

Revision: L

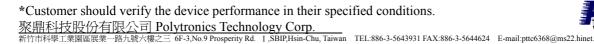
Radial Leaded HVR600P Devices

- The High Voltage HVR600P devices, a Polymer Positive Temperature Coefficient (PPTC) combined with ceramic element as a device is suitable to protect telephony equipment against lightning and power cross strike, that is fully compatible with telecommunication standards.
- The High Voltage HVR600P devices are designed to provide various hold current product series offering 600Vac (Vmax interrupting) and 60Vdc (Vmax operating) and with very stable resistance stability after every over-current event caused by power strike.
- Applications: The High Voltage HVR600P product series are ideal for telecommunication and networking, central office, ISDN and XSDN equipments. It also help networking equipment manufacturers pass ITU K20, K21, FCC part 68 and Telcordia GR-1089 requirements.
- agency Approval: UL/CSA File # E201431.

TÜV Certificate # R9956421.

ELECTRICAL CHARACTERISTICS

HVR600P Series


					Time '	Го Trip					
				(sec)	@1A	F	Resistance	e	Agency		
	I hold	Itrip	Vmax	I	Pd max.			R	R	R 1max	
Part Number	(A)	(A)	(Vrms)	max(A)	(W)	typ	max	$min(\Omega)$	$\max(\Omega)$	(Ω)	Approval*
HVR600P150CF	0.15	0.30	600	3	1.00	5.0	8.0	6	12	22	UL,CSA,TUV
HVR600P150CF-RA	0.15	0.30	600	3	1.00	5.0	7.5	7	10	20	UL,CSA,TUV
HVR600P150CF-RB	0.15	0.30	600	3	1.00	4.5	ı	9	12	22	UL,CSA,TUV
HVR600P160CF	0.16	0.32	600	3	1.00	7.5	18	4	10	18	UL,CSA,TUV
HVR600P160CF-RA	0.16	0.32	600	3	1.00	9.5	-	4	7	16	UL,CSA,TUV
HVR600P160CF-R1	0.16	0.32	600	3	1.00	9.0	-	4	8	17	UL,CSA,TUV

- Specifications are subject to change without notice
- © HVR600P series there are contain lead and lead free two kind of devices

Agency Specification

Product	Lightning	Power Cross
HVR600P150CF HVR600P160CF	FCC part $68 - 1.0 \text{kV} \ 10/160 \ \mu \text{ s}$ $800 \text{V} \ 10/560 \ \mu \text{ s}$ Telcordia GR $-1089 - 1.0 \text{kV} \ 10/1000 \ \mu \text{ s}$	UL60950, 3rd Ed – 600Vac, 40A Telcordia GR – 1089 – 600Vac, 60A

^{*}Select a specific part number for each application based on the agency request

2/07/2006

Revision: L

Protection	Ann	licati	on (Guide
1 100000011	Δpp	man	י ווטו	Ouluc

Region/Specification	Application	Device Selection
North America Telcordia GR-1089	*Access network equipment Remote terminal Repeaters WAN equipment Cross -connect	HVR600P150CF HVR600P160CF
North America FCC part68, UL60950	Customer and IT equipment Analog modems ADSL, XDSL modems Phone sets, PBX systems Internet appliances POS terminals	HVR600P150CF HVR600P160CF
North America Telcordia GR-1089	Central office POTS/ISDN linecards T1/E1 linecards ADSL/VDSL splitters CSU/DSU	HVR600P150CF HVR600P160CF
North America Telcordia GR-1089 South America/Asia/Europe ITU K.21	*Intrabuilding communication systems LAN, VOIP cards Local loop handsets	HVR600P150CF HVR600P160CF

^{*}resistance binned parts are recommended

Revision: L

Radial Leaded HVR600P Devices

How to select a high voltage PPTC fuse:

- (1) Determine the following operating parameters for the circuits:
 - (A) Normal Operating Current (I hold)
 - (B) Maximum Circuit Voltage (V max)
 - (C) Maximum Interrupt Current (I max)
 - (D) Normal Operating Temperature (min°C/max°C)
- (2) Select the device form factor and dimension suitable for the application:

