

TOSHIBA Field Effect Transistor Silicon P Channel MOS Type (U-MOSII)

TPC6101

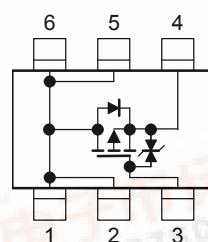
Notebook PC Applications

Portable Equipment Applications

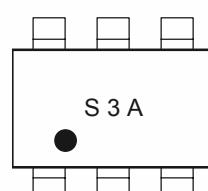
Unit: mm

- Low drain-source ON resistance: $R_{DS(ON)} = 48 \text{ m}\Omega$ (typ.)
- High forward transfer admittance: $|Y_{fs}| = 8.2 \text{ S}$ (typ.)
- Low leakage current: $ID_{SS} = -10 \text{ }\mu\text{A}$ (max) ($V_{DS} = -20 \text{ V}$)
- Enhancement-model: $V_{th} = -0.5$ to -1.2 V ($V_{DS} = -10 \text{ V}$,
 $ID = -200 \text{ }\mu\text{A}$)

Maximum Ratings (Ta = 25°C)

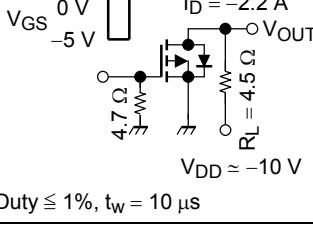

Characteristics	Symbol	Rating	Unit
Drain-source voltage	V_{DSS}	-20	V
Drain-gate voltage ($R_{GS} = 20 \text{ k}\Omega$)	V_{DGR}	-20	V
Gate-source voltage	V_{GSS}	± 12	V
Drain current	DC (Note 1)	I_D	-4.5
	Pulse (Note 1)	I_{DP}	-18
Drain power dissipation ($t = 5 \text{ s}$) (Note 2a)	P_D	2.2	W
Drain power dissipation ($t = 5 \text{ s}$) (Note 2b)	P_D	0.7	W
Single pulse avalanche energy (Note 3)	E_{AS}	3.3	mJ
Avalanche current	I_{AR}	-2.25	A
Repetitive avalanche energy (Note 4)	E_{AR}	0.22	mJ
Channel temperature	T_{ch}	150	°C
Storage temperature range	T_{stg}	-55 to 150	°C

The drawing illustrates the top view of a TOSIBA 2-3T1A MOSFET. It features a central rectangular body with four vertical metal leads. Lead 6 is the drain lead, located at the top. Lead 4 is the source lead, located at the bottom. Lead 3 is the gate lead, located on the left. Lead 1 is the drain lead, located on the right. The top lead 6 is labeled with a dimension of $0.3+0.1$. The distance between the center of lead 6 and the center of lead 4 is $1.6-0.1$. The distance between the center of lead 6 and the center of lead 3 is $1.6+0.2$. The distance between the center of lead 4 and the center of lead 1 is $2.8-0.3$. The distance between the center of lead 3 and the center of lead 1 is $0.95-0.95$. The distance between the center of lead 4 and the center of lead 3 is $0.7+0.05$. The distance between the center of lead 6 and the center of lead 1 is $2.9+0.2$. The distance between the center of lead 6 and the center of lead 3 is $0.05+0.05$. The distance between the center of lead 4 and the center of lead 1 is $0.05+0.05$. The distance between the center of lead 4 and the center of lead 3 is $0.16+0.05$. The distance between the center of lead 6 and the center of lead 4 is $+0.25$. The distance between the center of lead 6 and the center of lead 3 is $0.25-0.15$.


1. Drain 4. Source
 2. Drain 5. Drain
 3. Gate 6. Drain

Weight: 0.011 g (typ.)

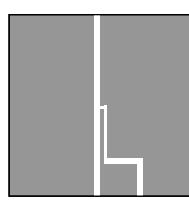
Circuit Configuration


Marking (Note 5)

Note: (Note 1), (Note 2), (Note 3), (Note 4), (Note 5) Please see next page

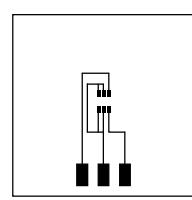
This transistor is an electrostatically sensitive device. Please handle it with caution.

