropriate to any fixed CO, level. However, the mean overall
perturbation from the pre-industrial state is certainly less than 0.5°C (this being a
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typical estimate for the recent anthropogenically-forced surface warming (Hansen
et al., 2002), with the temperature rise being much lower in the ocean interior (Lev-
itus et al., 2000)), and since this discrepancy is small compared to other faults in
our model, we discount this minor problem for the purposes of this study. The
time-varying assimilation procedure which is being developed will enable us to
address this issue with more precision.

These data are by no means the only observations that could help us to determine
the full model state and dynamics (and therefore parameter values). For example,
sea ice, precipitation, heat and mass transports and passive tracer distributions
could also all be helpful in principle. However, the data selected do provide a
substantial volume of reliable information over the entire global domain, and have
been widely used and well validated. As such, they are a suitable basis for the
preliminary experiment performed here. Since we do not know the covariances of
the errors on the data, we assume that the observational errors on the different
data types are proportional to the square root of their variances as in Annan
et al. (2004) and ignore spatial correlations. To account for the model error
problem mentioned in Section 2.2, we fix an observational error of 3°C for the
ocean data, and scale the error on the other data types appropriately. This value
is substantially larger than the true observational uncertainty, but this deliberate
overestimate compensates for the representation errors in the model, and results
in an ensemble width that appears to plausibly represent the true uncertainty of
the climate system state, as we now show in Section 3.

3 Results and Validation

3.1 Convergence

The mean atmospheric and ocean surface fields from the converged ensemble are
shown in Figures 1 and 2. These results were obtained after 150 iterations (rep-
resenting 15,000 years of integration for each ensemble member). However, there
was very little change beyond 20 iterations (2,000 years, comparable to the equili-
bration time scale of the deep ocean). The rate of convergence of model variables
is similar to that seen in the identical twin test (not shown here). For applica-
tion to more expensive models, this process could be substantially speeded up
by initialising from a realistic climatology (rather than the uniform fields used
here) and by allowing for a modest drift in the deep ocean climate, which is not
necessarily in true equilibrium in any case and will not significantly affect O(100)
year forecasts.

As a single scalar measure of the goodness of fit, we use the cost function described
in Edwards & Marsh (2003). This is a global root mean square error, with each
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Figure 1: NCEP reanalysis surface air temperature (SAT) and humidity, with
corresponding ensemble mean output

data type normalised by the square root of its spatial variance. Therefore, spatially
uniform model fields with the correct global mean would have a cost of 1, and our
final figure of around 0.5 (Figure 3) indicates that typically three-quarters of the
variance of each variable type is explained by the model. This compares favourably
with the results from the Latin hypercube ensemble experiment of Edwards &
Marsh (2003), in which the costs of 1000 samples ranged from 0.61 to 2.8. As can

be seen from Figure 3, the cost converges to its final value in around 20 iterations.

3.2 Parameter values

Figure 4 shows the evolution of the mean (central lines) and one standard deviation
width (outer lines) of the parameter values. The horizontal lines at time ¢ < 0
in each plot indicate the prior distributions, selected to cover a wide range of
plausible values. Convergence here is slightly slower than examination of the cost
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function alone would indicate, but is still close to completion after 50 cycles. The
initial spikes in several of the parameter values are due to the unrealistic and
unsteady model state at this time.

Parameter Prior Posterior
Mean std.dev. Mean std.dev.