Surface Mount Device (SMD Series)

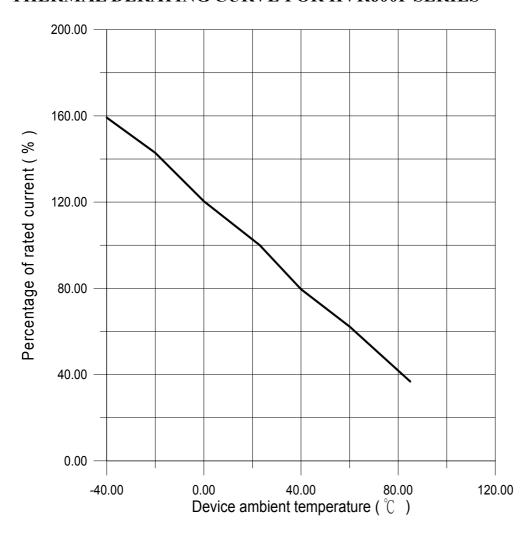
Radial Leaded Device (RLD Series)

Axial Leaded Strap Device (STD Series)

Other Custom-designed Device (Disc/Chip)

The High Voltage Radial devices (HVR Series)

The High Voltage Surface Mount Device(HVS series)

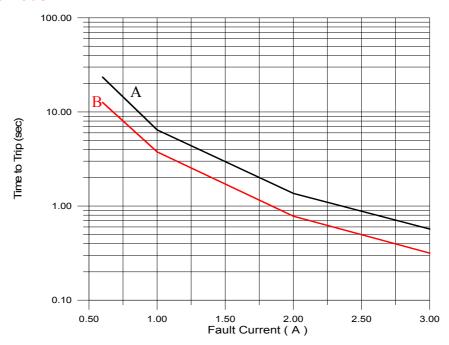

- (3) Compare the maximum ratings for V max and I max of the PTC device with the circuit in application and make sure that the circuit's requirement does not exceed the device ratings.
- (4) Check that the PPTC device's trip time (time-to-trip) will protect the circuit.
- (5) Verify that the circuit operating temperatures are within the PPTC device's normal operating temperature range.
- (6) Verify the performance and suitability of the chosen PPTC device in the application.
- (7) Verify the final equipment have to enclose which telecom standard requirement.

Revision: L

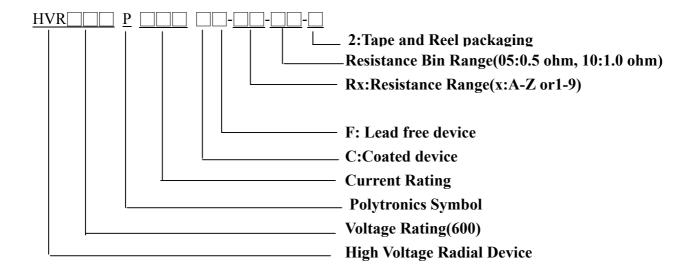
THERMAL DERATING CURVE FOR HVR600P SERIES

THERMAL DERATING CHART FOR HVR600P SERIES – Ihold (Amps) (RECOMMENDED DATA)

Model	Ambient Operation Temperature						
Model	- 40°C	-20°C	0℃	23°C	40°C	60°C	85°C
HVR600P150CF	0.232	0.21	0.187	0.15	0.124	0.096	0.050
HVR600P160CF	0.254	0.228	0.192	0.16	0.125	0.099	0.055


Specifications are subject to change without notice.

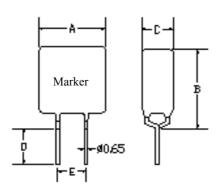
*Customer should verify the device performance in their specified conditions. <u>聚鼎科技股份有限公司 Polytronics Technology Corp.</u> 新竹市科學工業園區展業—路九號六樓之三 6F-3,No.9 Prosperity Rd. I ,SBIP,Hsin-Chu, Taiwan TEL:886-3-5643931 FAX:886-3-5644624 E-mail:pttc6368@ms22.hinet.