Electrical Characteristics ($T_a = 25^\circ\text{C}$)


Characteristics	Symbol	Test Condition	Min	Typ.	Max	Unit
Gate leakage current	I_{GSS}	$V_{GS} = \pm 10\text{ V}, V_{DS} = 0\text{ V}$	—	—	± 10	μA
Drain cut-OFF current	I_{DSS}	$V_{DS} = -20\text{ V}, V_{GS} = 0\text{ V}$	—	—	-10	μA
Drain-source breakdown voltage	$V_{(BR)DSS}$	$I_D = -10\text{ mA}, V_{GS} = 0\text{ V}$	-20	—	—	V
	$V_{(BR)DSX}$	$I_D = -10\text{ mA}, V_{GS} = 12\text{ V}$	-8	—	—	
Gate threshold voltage	V_{th}	$V_{DS} = -10\text{ V}, I_D = -200\text{ }\mu\text{A}$	-0.5	—	-1.2	V
Drain-source ON resistance	$R_{DS}(\text{ON})$	$V_{GS} = -2\text{ V}, I_D = -2.2\text{ A}$	—	110	180	$\text{m}\Omega$
	$R_{DS}(\text{ON})$	$V_{GS} = -2.5\text{ V}, I_D = -2.2\text{ A}$	—	75	100	
	$R_{DS}(\text{ON})$	$V_{GS} = -4.5\text{ V}, I_D = -2.2\text{ A}$	—	48	60	
Forward transfer admittance	$ Y_{fs} $	$V_{DS} = -10\text{ V}, I_D = -2.2\text{ A}$	4.1	8.2	—	S
Input capacitance	C_{iss}	$V_{DS} = -10\text{ V}, V_{GS} = 0\text{ V}, f = 1\text{ MHz}$	—	830	—	pF
Reverse transfer capacitance	C_{rss}		—	300	—	
Output capacitance	C_{oss}		—	370	—	
Switching time	Rise time	t_r		—	6	—
	Turn-ON time	t_{on}		—	11	—
	Fall time	t_f		—	57	—
	Turn-OFF time	t_{off}		—	112	—
Total gate charge (gate-source plus gate-drain)	Q_g	$V_{DD} \approx -16\text{ V}, V_{GS} = -5\text{ V}, I_D = -4.5\text{ A}$	—	12	—	nC
Gate-source charge	Q_{gs}		—	6	—	
Gate-drain ("miller") charge	Q_{gd}		—	6	—	

Source-Drain Ratings and Characteristics ($T_a = 25^\circ\text{C}$)