Ocean

Wind-scale 1.9 0.4 1.7 0.2
Isopycnal diffusion (m?s~1) 5100 2300 4100 800
log,o(diapycnal diffusion (m?s~')/2 x 107°) 0.07  0.44 -0.04  0.27
1 /friction (days) 2.7 0.9 3.4 0.7
Atmosphere

T diffusion amplitude (m?s~')/10° 6.9 1.5 3.8 0.5
T diffusion width (radians) 1.3 0.78 1.3 0.2
log,o(T diffusion slope/0.1) -0.32  0.36 -0.16  0.30
T advection coefficient 0.35  0.17 0.06  0.05
log,,(Q diffusion (m?s~!)/10°) 0.57  0.43 1.2 0.04
Q) advection coefficient 0.40  0.19 0.14  0.04
FWF adj (Sv) 0.32 0.16 0.29  0.03
Ice

Sea ice diffusion (m*s~!) 3900 1800 6200 1500

Table 1: Prior and posterior distributions of the parameters

As in the identical twin testing described by Annan et al. (2004), some parameters
are hardly constrained by the data, that is to say, the posterior distributions are
not much narrower than the priors. For example, the ice diffusion coefficient is
very uncertain. Even though the ensemble has an acceptable representation of ice
(described below in Section 3.6), this is essentially determined by the local sea
surface and atmospheric temperatures, and its dynamics play a minor role. At the
other extreme, it is reassuring that the freshwater flux adjustment (a redistribution
of water from the Atlantic to the Pacific basins, to correct for our atmosphere’s
inability to perform this function) is constrained so as to give a total moisture
flux (when added to the model’s own modest contribution of around 0.02Sv) very
close to the observational estimate of 0.32Sv (Oort, 1983).

There are a handful of significant correlations between the parameter values ac-
cording to the sample statistics of the ensemble, similar but not identical to those
found in the previous identical twin test. The width and amplitude of the atmo-
spheric temperature diffusion coefficients have a significant negative correlation
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(r? = —0.6), as might be expected from their roughly equivalent effects on large-
scale heat transport. The ocean inverse friction coefficient, and wind scaling fac-
tor, have a negative correlation of -0.4, which is again unsurprising as they have
a largely equivalent action on ocean circulation. In the identical twin test, this
negative correlation was also present but did not meet the threshold for statistical
significance which is an absolute magnitude of 0.27 or greater (for 90% confi-
dence). The ocean isopycnal diffusion coefficient, atmospheric moisture diffusion
coefficient and fresh water flux correction are all positively correlated with one
another, with values ranging from 0.5 to 0.7. These results are slightly different
from those of the identical twin test, but the correlated parameters are all strongly
implicated in determining the strength of the meridional overturning circulation
and thus have somewhat interchangeable effects.
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3.3 State variables

The global root mean square (RMS) errors of the ensemble mean of each field, in
physical units, are 1.45°C (ocean temperature), 0.22psu (ocean salinity), 1.31°C
(atmospheric temperature) and 0.0011 (atmospheric humidity, dimensionless mass
ratio of water to air). After normalisation by the square root of the variance, the
relative salinity error is greater than the other three data types combined, probably
due to rather poor moisture transport in the atmosphere which will be discussed
in Section 3.5.

The validity of our climate state is investigated by comparison with observa-
tional and model estimates from various sources. Some results from the Cou-
pled Model Intercomparison Project (CMIP), as summarised by Lambert & Boer
(2001) and Jia (2003), provide a particularly useful benchmark. The CMIP project
consists of a wide-ranging investigation into many aspects of the behaviour of
many of the most widely used coupled climate models, under both steady condi-
tions and an idealised anthropogenic forcing scenario. In this initial validation, we
are only concerned with the model climatologies under steady pre-anthropogenic
conditions. Lambert & Boer (2001) summarises the basic climate variables from
CMIP1, the first phase of CMIP. Their paper contains comparisons of model fields
and data at a limited number of locations. Although global numerical RMS error
statistics are not provided, it seems that our ensemble mean compares accept-
ably well with the CMIP1 models in terms of the basic state variables such as
temperature and salinity. For example, the CMIP1 ocean temperature profiles
at 15°S (Lambert & Boer, 2001, Figure 6) appear to have a typical error in the
region of 1-2°C, even after zonal averaging which will underestimate the pointwise
RMS error. The salinity field in our model is rather poor, and it is clear from
Figure 2 that the meridional gradients in the surface salinity fields are substan-
tially weaker than the observations. This is due to the inability of the simple
atmosphere to transport moisture effectively from the saline equatorial region to
the fresher poles, and is discussed further in Section 3.5. Despite this problem, our
global RMS error of 0.22psu compares very reasonably with the CMIP1 results at
the surface and 1000m depth (Lambert & Boer, 2001, Figures 8 and 9, again the
zonal averages plotted will underestimate the pointwise error). The atmospheric
surface air temperature plots of Lambert & Boer (2001, Figures 3 and 4) also
show comparable errors to our global RMS value.

