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ABSTRACT: A detailed understanding of instanton effects for half-BPS couplings is
pursued in theories with 16 supersymmetries. In particular, we investigate the duality
between heterotic string on 7* and type-ITIA on K3 at the T*/Z, orbifold point, as
well as their higher and lower dimensional versions. We present a remarkably clean
quantitative test of the duality at the level of F'* couplings, by completely matching a
purely one-loop heterotic amplitude to a purely tree-level type-1I result. The triality
of SO(4,4) and several other miracles are shown to be crucial for the duality to hold.
Exact non-perturbative new results for type I’, F on K3, M on K3, and IIB on K3 are
found, and the general form of D-instanton contributions in type IIA or B on T*/Z,
is obtained. We also analyze the NS5-brane contributions in type II on K5 x T2, and
predict the value u(N) = >,y (1/ d®) for the bulk contribution to the index of the
NS5-brane world-volume theory on K5 x T2,
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1. Introduction

1.1 Instanton effects and BPS saturated couplings

Understanding the rules of instanton calculus in string theory has been a challenging
goal over the last few years, the achievement of which has become conceivable thanks
to the D-brane description of string solitons [1]. Yet, it is still a difficult problem
to compute the contribution of D-instantons to a generic amplitude, not to mention
that of NS5-brane instantons relevant for four-dimensional physics. The study of
exact BPS saturated amplitudes (R* couplings being the primary example) in a
weak coupling expansion has shed a welcome light on this problem, and indeed has
allowed the first experimental determination of the half-BPS D-instanton measure
in the type-IIB theory [2], before the latter was derived from first principles [3, 4],
together with the leading perturbative corrections in the instanton background [5].
U-duality [6] (see [i4] for a review) has been a prominent tool in generalizing these
results to toroidal compactifications of M-theory [8, 8, 1U], and there is by now a
fairly complete understanding of half-BPS instanton effects in these theories [11, i1T],
modulo still mysterious effects superficially of order e~1/9: [@, 10].

The situation in theories with lower supersymmetry is however not so well under-
stood, even in the case of half-BPS amplitudes in theories with 16 supersymmetries.
The canonical examples in that case correspond to R? couplings, believed to be one-
loop exact on the type-II side, and F'* couplings, believed to be one-loop exact on
the heterotic side [12, 13, 14]. These non-renormalization conjectures are supported
by anomaly cancellation arguments and decoupling between the gravitational and
vector multiplets. As far as R? couplings on the heterotic side are concerned, the
only half-BPS instanton is the heterotic 5-brane, and the lack of knowledge of its
worldvolume dynamics has hindered a direct understanding of its non-perturbative



effects on the heterotic side [15, 16], even though interesting results have been ob-
tained on the type-I side [17]. We will instead focus on the F* couplings, for which
several results are already available. On the type-I side, there is a quite complete
treatment of the D-string instanton contributions [14, 18, 19], even though some
ill-understood higher genus contact contributions are needed for the duality to hold
[14]. The F* couplings on the type-I’ side have also been computed [20, 21, 22,
but the detailed instanton measure remains to be understood. They have also been
reproduced from the point of view of F-theory compactified on K3 at particular sin-
gular points of the moduli space [23, 24, 25|, but due to the fact that the dilaton
is fixed at a finite value, these results give little insight into instanton effects. Fi-
nally, closely related four-derivative scalar couplings in the context of type-II string
theory compactified on K3 have been obtained [26], which are believed to be related
by supersymmetry to F'* couplings. In the latter case, instanton effects from D-
branes wrapped on even homology cycles of K3 have been identified, and shown to
reproduce the type-IIB D-instanton contributions in the ten-dimensional decompact-
ification limit. The summation measure was recovered from a D-brane matrix model
in [2]. NS5-brane instantons were also found but not thoroughly discussed. It is the
purpose of this work to extend these partial results, solve several of the issues raised
above, and to try and achieve the same level of understanding as in the maximally
supersymmetric case.