Revision: L

AVERAGE TIME-CURRENT CURVE FOR HVR600P SERIES

A: HVR600P160CF B: HVR600P150CF

PART NUMBERING SYSTEM

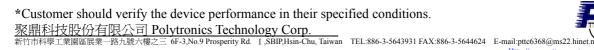


^{*}Customer should verify the device performance in their specified conditions. 聚<u>鼎科技股份有限公司 Polytronics Technology Corp.</u> 新竹市科學工業園區展業—路九號六樓之三 6F-3,No.9 Prosperity Rd. 1,SBIP,Hsin-Chu, Taiwan TEL:886-3-5643931 FAX:886-3-5644624 E-mail:pttc6368@ms22.hinet.

Revision: L

HVR600P Series Figure

Figure 1



Center to Center

PHYSICAL DIMENSIONS (mm)

Part Number	A (max.)	B (max.)	C (max.)	D (min.)	E (typ.)	Physic Lead	cal Characte Material	ristics Figure
HVR600P150CF	13.5	12.6	6.0	4.7	5.1	0.65 dia.	Sn/Cu	1 1 1 1
HVR600P150CF-RA		12.6	6.0	4.7	5.1	0.65 dia.	Sn/Cu Sn/Cu	1
								1
HVR600P150CF-RB		12.6	6.0	4.7	5.1	0.65 dia.	Sn/Cu	1
HVR600P160CF	16	12.6	6.0	4.7	5.1	0.65 dia.	Sn/Cu	1
HVR600P160CF-RA	-	12.6	6.0	4.7	5.1	0.65 dia.	Sn/Cu	1
HVR600P160CF-R1	16	12.6	6.0	4.7	5.1	0.65 dia.	Sn/Cu	1

OSpecifications are subject to change without notice.

2/07/2006

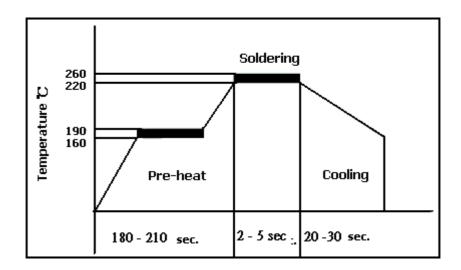
Revision: L


ENVIRONMENTAL SPECIFICATIONS

Operating/Storage	-40°C to +85°C
Temperature	
Maximum Device Surface	125℃
Temperature in Tripped State	
Passive Aging	+85°C, 1000 hours
Humidity Aging	+85°C, 85%R.H. 1000 hours
Thermal Shock	MIL-STD-202F Method 107G
	+125°C to -55°C 10 times
Solvent Resistance	MIL-STD-202, Method 215F

PHYSICAL SPECIFICATIONS

Lead Material	Tin-plated copper
Soldering Characteristics	Solderability per MIL-STD-202, Method 208E
Insulating Material	Cured, flame retardant epoxy polymer meets UL94V-0 requirements.
Device Labeling	Marked with the letter "P", voltage, amperage rating, and lot number.


OSpecifications are subject to change without notice.

Revision: L

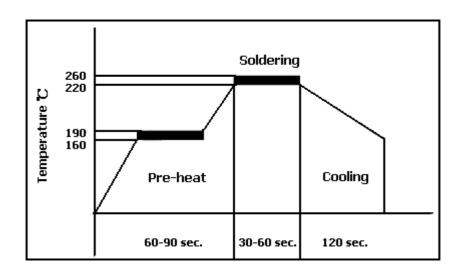
SOLDERING CONDITION

1. Wave soldering

RECOMMENDED CONDITIONS

Condition	Wave Soldering
Peak Temp/Time	260° C ≤ 5 Sec
≥220°C	2 Sec ~ 5 Sec
Preheat 140° C ~ 180° C	180 Sec ~ 210 Sec
Storage Condition	0°C~35°C, ≦70%RH

- Recommended soldering methods: heat element oven or N₂ environment for lead-free
- Devices are designed to be wave soldered to the bottom side of the board.
- Devices can be cleaned using standard industry methods and solvents.
- This profile can use for lead free device


Note: If soldering temperatures exceed the recommended profile, devices may not meet the performance requirements.