Since these variables were directly assimilated into our ensemble, it is hardly
surprising that the agreement between model and data is reasonable. A more
severe and interesting test is to examine derived quantities such as heat and mass
transports, since the transports must be generated by the model dynamics and
therefore these quantities are not purely dependent on the assimilated data. In
the remainder of this section, we discuss the transports in more detail.
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Figure 5: Zonally averaged overturning (Sv)

3.4 Ocean circulation and transport

Since the ocean is the most sophisticated component of our coupled model, we
focus most of our attention there. Jia (2003) analysed the output from the ocean
components in eighteen of the CMIP ‘control’ runs (current climatology), and
compared various transports to observational estimates at the two latitudes 25°N
and 30°S in the different ocean basins.

The zonally-averaged basin-wide and global overturning of the mean of our en-
semble are shown in Figure 5, and the heat transports are plotted in Figure 6.
In the following subsections we examine these results in more detail, focussing on
each of the major ocean basins in turn.
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3.4.1 Atlantic Ocean

Observational estimates of the zonally integrated climatological heat and mass
transports at 25°N in the Atlantic ocean are shown as the large red dots in the
upper plot of Figure 7, along with the results from the CMIP experiment (black
crosses) and our own ensemble members (dark blue crosses). The cyan crosses will
be discussed in Section 4. The CMIP and observational data are taken from Jia
(2003), from whose Figures 4 and 5 this diagram was derived. Sources and nu-
merical values for the CMIP models and observational data are listed in Jia (2003,

Table 2).

The observational estimates of heat transport are around 1.1-1.3PW, with an
overturning strength of 16-20Sv. However, few of the CMIP models are close to
these values, with only 3 of them exceeding 1PW, and they also have a very wide
range of overturning strengths. According to Jia (2003), the basic reason for the
unrealistically low heat transports in the CMIP models is the inability of these
models to represent the vertical heat gradient correctly, with most being much
too warm in the deep ocean (Figure 7, lower plot).

In contrast, our model generates a much more realistic temperature distribution,
with the ensemble mean upper and lower temperatures being 18.3 and 3.3°C.
However, the overturning of 14.541.55v is slightly too small, and this results in a
low heat transport of 0.8 £ 0.1PW. It is straightforward to generate an ensemble
which has closer agreement with these, and other, transport estimates (by assim-
ilating the estimates directly into the ensemble), but this would prevent us from
using these estimates as independent validation of the model, as well as poten-
tially suffering from the problem of data over-use since the transport estimates
are often based to some extent on the climatological fields that we are already
assimilating.

The distribution of our ensemble members in the upper plot agrees well with
the estimate from Boning et al. (1996) that for each 2Sv increase in overturning,
the heat transport increases by 0.1PW. For random selections of parameter sets
from the prior, the maximum overturning ranges from 0 to 30Sv, and the heat
transport varies from less than 0.4 to greater than 1.6PW, so the results plotted
here are not an intrinsic property of the model but are instead determined through
the assimilation process. The width of our ensemble also seems comparable to the
uncertainty in the observations, in contrast to the much greater range of the CMIP
models.

The position of the maximum overturning varies somewhat between ensemble
members, with most close to 25°N but some being positioned around 40°N where
there is a small local maximum in the ensemble mean.