1.2 Instantons on K3 at the orbifold point

In general, a detailed perturbative or instanton computation on a curved manifold
like K3 is hampered by our lack of knowledge of the K3 stringy geometry beyond
simple topological invariants. Our main goal is to obtain a working understanding
of D-instanton effects in type-II theories compactified on K3 at the T%/Z, orbifold
point of K3, for which the conformal field theory description is completely solvable
but still non-trivial. Zs 4 orbifold points are technically more involved but expected
to yield similar results. Other solvable descriptions include Gepner points, but those
do not in general possess a well defined classical geometry limit, and one must resort
to boundary CFT techniques in order to understand these stringy geometries [27].
In the simple T*/Z, orbifold case however, the geometric interpretation is clear, and
such techniques can be dispensed with. Instantons simply arise from branes wrapped
on even cycles of T%, or collapsed at the 16 orbifold singularities. They first show
up in type IIB compactified on K3, or in ITA compactified on K3 x S; where the
extra S allows the even D-branes to wrap a euclidean submanifold. Translating the
one-loop heterotic result under the duality map, we shall obtain the contributions of
these D-instantons to the half-BPS saturated F'* amplitudes.

Our method will appear to be equally applicable in any space-time dimension. By
going to the appropriate dual description, we will obtained a wealth of complimentary
information that we regard as equally interesting. In D = 6, we will obtain one of



the cleanest tests of heterotic-type-IIA duality to our knowledge, by recovering the
one-loop result from a type-IIA tree-level amplitude. This is arguably the first non-
trivial quantitative test of heterotic-type-1II duality, since all other (with the possible
exception of [26], which will be recovered in this work) follow from supersymmetry
alone. In D = 7, we shall obtain the M-theory four-gluon amplitude for SU(2) gauge
bosons located at the A; singularities of K3. In D = 8, we shall recover the F'*
amplitude for SO(8) gauge bosons located at the orientifold planes of Sen’s F-theory
model [28], and amend the existing knowledge [23]. In D = 9, we will compute
the F'* couplings at the SO(16) x SO(16) point, and show that the higher genus
contact contributions found in [14] do not arise in this case. Finally, in D = 4
we will obtain and analyze the contribution of NS5-brane instanton effects, and
extract the corresponding instanton measure. We will also find an interesting non-
renormalization property beyond one-loop in the background of the NS5-brane.

1.3 A test of heterotic-type-IIA duality

For the convenience of the reader, we would like to sketch the salient points of our
analysis in the case of heterotic-type-IIA duality in six dimensions, which lies at
the basis of our argument and is quite representative of our method. We focus on
F* couplings involving the 20 gauge fields from the vector multiplets, disregarding
the graviphotons for now, and more specifically on the (0,16) of them originating
from the Cartan torus of the ten-dimensional gauge group. On the heterotic side,
(Tr F%)? couplings related by supersymmetry to Chern-Simons couplings appear at
tree-level already. We shall disregard them in this work, since they are analogous to
the R? couplings and have a trivial dependence on the moduli. More interestingly,
the only further contributions to four-gauge-boson F* couplings occur at one-loop
on the heterotic side, and since they barely saturate the fermionic zero-modes, they
are given by the standard integral on the fundamental domain F of the upper-half
plane

4 = — . (11)
F 7_22 7724

AHet _ 2 / d2TQ4'Z4,20(9/l%1ab7y)
H —
f

Here Iy is the heterotic string length, and is reinstated on dimensional grounds.
Z4,90 denotes the partition function of the heterotic even self-dual lattice of signature
(4,20), parameterized by the metric g and Kalb-Ramond field b on the torus T*
and the Wilson lines y of the 16 U(1) gauge fields in ten dimensions along the 4
circles of the torus 7. Q* denotes an operator inserting four powers of right-moving
momenta in the lattice partition function, depending on the 4 gauge fields considered,
and 1/n?* = 1/q+24+--- is the contribution of the 24 right-moving oscillators that
generate the Hagedorn density of half-BPS states in the perturbative spectrum of
the heterotic string.