*Customer should verify the device performance in their specified conditions. 聚<u>鼎科技股份有限公司 Polytronics Technology Corp.</u> 新竹市科學工業園區展業—路九號六樓之三 6F-3,No.9 Prosperity Rd. 1,SBIP,Hsin-Chu, Taiwan TEL:886-3-5643931 FAX:886-3-5644624 E-mail:pttc6368@ms22.hinet.

Revision: L

SOLDERING CONDITION

2. Solder reflow

RECOMMENDED CONDITIONS

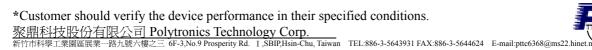
Condition	Reflow
Peak Temp/Time	260° C ≥ 5 Sec
≥220°C	30 Sec ~ 60 Sec
Preheat $160^{\circ}\text{C} \sim 190^{\circ}\text{C}$	60 Sec ~ 90 Sec
Storage Condition	0°C~35°C, ≤70%RH

- Recommended reflow methods: IR, vapor phase oven, hot air oven, N₂ environment for lead-free
- Devices are not designed to be wave soldered to the bottom side of the board.
- Devices can be cleaned using standard industry methods and solvents.

Note: If reflow temperatures exceed the recommended profile, devices may not meet the performance requirements.

*Customer should verify the device performance in their specified conditions. 聚<u>鼎科技股份有限公司 Polytronics Technology Corp.</u> 新竹市科學工業園區展業—路九號六樓之三 6F-3,No.9 Prosperity Rd. 1,SBIP,Hsin-Chu, Taiwan TEL:886-3-5643931 FAX:886-3-5644624 E-mail:pttc6368@ms22.hinet.

Revision: L


TAPE AND REEL SPECIFICATIONS

Product availability: HVR600150CF and HVR600P160CF

Devices taped using EIA468-B/IE286-2 standards. See table below and Figures 1 and 2 for details.

Dimension	EIA	IEC	Dimensions	
Description	mark	Mark	Dim.(mm)	Tol.(mm)
Carrier tape width	W	W	18	-0.5/+1.0
Hold down tape width:	W_4	W_0	11	min.
Top distance between tape edges	W_6	W_2	3	max.
Sprocket hole position	W_5	\mathbf{W}_1	9	-0.5+0.75
Sprocket hole diameter*	D_0	D_0	4	-0.32/+0.2
Abscissa to plane(straight lead)	Н	H	18.5	<u>+</u> 3.0
Abscissa to plane(kinked lead)	H_0	H_0	16	<u>+</u> 0.5
Abscissa to top	H_1	H_1	32.2	max.
Overall width w/o lead protrusion	C_1		42.5	max.
Overall width w/ lead protrusion	C_2		43.2	max.
Lead protrusion	L_1	l_1	1.0	max.
Protrusion of cut out	L	L	11	max.
Protrusion beyond hold-down tape	l_2	l_2	Not specified	
Sprocket hole pitch: P150CF & P160CF	P_0	P_0	25.4	<u>+</u> 0.5
Device pitch :P150CF & P160CF			25.4	
Pitch tolerance			20 consecutive.	<u>+</u> 1
Tape thickness	t	t	0.9	max.
Tape thickness with splice	t_1		2.0	max.
Splice sprocket hole alignment			0	<u>+</u> 0.3
Body lateral deviation	Δh	Δh	0	<u>+</u> 1.0
Body tape plane deviation	Δp	Δp	0	<u>+</u> 1.3
Ordinate to adjacent component lead*	P ₁	P ₁	3.81	<u>+</u> 0.7
Lead spacing:	F	F	5.08	<u>+</u> 0.8
Reel width	\mathbf{w}_2	W	56	max.
Reel diameter	a	d	370	max.
Space between flanges less device*	\mathbf{w}_1		4.75	3.25/+8.25
Arbor hole diameter	c	f	26	<u>+</u> 12.0
Core diameter*	n	h	91	max.
Box			56/372/372	max.
Consecutive missing places			None	
Empty places per reel			0.1%max.	