Estimates of the northward heat transport around 30°S range from 0.16-0.68PW (Ben-
nett, 1978), with several recent estimates being very close to 0.3PW with a mass
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transport of around 14Sv Weijer et al. (1999); Ganachaud & Wunsch (2000); Hol-
fort & Siedler (2001). A few of the CMIP models give negative values here, but
most are in good agreement, and their overturning strengths are also reasonable,
ranging between 10 and 20Sv. We also have a very small poleward heat trans-
port of 0.1 £ 0.05PW(Figure 6), with our overturning of 8Sv again being on the
low side. This weakness in overturning may be due to the lack of a warm water
path from the Pacific via the Indonesian Throughflow and Agulhas leakage, which
cannot be adequately resolved at the low resolution we are using here.

3.4.2 Pacific Ocean

In the Pacific at 25°N. we have observational estimates of northward heat trans-
port of 0.76 £ 0.3PW from Bryden et al. (1991), and 0.54+0.1PW from Ganachaud
& Wunsch (2000). The CMIP models are generally a little lower than these es-
timates, but still consistent with them. The overturning at 30°S Pacific is very
uncertain in the CMIP models, ranging from 4-30Sv. Our ensemble has north-
ward heat transport of 0.6 £ 0.1PW, and our ensemble overturning of 16Sv is in

the middle of the range of CMIP results.

The observed heat transport at 30°S is very uncertain, with there being no con-
sensus even on its sign. Ganachaud & Wunsch (2000) suggest 0.6PW north-
wards, whereas Trenberth et al. (2001) have a figure of 0.9PW southwards. The
CMIP results have an even greater range, with mass transports from 2Sv south-
wards to 0.64Sv northwards. Our results here are harmed by the inability of our
model to resolve the Indonesian Throughflow, by which, according to the analysis
of Ganachaud & Wunsch (2000), 16Sv of water carries 1.4PW of heat from the
Pacific to Indian oceans. As a result, our estimate of 1.3 & 0.1PW southwards is
rather large.

3.4.3 Indian Ocean

At 30°S in the Indian Ocean, Ganachaud & Wunsch (2000) indicate a heat trans-
port of 1.5PW southwards, and the CMIP models are split between those with
substantial transports in excess of 1IPW, and those with very small transports of
below 0.4PW (even in models which do resolve the Indonesian Throughflow). The
heat flux across 30°S in our Indian Ocean is about 1PW southwards, even without

the help of the Indonesian Throughflow.

3.4.4 Global ocean heat transport

The total global northward heat transport in the ocean has been estimated to

be 2.0PW at 18°N (Trenberth et al., 2001), and 1.8PW at 25°N (Ganachaud &
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Barotropic stream function

Figure 8: Barotropic circulation

Waunsch, 2000). In contrast, only 3 of the CMIP models reach 2.0PW northwards
transport, and one of those includes an anomalous northward head transport in
the northern Indian ocean, contrary to the sparse observational data there. The
meridional heat transport of our ensemble is shown in Figure 6. The Atlantic,
Pacific and total ocean heat transports are shown. Our result here of 1.54+0.1PW
total ocean northwards transport (at both latitudes) is good compared to most
CMIP model results, although still a little low compared to the observational
estimates.

The southward heat transport peaks at 1.3PW at around 15°S according to Tren-
berth et al. (2001). Most of the CMIP transports are substantially smaller than
this, although three of the models exceed 2PW. Although the lack of Indonesian
Throughflow in our model is clearly responsible for a large error in our Pacific and
Indian ocean estimates at 30°S, the total ocean transport at this latitude (which
should be less strongly affected by the exchange) is still rather too high at 2.3PW.