Under duality with the type-ITA theory compactified on K3, the six-dimensional
string coupling g¢ gets inverted, while the string length is rescaled! as I, — ggls.
Taking into account the particular normalization of the type-II Ramond fields, it is
easy to see that (1.1) translates into a tree-level type-ITA result. On the other hand,
it is still given by a modular integral on the fundamental domain of the upper-half
plane, which is usually characteristic of one-loop amplitudes. The resolution of this
paradox is that on the type-IIA side, the gauge fields dual to the (0,16) heterotic
ones originate from the twisted sectors of the orbifold: the correlator of four Z, twist
fields on the sphere can be re-expressed as the correlator of single-valued fields on
the double cover of the sphere, which is a torus [29, 8U]; its modulus depends on the
relative position of the four vertices, and hence should be integrated over. A careful
computation yields the tree-level type-IIA result

1A 1, Iy d*r G
4= g |5 (7). -
where the factors of gy correspond to the tree-level weight and the normalization of
the Ramond fields respectively. Here we have focused for simplicity on a particular
choice of (0, 16) fields: in general, (1.2) involves a shifted lattice sum integrated on
a six-fold cover Fy of the fundamental domain F.

Still this result is not quite of the same form as (1.1). For one thing, the type-
ITA result, being a half-BPS saturated coupling, does not involve any oscillators, in
contrast to the heterotic side. For another, the [SO(4) x SO(4)]\ SO(4, 4, R) moduli
G/1%4, B are not the same as the heterotic g/i%, B. In order to reconcile the two, we
need to take several steps:

(1) Moduli identification: the relation between the heterotic and type-II moduli
can be obtained by studying the BPS spectrum. On the heterotic side, the BPS
states are Kaluza-Klein and winding states transforming as a wvector of SO(4,4,7Z),
and possibly charged under the 16 U(1) gauge fields. On the type-IIA side, a set of
BPS states is certainly given by the D0-, D2- and D4-branes wrapped on the even
cycles of T#, which are invariant under the Z, involution. These states transform as
a conjugate spinor of the T-duality group SO(4,4,Z), as D-branes should [7]. We
thus find that the heterotic g/I%,b and type-IIA G/I%, B moduli should be related
by SO(4,4) triality [31], which exchanges the vector and conjugate spinor represen-
tations.

There are also D2-brane states wrapped on the collapsed spheres at the sixteen
orbifold singularities [82], and charged under the corresponding U(1) fields. These
are to be identified with the charged BPS states on the heterotic side, and their

In our conventions, we transform the string length but leave the metric invariant. This takes
care of the Weyl rescalings needed to go from the various string frames to the Einstein frame.



masses are matched by choosing the Wilson lines as [33]

0101 0101 0101 0101
~ 100000000 1111 1111 L3
Y75 [ 0000 1111 0000 1111 | - '

0011 0011 0011 0011

This can also be derived by realizing that the Wilson lines along the first circle in
T* map to the B-field fluxes on the collapsed two-spheres, which have been shown
to be half a unit in order for the conformal field theory to be non-singular [34]. If we
instead put this Wilson line to zero, we recover a gauge symmetry SO(4)® = SU(2)*,
as appropriate for the 16 A; singularities of T*/Z,. This choice is relevant for M-
theory compactified on K3 at the Z, orbifold point. If we further omit the Wilson
lines on the 2nd (resp. 2nd and 3rd) circles, the gauge symmetry is enlarged to SO(8)*
(resp. SO(16)?) which are relevant for F-theory on K3 and type I’ respectively. These
relations explain why our results can easily been applied to these settings as well.