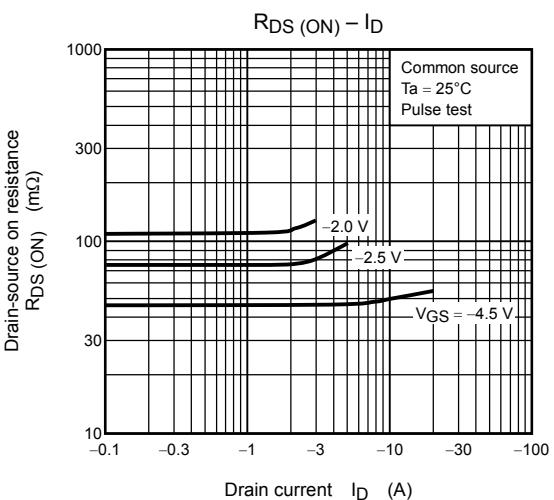
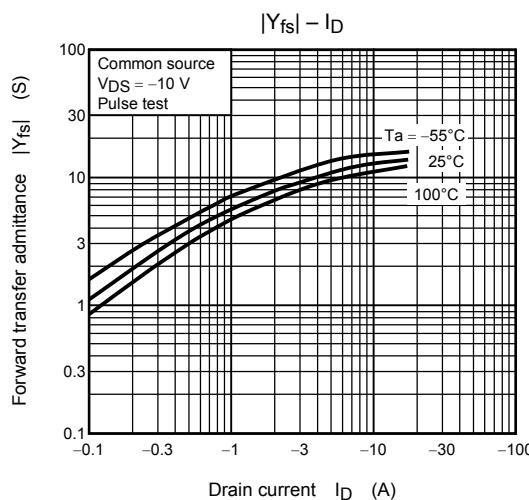
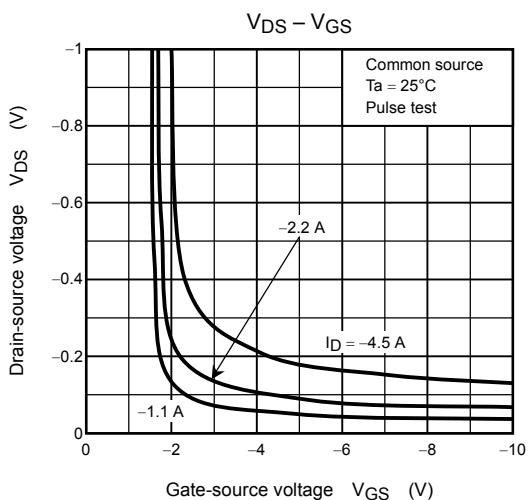
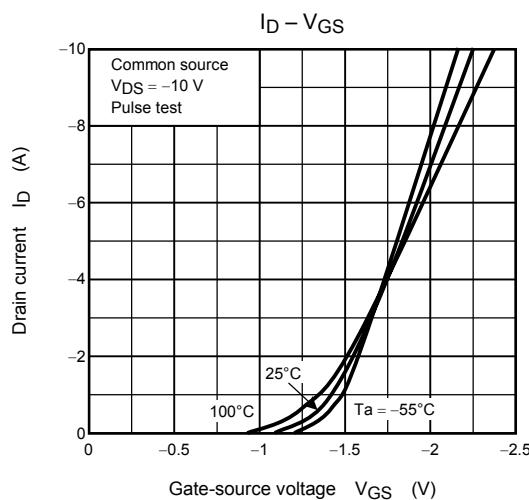
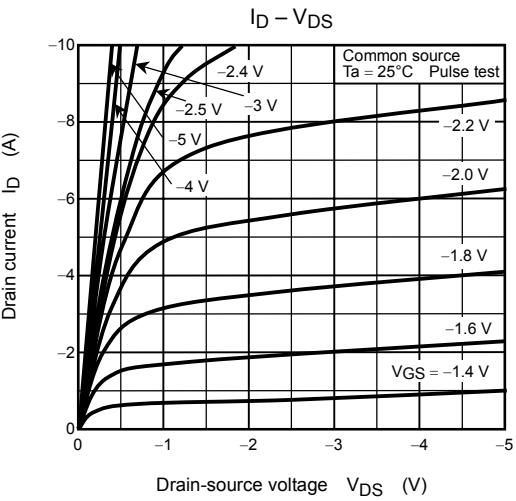
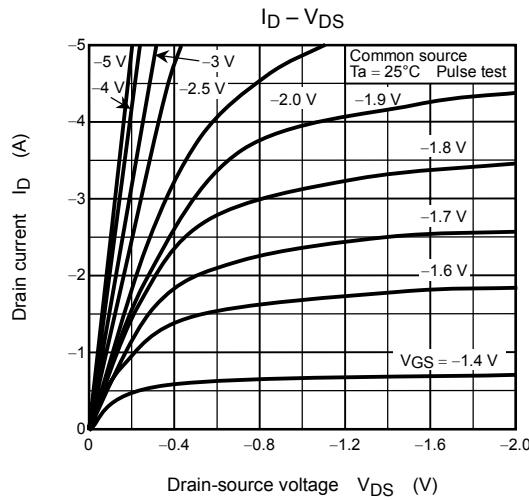
Characteristics	Symbol	Test Condition	Min	Typ.	Max	Unit
Pulse drain reverse current (Note 1)	I_{DRP}	—	—	—	-18	A
Forward voltage (diode)	V_{DSF}	$I_{DR} = -4.5\text{ A}, V_{GS} = 0\text{ V}$	—	—	1.2	V