Barotropic flow (Figure 8) in the Atlantic and Pacific appear reasonable in our
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results, similar on large scales to the results from the CCCMA model shown by Jia
(2003). Of course the smaller scales are not resolved on our coarse grid. The
Antactic circumpolar current (ACC) was estimated at 123 + 11Sv by Whitworth
& Peterson (1985) and 140 4+ 6Sv by Ganachaud & Wunsch (2000). The ACC is
notoriously difficult to model accurately even at high resolution, with the CMIP
models producing a range of results from 10—270Sv. Our estimate is rather low,
at 28Sv, but is well within the range of the CMIP models.

3.5 Atmospheric state

We now consider the atmospheric state, in rather less detail since this module is
very simplified and barely attempts to represent the atmospheric circulation. The
zonally averaged temperature and humidity are shown in Figure 9. Although the
globally integrated precipitation is reasonable, the zonally averaged precipitation
(Figure 10) does not adequately represent the spatial variability in the data (in
particular, it is the difference between precipitation and evaporation that affects
the meridional salinity gradient), and we believe that this is largely responsible
for the poor ocean salinity distribution mentioned in Section 3.3. The zonally
averaged precipitation minus evaporation in our model rarely exceeds 0.2m/year,
whereas the SOC climatology (Josey et al., 1998) has a peak of around 1.m/year
in the equatorial region, and large troughs and peaks at £20° and +45° respec-
tively for both hemipsheres. These peaks and troughs are closely aligned with
the observed zonally averaged sea surface salinity profile. The importance of this
moisture transport in determining the ocean salinity was demonstrated by Weaver
et al. (2001), when they compared model runs with moisture advection switched
on and off. Our results appear comparable to their non-advective model version.
Even though we have implemented an advective term here it does not appear to
have sufficient effect, perhaps due to a lack of resolution and the simplified pre-
cipitation and land-surface schemes. The lack of seasonality (with the associated
zonal shift of the I'TCZ and its precipitation) may also be significant here.

Trenberth & Caron (2001) have examined atmospheric reanalyses from NCEP,
and calculated that the northward heat transport in the atmosphere peaks at
5.0 £ 0.14PW, greatly in excess of previous estimates. Our result of 5.1 + 0.2PW
shows good agreement with their figure. The estimate from the prior was about
6.5+ 1PW, indicating a lower dependence on the parameters and a greater degree
of predetermination than was apparent for the more dynamically active ocean
model. In the southern hemisphere, the observed transport is slightly higher, but
our ensemble’s atmospheric heat transport is slightly lower. It is not clear whether
this is the cause, or the result, of the excessive heat transport in this region of
the ocean. In any case, we hope for a more realistic atmospheric climatology
(and therefore an improved ocean state) when a more complete 3D atmosphere is
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implemented.

3.6 Other state variables

The only remaining component is the sea ice, which exists in each of our ensem-
ble members in the northern hemisphere and also in the southern hemisphere of
some members. Due to the equal-area grid arrangement, the northern hemisphere
ice is mostly restricted to the northernmost row of cells (covering the latitudes
71-90°N) with some spread to the second row (63-71°N), and the longitudinal
distribution of thickness is rather smooth. Nevertheless, the pattern and depth
of ice is not unreasonable, with a maximum depth in our ensemble members of
12 + 2m at around 90°W comparable to output from the 1/4°-resolution ocean
model OCCAM (Saunders et al., 1999) which has a maximum ice thickness of 7m
occurring at the same longitude (Y. Aksenov, personal communication). In the
southern hemisphere, the southernmost row of grid boxes is entirely occupied by
land. In reality, the sea ice around the Antarctic is highly seasonal, so it seems
reasonable that our ensemble sits on the boundary between being totally ice-free
(31 of the 54 ensemble members), and having permanent ice cover in part of the
second row of grid cells (23 of the ensemble members).