(ii) Hecke identities: at the above choice of Wilson lines, it so happens that
the lattice sum simplifies drastically. This phenomenon was noted in a particular
example in [23], and we will greatly extend its range of validity. In order to see this,
it is useful to reformulate the above choice of Wilson lines on the heterotic 7% as a
(Zo)* freely acting orbifold, so that

Zizo = =3 Zus [ 61 [1] | (1.4)

where g and A run from 0 to 15 and are best seen as four-digit binary numbers; h
labels the twisted sector while the summation over g implements the orbifold pro-
jection in that sector. The blocks Z, 4 m are partition functions of (4,4) lattices
with half-integer shifts, and 14 ["] are antiholomorphic conformal characters. The
operator Q* only acts on the latter. As we shall prove in appendix A3, extending
techniques first developed in [3F], the conformal blocks ® [Z] = Q'O m /n** oc-
curring in the modular integral can be replaced by two-thirds their image \ under
the Hecke operator

Hy. ®(r) = % («1) (—%) o (2)+e (T - 1)) (L.5)

provided this image is a constant real number:

Q'O [1]
We observe that the relation (1:6) holds for all the conformal blocks of interest in
this construction. The modular integral thus reduces to
ot 2\ d>r g
Allet — ?zﬁ/ 7Z474 (ﬁb) (1.7)
F H
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and the Hagedorn density of half-BPS states in (1.4) has thus cancelled. We note that
modular integrals such as (1.7) have infrared divergences coming from the vacuum
sector in the lattice partition function, and we implicitly subtract the divergent
term. This is natural from the point of view of the one-loop heterotic thresholds,
and required from the point of view of the tree-level type-IIA result since we need
to subtract the tree-level exchange of massless modes to get the correction to the
two-derivative effective action.

(iii) Triality: the last step needed to identify the type ITA and heterotic result is to
understand how triality equates the integrals of the partition function Z,4(g/l%,b)
and Z,4(G/l%, B) on the fundamental domain of the upper-half plane. It is easy
to convince oneself that such an equality cannot hold at the level of integrands, by
looking at some decompactification limits. However, it has been shown that such
modular integrals could be represented as Eisenstein series for the T-duality group
SO(4,4,7), in the vector or (conjugate) spinor representations according to one’s

taste [10]:

SO(4,4,Z SO(4,4,Z SO(4,4,Z
/—Z44_ EVS 1 ) Ss(l ) C;s(zl ) (]‘8)

This implies the invariance of the modular integral of Zs4(g/I2,b) under triality
transformation of the moduli, which completes the argument.

1.4 Outline

The previous discussion was intended as a preview only, and will be made precise
and generalized in the rest of the paper. The latter is organized in such a way that
the reader may skip the more technical sections without major inconvenience. In
section 2, we give an overview of the various dual descriptions of the heterotic string

compactified on a torus 7¢ = TP

and derive the precise duality maps involved.
Section 3 will be devoted to a derivation of the heterotic F'* amplitudes and their
cousins and their representation in the freely acting orbifold language. In section 4 we
will concentrate on the duality test sketched above, and derive the type-ITA tree-level
amplitude. Section § will be devoted to translating the one-loop heterotic results in
4 < D <9 to their respective dual descriptions, and to interpreting these results as
instanton effects. Useful facts involving modular forms and shifted lattice partition
functions are gathered in the appendices, together with details on the computation

of modular integrals of shifted lattice partition functions.

2. Moduli identification

In this section, we will discuss how the heterotic string theory can be mapped to its
various dual descriptions. We start by briefly recalling some basic results about the
heterotic moduli space.



2.1 Toroidal compactifications of the heterotic string

We consider the Eg x Eg or SO(32) heterotic string theory compactified on a torus
T?. For d < 5, the moduli space takes the form

R* x [SO(d) x SO(d + 16)]\ SO(d, d + 16, R)/ SO(d,d + 16,Z),  (2.1)

where the first factor is parameterized by the T-duality invariant dilaton ¢9_4 re-
lated to the ten-dimensional heterotic coupling gy by e 2?10-¢ = V, /(g&l¢), with Vj
the volume of the d-torus; the second factor is the standard Narain moduli space,
describing the metric g and B-field b of the internal torus, together with the Wilson
lines y of the 16 U(1) gauge fields in the Cartan torus of the ten-dimensional gauge
group [87]. The right action of the discrete group SO(d,d + 16,Z) (by which we
mean the automorphism group of the lattice Fs @ Es ® H? or D1s @ H? depending
on the case, where H is the hyperbolic standard lattice) reflects the invariance under
T-duality. This moduli space is usually parameterized in the Iwasawa gauge by the