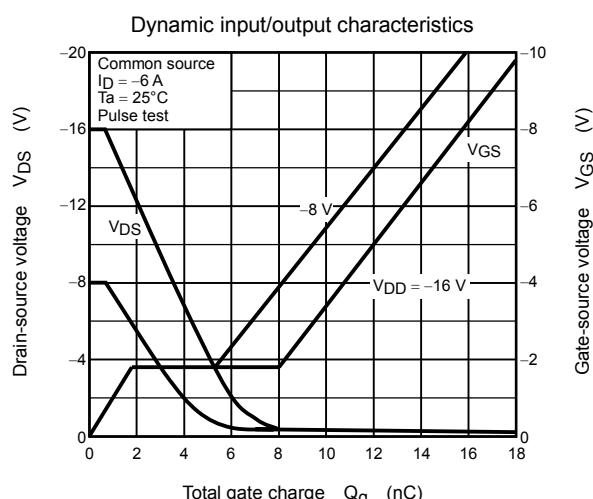
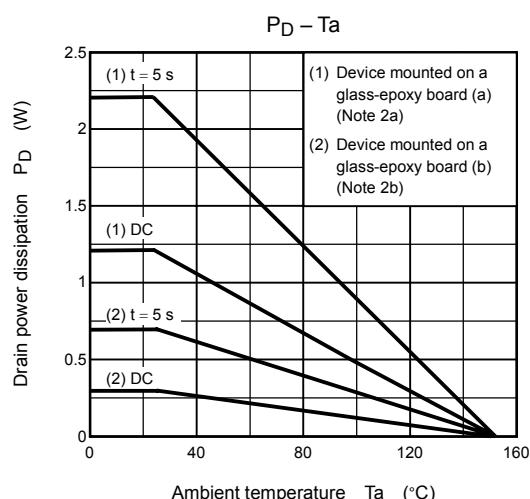
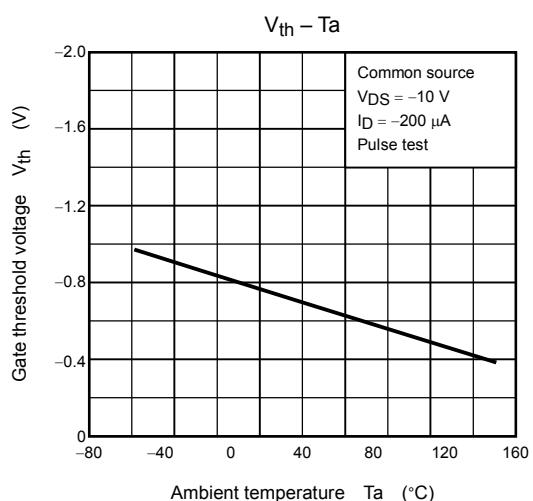
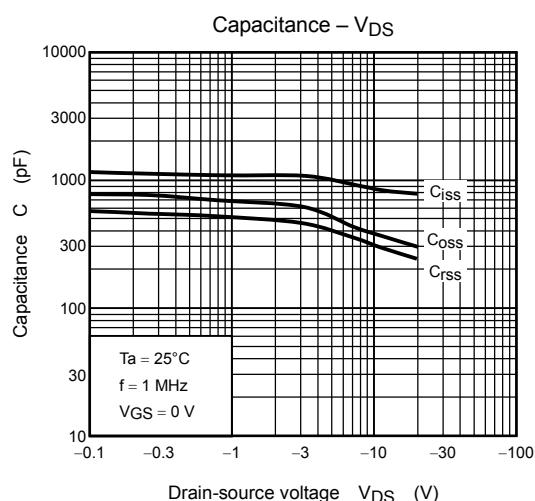
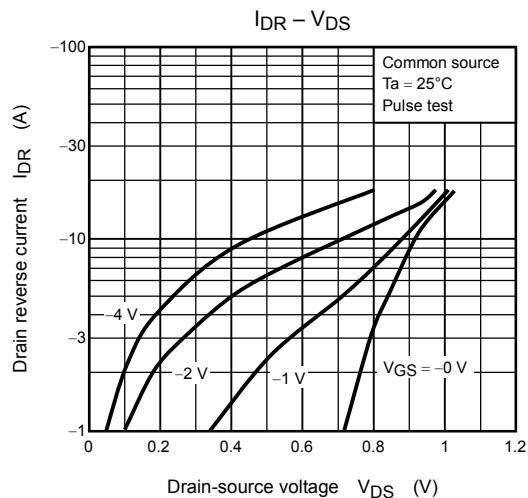
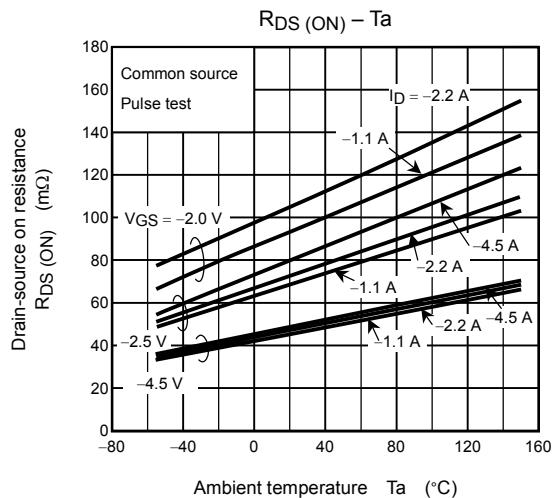

Note 1: Please use devices on condition that the channel temperature is below 150°C .