3.7 Summary of validation

The ensemble mean state is a reasonable one, especially in the ocean, but less
realistic in the simple atmosphere. The ocean circulation is a little weak, which
results in transports being generally low, although the lack of Indonesian Through-
flow must also be responsible for substantial errors in the Pacific and Indian Ocean
basins. It is in fact straightforward to improve the ensemble’s estimates of circula-
tion somewhat by directly assimilating the observational estimates of its strength
(not shown here). However, this procedure runs the risk of over-using data since
many of these estimates are themselves modelling analyses relying to a greater
or lesser extent on assimilation of temperature and salinity data. Furthermore,
this would prevent us from using these observational estimates as independent
validation of the model. In any case, the poor sea surface salinity distribution
points to the atmospheric model being a dominant source of error. Overall, the
mean state (especially in the ocean) does not seem clearly worse than the CMIP
models, with each of these models also having its own particular strengths and
weaknesses in different regions. Given the extremely low resolution and simplicity
of our model, this is in itself an encouraging illustration of the value of the tuning
method.

The ensemble width is also generally realistic, comparing well (within a factor
of two or so) with the estimated uncertainty in the observational analyses such
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as those generated by Ganachaud & Wunsch (2000). Even when there is a bias
in the mean, such as the North Atlantic overturning circulation, the ensemble
still has a plausible width. This justifies our choice of scaling of the observational
error estimates (which directly determines the ensemble width). Since the regional
biases cannot be eliminated by tuning parameters, the model can only be improved
further through more fundamental structural changes such as implementing a more
realistic atmosphere. In regions where there is a large bias, the model state should
not be considered as a direct estimate of the true climate state, but rather the
estimated projection of the true climate state onto the space spanned by the model,
and the bias should be taken into account when analysing forecasts. Our ensemble
width contrasts strongly with the CMIP results, which generally span a range well
in excess of any reasonable observational uncertainty, such as their estimates of
maximum overturning in the North Atlantic which range from less than 8Sv to
more than 32Sv. It seems improbable that an ‘ensemble of opportunity’ made
up of such a wide range of models will be able to give a quantitatively useful
probabilistic prediction, since the uncertainty in even the nowcast bears such
little relation to the uncertainty in the true climate state.

4 Climate change projections

4.1 Forecast Scenario

Here we present some projections of climate change under a simple anthropogenic
forcing scenario. In this experiment, the ensemble generated by the previous
parameter tuning procedure was integrated for 70, 100 or 200 years under a 1%
per annum atmospheric CO, increase (reaching 2, 2.7 or 7.3x the present day
level) followed by a further 3500 years at the constant higher level. This is then
followed by a slow decline in CO, at a rate of 0.05% until the value returns to the
present day, and then finally a further 6000 years at the constant lower value.

In these experiments we use a fixed radiative forcing for doubled CO, of 4Wm™2,
thus ignoring one source of uncertainty. The range of 3.5-4.1Wm™2 of Houghton
et al. (2001, Chapter 6) is generally taken to indicate the 95% confidence (20)
interval, so this is a rather minor factor. More importantly, this simple model
does not contain any of the feedbacks related to cloud cover, which are highly
uncertain but potentially large.

4.2 Global temperature change

The global mean surface air temperature at the start of the experiment was 12.1+

0.1°C, and this rose to 13.7 £ 0.1°C after 70 years of rising CO;. The mean heat
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rise per ensemble member was 1.6+0.04°C. However, after integrating for a further
5000 years to equilibrium at the 2x COj level, the temperature rose further to
15.1 £ 0.1°C, a final ‘climate sensitivity’ (equilibrium response to doubled COy)
of 2.9 + 0.1°C. The integrations with the longer warming periods showed that
the equilibrium temperature response is roughly linear in radiative forcing. The
uncertainties on all these figures are markedly lower than those estimated by other
researchers, probably due to the lack of competing but highly uncertain feedbacks
in the atmospheric model (eg cloud effects). However, it should be noted that
our initial ensemble has a reasonable range of uncertainty on most of the state
diagnostics examined earlier, whereas the the ensemble of coupled models in the
CMIP experiments have a huge range of uncertainty which is generally much
greater than that of the observations. Therefore, it seems possible that the range
of predictions generated as an ‘ensemble of opportunity’ from these models is
unrealistically wide. In any case, our results suggest that the use of a ‘climate
sensitivity’ estimate needs to be carefully qualified in terms of the time allowed to
approach the new equilibrium. Higher resolution models cannot realistically be
integrated for such long periods as are necessary for a true equilibrium (which in
any case may have limited utility), but the state reached during or immediately
following a transient rise in CO4 will be far from the equilibrium.