SO(d,d + 16, R) viel-bein

v gy b—yy'/2 14
€H = 16 : 16 —yt ) 6%77€H =, n= 16 )
v 1,4 14
(2.2)

where v is the viel-bein of the metric of the internal torus, namely g = lZv'v. Note
in particular that ey depends only on the dimensionless moduli ¢/i%,b and y. The
right action by the SO(d, d + k,Z) elements

oy —y'y"/2 gV
116 —ylt and 116 (23)
1d 1d

preserves the Iwasawa gauge and generates the discrete Borel symmetries
1 ,
y—y+vy, b—>b+§(y'yt—yyt) or b—b+b, (2.4)

which should be supplemented by Weyl elements in order to generate the full T-
duality group.

In order to determine the mapping of moduli to the dual descriptions, our main
strategy will be to compare the BPS mass formula on both sides. For perturbative
heterotic BPS states, it is simply given by

1
M = — t(Md,d+16 - 77)@’ (2-5)

_l%{



where Q = (m', ¢!, n;) is the vector of momenta, charges and windings and My 4,16 =
eliey in terms of the viel-bein (2.9). The charges ¢/,] = 1,...,16 take values in
the even self dual lattice Es @ Eg or Dig. The degeneracy d(IN) of states with
Q'nQ = 2m'n; + (¢')? = 2N is given by the generating formula

1

1 TUT
Zd(N)qN:n24(T):g+24+-~-, q=e"mr. (2.6)

This description of the moduli space is quite complete for compactification down
to 5 dimensions. For lower dimensional compactification however, the moduli space
increases due to the dualization of the NS 2-form into a scalar 6 (in four dimen-
sions), or of the 30 U(1) gauge fields into scalars (in three dimensions). As a result,
the R factor in (2.1) is enhanced to U(1)\ SL(2,R), parameterized by a complex
parameter S = 60 + i/g2, acted upon by SL(2,Z) S-duality transformations [3§],
whereas in D = 3 all scalars are unified into a [SO(8) x SO(24)]\ SO(8, 24, R) sym-
metric manifold, acted upon by the U-duality group SO(8,24,Z) [3Y]. It would
be quite interesting to determine SO(8,24,Z) invariant couplings in this case, but
we will not attempt to do this here. Instead, we will restrict ourselves to d <
6, and focus on half-BPS saturated couplings which depend on the heterotic Na-
rain moduli only, and hence receive contributions from one-loop only on the
heterotic side.

As motivated in the introduction, we now would like to determine the sub-
space of the moduli space (2.1) dual to a compactification on a flat space except
for possible Zs conical singularities. It will turn out that such a description exists
only for particular values of the Wilson lines breaking the SO(32) gauge symme-
try to a subgroup SO(2°7P)P™1 (0 < p < 4. Choosing p Wilson lines out of the
four lines (1.3) fulfills this condition, and so would of course any permutation of the
16 vertical columns. For d = 4, it would seem that any generic value of y break-
ing the gauge symmetry to U(1)' would do, but this is not correct since y should
respect a large discrete group of symmetries that we will discuss in section 4. It
would also seem that this same symmetry breaking pattern (for p > 0) could be
obtained from Eg x Eg heterotic theory: however Eg cannot be broken to SO(16) by
Higgs phenomenon but rather to SO(14) x U(1), and it is necessary to go to an en-
hanced symmetry point to recover SO(16) and its subgroups.? We therefore restrict
ourselves to the more convenient SO(32) heterotic description. In the following we
shall also focus on the maximally broken situation p = min(d, 4), since other cases,
though interesting, can be obtained by straightforward compactification and have
been discussed in [14, 20)]. Having fixed the values of y modulo 2, we see that the T-
duality group is reduced from O(d, d+ 16, Z) to O(d, d,Z), or rather to a finite index
subgroup of it.