^{*}Differs from EIA specification

Revision: L

TAPE AND REEL SPECIFICATIONS

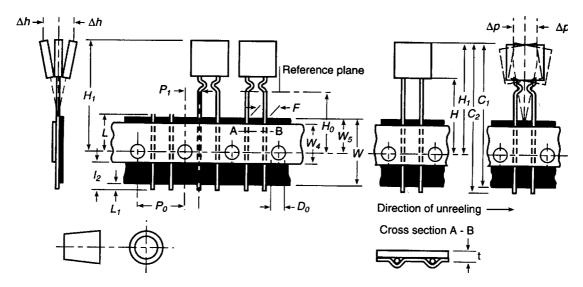


Figure 1

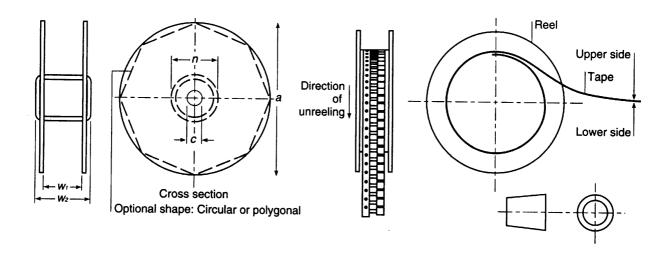
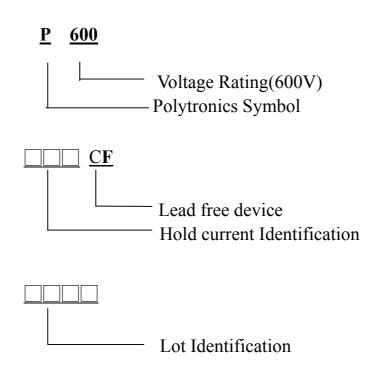
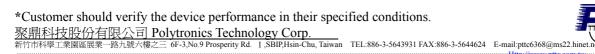


Figure 2

聚<u>鼎科技股份有限公司 Polytronics Technology Corp.</u> 新竹市科學工業園區展業—路九號六樓之三 6F-3,No.9 Prosperity Rd. 1,SBIP,Hsin-Chu, Taiwan TEL:886-3-5643931 FAX:886-3-5644624 E-mail:pttc6368@ms22.hinet.r

^{*}Customer should verify the device performance in their specified conditions.




Revision: L

PACKAGING INFORMATION

Product Description	Part I.D.	Bag Quantity	Reelpack Quantity	Ammopack Quantity
HVR600P150CF	150F	200	600	600
HVR600P160CF	160F	200	500	500

PART MARKING SYSTEM

Revision: L

CROSS REFERENCE

Polytronics/ EVERFUSE TM	Cross Reference	
	Raychem/ PolySwitch®	Bourns/ Multifuse®
HVR600P150C HVR600P160C HVR600P150CF HVR600P160CF	TR600-150 TR600-160 TRF600-150 TRF600-160	MF-R015/600 MF-R016/600 N/A N/A

[&]quot;EVERFUSE" is a registered trademark of Polytronics Technology Corp.

*Customer should verify the device performance in their specified conditions. <u>聚鼎科技股份有限公司 Polytronics Technology Corp.</u> 新竹市科學工業園區展業一路九號六樓之三 6F-3,No.9 Prosperity Rd. 1,SBIP,Hsin-Chu, Taiwan TEL:886-3-5643931 FAX:886-3-5644624 E-mail:pttc6368@ms22.hinet.n

12/07/2006

Page: 13 of 13

[&]quot;Multifuse" is a registered trademark of Bourns, Inc.

[&]quot;PolySwitch" is a registered trademark of Raychem Corporation.

Specifications are subject to change without notice.