4.3 THC collapse and hysteresis

Recently, the strength and stability of the North Atlantic thermohaline circula-
tion (THC) has been a subject of much interest. It is widely believed that the
THC has two or more quasi-stable states, and has repeatedly switched abruptly
between the current ‘on’ state, and substantially a weaker, or even ‘off” state over
the recent paleoclimate record (Broecker, 1997). Since the THC is responsible for
transporting a large amount of heat to the North Atlantic and Western Furope,
such transitions are accompanied by large regional changes in climate. The pos-
sibility of an abrupt transition has therefore been the subject of intense study in
recent years (eg Broecker, 1997; Rahmstorf & Ganopolski, 1999). Many studies
have confirmed the sensitivity of the THC in ocean models to externally imposed
freshwater fluxes, and more recently, coupled models have been used to investi-
gate the response of the atmosphere-ocean system to anthropogenically enhanced
CO;y (Wiebe & Weaver, 1999; Stouffer & Manabe, 2003). The results generally
indicate that the THC can be switched off by a small additional freshwater flux of
around 0.06-0.15Sv. This figure is comparable to some estimates of likely changes
in the hydrological cycle, although there is substantial disagreement between dif-
ferent models regarding the overall effect, with some indicating a weakening or
even complete shutdown (Cubasch et al., 2001), and others a strengthening due
to increased freshwater flux further south (Latif et al., 2000). Moreover, in some
models where the THC initially shuts down, it is re-established in the longer term
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(under steady but elevated CO, levels) to a value which may even exceed the
original state (Wiebe & Weaver, 1999; Stouffer & Manabe, 2003). The wide range
of results generated by different models indicates a substantial uncertainty over
the response of the THC to anthropogenic perturbations, over both the short and
longer term.

The time series of overturning in the North Atlantic (for the experiment using 100
years of CO, increase), for each ensemble member, is shown in Figure 11. The
initial response to the rise in CO; is a rapid drop in the strength of the THC. The
cyan crosses in Figure 7 show the snapshot of overturning and temperatures in
the North Atlantic at the end of the 100 year period. Over this initial interval, the
surface warming almost completely compensates for the reduction in overturning
strength, with the total heat transport only dropping marginally. During the sta-
bilisation phase of the experiment, the overturning largely recovers in many of the
ensemble members, but continues to fall and ultimately collapses in a substantial
proportion of them (19 out of 54, or 37%). This results in a substantial difference
in the regional climate, with the temperature in NW Europe being around 3-5°C
colder in those ensemble members where the THC collapses, when compared to
those in which it recovers. In fact, the regional temperature for collapsed mem-
bers is generally colder than the present day climate, but only by 1-2°C. The
time taken for the collapse ranges from around 250 years to 3000 years. Even in
those members where the overturning recovers somewhat, it remains at a gener-
ally lower level than initially, in contrast to the results of Wiebe & Weaver (1999)
and Stouffer & Manabe (2003). Our simple atmosphere is incapable of substan-
tially varying the moisture transport from the Atlantic to the Pacific basins, but
the model’s dynamically diagnosed moisture transport does drop by around 0.01—
0.02Sv which adds to the surface warming effect in helping to destabilise the THC.
Using another efficient model with simple atmosphere, Rahmstorf & Ganopolski
(1999) added a further external perturbation to the freshwater forcing in propor-
tion to the change in the model’s northern hemisphere temperature. However, the
constant of proportionality for this perturbation is unknown a priori and cannot
be estimated even in principle from a single steady state climatological tuning,
since their parameterisation is defined in terms of the deviation from the clima-
tological mean. Therefore, we have not attempted to include this factor in our
study, although it could have a significant influence on THC stability.