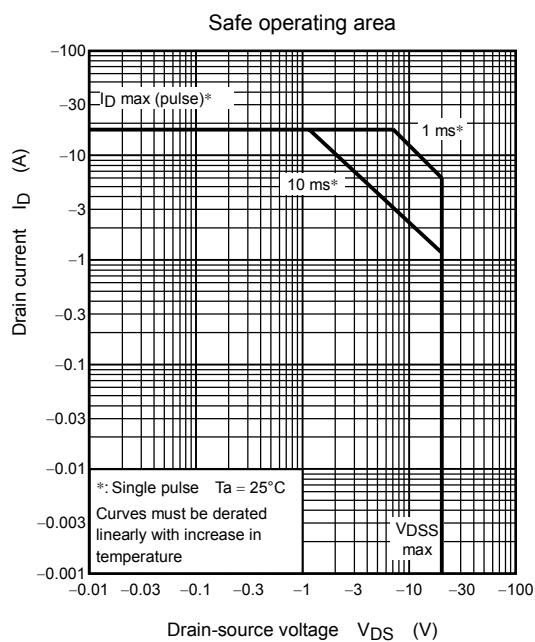
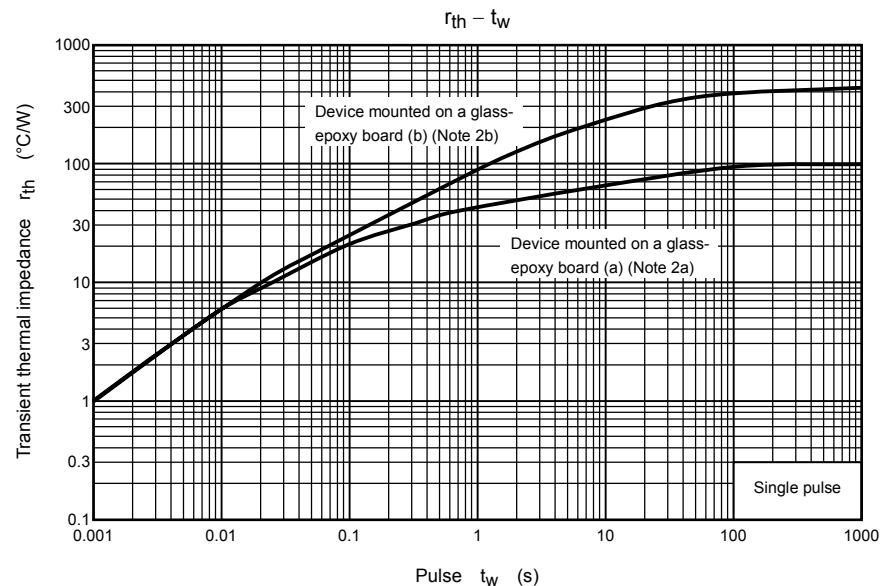
Note 2: (a) Device mounted on a glass-epoxy board (a) ($t = 5\text{ s}$)
 (b) Device mounted on a glass-epoxy board (b) ($t = 5\text{ s}$)

FR-4
 $25.4 \times 25.4 \times 0.8$
 Unit: (mm)

(a)







FR-4
 $25.4 \times 25.4 \times 0.8$
 Unit: (mm)







(b)



Note 3: $V_{DD} = 16\text{ V}, T_{ch} = 25^\circ\text{C}$ (initial), $L = 0.5\text{ mH}, R_G = 25\text{ }\Omega, I_{AR} = -2.25\text{ A}$

Note 4: Repetitive rating; pulse width limited by maximum channel temperature

Note 5: Black round marking “•” locates on the left lower side of parts number marking “S3A” indicates terminal No.1.

RESTRICTIONS ON PRODUCT USE

000707EAA

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.