2We thank F. Cachazo for explaining this to us.



2.2 Type-I’

Let us first consider the compactification of the heterotic string on a single circle of ra-
dius Ry with the Wilson line y = (0000000011111111) breaking the gauge symmetry
to SO(16) x SO(16). This theory admits a dual description as type IIA on the orien-
tifold S*/Z; of a circle of radius Ry, also known as type I’ or IA [40]. The gauge sym-
metry arises from two groups of eight D8-branes located at each of the fixed points.
The mapping between the radii and string length can be most easily obtained by
first dualizing the heterotic string to type I on a circle, (gs,ls, R) — (1/gs, g;/ ?l, R),
and then T-dualizing to type I'. In this way we get

ln 1/2 Rv — 1plu (2.7)

g = —75 > lI’:g ZH7 =g )
9111/2RH ! Iy * Ry

where the quantities on the left-hand side refer to the type-I’ theory and those
on the right-hand side to the heterotic theory. In particular, the heterotic nine-
dimensional coupling go = gn(ly/Ru)"/?, parameterizing the R* factor in (2:1), be-
comes (Ry /ly)>*g, 8/% 50 that the factorization of the moduli space does not seem
to have a very natural interpretation on the type-I’ side. Similarly, the mapping of
the heterotic Wilson lines is quite involved, and the duality map (2.7) is only correct
at the SO(16) x SO(16) point, to which we shall restrict ourselves. The more general
case is discussed in [41], where it is shown that a real version of K3 underlies the
type-I” description. The SO(16) x SO(16) point should then correspond to the T*/Z,
orbifold point of Kj.

2.3 F-theory on Kj;

We now consider the SO(32) heterotic string compactified on a two-torus of Kéahler
class Ty = b+ iVi and complex structure Uy, at the SO(8)? point, corresponding to
a choice of two Wilson lines in (1.3). Following the same reasoning as above, we first
dualize to type I on 72 and then apply a double T-duality on 77 to go to type IIB
on a T?/Z, orientifold, with moduli

I

:7H7

gils

s (2.8)

9B lp = ng%I ] Ve =
and the same complex structure Ug = Uy. This is precisely Sen’s construction [2§]
of F-theory on K3 [42] at the orbifold point T*/Z,, seen as an elliptic fibration
over the base T?%/Z, with a fiber of complex modulus Ur = a + i/gg = Tx. The
real factor in (2.1), corresponding to the heterotic 8D coupling, now parameterizes
the size of the base Vg/l% in 10D Planck units (lp = gé/4l3), while the [SO(2) x
SO(18)]\ SO(2, 18, R) moduli parametrize the complex structure of elliptically fibered
K3’s. At the T*/Z, orbifold fixed point, an [SO(2) x SO(2)]\ SO(2,2,R) subspace
remains available corresponding to the Ug and Ur moduli, while the remaining 2 x 16
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parameters are fixed at the value of the heterotic Wilson lines. There exists other
components in the F-theory moduli space corresponding to a fixed dilaton Up and
describing the other Zj3, Z4, Z¢ orbifold points of K3 [43, 24], but we shall not describe
them here. We simply note that they give rise to exceptional gauge symmetry, and
are therefore better accommodated in the heterotic Egy x Fg setting; the mapping is
then obtained by a further (73, Uy) interchange on the heterotic side.

2.4 Type ITA on K;

The natural next step would be to discuss the dual of heterotic on T3, namely M-
theory on K3, but we shall find it more convenient to consider heterotic on T* and
its type IIA dual on K3 first, before taking the large coupling limit in the next
subsection.