During and after the atmosphere’s return to present-day CO, levels, the THC
increases back towards the initial level in those models where it did not collapse
entirely. Of the ensemble members where the THC switched off, only two switch
back on again, illustrating the hysteresis which has been widely investigated by
others. When a similar global warming experiment was performed with 70 years
of 1% pa CO; increase, only 6 of the models switched to the collapsed THC
state (11% of the ensemble). With 200 years of increase, 52 of them collapsed
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(96%). These results, which are the first using a truly objective multivariate
analysis system to simultaneously sample the uncertainty of the climate system
due to many different parameterisations, suggest that the current state of the
THC could be vulnerable to anthropogenic perturbation, and if atmospheric CO-
levels increase rapidly, we could see drastic changes in the thermohaline circulation
in the next couple of centuries. However it should be noted that the subset of
ensemble members that shut down their overturning are predominantly those with
the lower initial values, and since the ensemble as a whole has a low bias, the real
risk may be somewhat overstated by these results. Missing processes in the model
(in particular, the inadequacy of the moisture transport and the use of a fixed
wind field) also limits the confidence that can be placed in these quantitative
results. However, application of this methodology to more realistic models should
help to quantify the risk more accurately.

5 Conclusions

We have applied the method of Annan et al. (2004) to perform probabilistic multi-
variate parameter estimation by assimilating observational data for the ocean and
atmosphere into a new highly efficient coupled global atmosphere-ocean model.
The method generates an ensemble whose members sample the uncertainty of
the current climate state. The ensemble mean appears to have a very reasonable
steady state climatology (especially in the ocean, which is the most sophisticated
component of the model), within the constraints of the model’s limited physics
and resolution. In fact, it appears comparable in realism to the those of the much
more complex and expensive coupled models used in the CMIP project (Jia, 2003).
Furthermore, the ensemble spread is comparable to the uncertainty estimated by
other ocean state analyses (Ganachaud & Wunsch, 2000, eg). In principle, such a
tuned ensemble should be useful for making objective predictions of future climate
change under anthropogenic forcing. However, it is clear that the simplicity of
the atmospheric component of this model limits its value for this purpose.

When tuned to present day climatology, the forecast under a scenario of 70 years
of steadily rising atmospheric CO; (1% per annum cumulative growth) is for
a rise in surface air temperature of 1.6°C in 70 years, increasing to 2.9°C at
equilibrium. These results are consistent with other research. However, this model
is rather simplistic (particularly with respect to the atmosphere) and therefore the
importance of these results may be considered to be more in terms of what the
method promises for more sophisticated models (including, but not limited to,
future versions of the GENIE model) than in terms of their accuracy for the real
Earth climate system.

The North Atlantic overturning is of particular interest. It is widely (but not unan-
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imously) believed that atmospheric CO; increase is likely to result in a reduction
in overturning. Recent model results have suggested that, over the longer term,
overturning will recover and indeed converge to a slightly higher strength than the
original value, although there are some differences in detail between the different
model results (Wiebe & Weaver, 1999; Stouffer & Manabe, 2003). A further un-
known is the level required for a permanent (or at least long-term) shutdown of
the overturning, which is considered a likely result at some high level of CO;. Our
results indicate a polarisation of the ensemble into two classes of behaviour: those
where a recovery takes place, and those where a complete shutdown occurs for
our 2.7x CQOj increase. When this experiment was repeated for a 200 year CO,
increase and stabilisation (7.3x), only 2 of the 54 ensemble members remained in
the ‘on’ state. These results suggest a significant (if somewhat unquantified) risk
of substantial and effectively irreversible changes in regional climate in response
to anthropogenic perturbation.
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