We therefore consider the SO(32) heterotic string compactified on a torus 7
with constant metric ¢ and B-field b, and for now unspecified Wilson lines y. This
theory is dual to type ITA compactified on K3 [44] under the identifications

1 R\> VW
ln = genali , J6IIA = — < 1> = =8 (2.9)

geH E lill ’

which can be obtained by identifying the IIA NS5-brane on K3 with the fundamental
heterotic string, and the type-ITA D0-brane with a heterotic Kaluza-Klein state along
the circle of radius R; in T*. This requires breaking the SO(4,20) symmetry to
SO(3,19), and decomposing the viel-bein (2.9) into

1
Rr 1A
vg ! 14
eH - 116 . 116
V3 13 _At
R
. 1
1 biz 0 10 y _% _%
13 b3 _bt13 15 ys3 —% _932@/1
hio ' Le —ys —vi | (2.10)
1 1

where v3, b33 are the 3-torus viel-bein and B-field, A and b3; are the off-diagonal
metric g'gy; and B-field b;; (i = 2,3,4), y; is the Wilson line around the first circle
and y3 are the three Wilson lines around 73.

On the type-IIA side, the [SO(4) x SO(20)]\ SO(4,20,R) moduli space also
has a natural decomposition into RT x [SO(3) x SO(19)]\ SO(3,19,R), where the
first factor corresponds to the volume of K3 in type-ITA string units, and the second
parameterizes the unit volume Einstein metric on K33 (see [43] for a review). Together
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with the fluxes of the B-field along the 22 homology 2-cycles, these parameters make
up an SO(4, 20) matrix

2
lII

ALS 1 B —%Bﬂzz,wBt
€A = €3,19 : 1o —773,1gBt ) (2~11)
Vs 1
Vs

lII

where ej3 19 is the viel-bein parameterizing the Einstein metric of K3 and 7319 denotes
the signature (3,19) metric on the space of two-cycles Ho(K3). This can also be
obtained from the BPS mass formula [40]

1 1 Vk BnzioBt \?
M? = 2 12 qt(eﬁAeHA —n)q = 22 ((Jo - ZTS(M + Bqy — T(M +
Feriatin i I
Vi ¢
+ 2;5 (g2 — m319B'qa) " (€5,19€310 — 713,19) X
gutn
X (g2 = m310B"q) , (2.12)

where ¢o,q2 and ¢4 denote the DO0-D2- and D4-brane charge. Matching (2.11)
with (R7I0) gives the last identification in (279). The heterotic T-duality group
SO(4,20,7Z) acting from the right on ejs is now interpreted as mirror symmetry
of the (4,4) K3 superconformal theory (see [36] for a recent review), while the ADE
enhanced symmetries on the heterotic side arise from D2-branes wrapped on vanish-
ing cycles of K3 on the type-II side [47].

We now would like to identify the T*/Z, orbifold point in this moduli space.
At that point, we have a very explicit description of the 22 two-cycles in Ho(Kj3):
3 self-dual cycles and 3 anti-self-dual cycles come from the 6 two-cycles in Ho(T?),
which are obviously invariant under the Z, involution which reverses the sign of the
4 coordinates, while 16 more anti-self-dual ones come from the collapsed two-spheres
at any of the 16 singularities. Ho(T*,Z) has a signature (3,3) even inner product,
given by the wedge product of two-forms integrated on 7% /Z,, and carries a natural
metric M33 = G A G/Vg, orthogonal with respect to the inner product (note that
it is independent of the volume of K3), where G is the metric on 7%. This SO(3, 3)
matrix is an alternative parameterization of the unit-volume metric of T* perhaps
less familiar than the standard G/(det(G))Y* € SL(4) representation, and is made
possible thanks to the isomorphism SO(3,3) = SL(4). In order to match with the
heterotic side, it is useful to rewrite it in the standard form

4 418 1 Goz Gasz Gy
M33:(t_1 _1>> Y= = | G2z Gz G |
’ — G111y,
ﬂ Y Y 5’7 ﬁ K3 G24 G34 G44
G14 G12 G13
Bra = @ ) Baz = @ ) P31 = @ ) (213)
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where the matrix Mj 3 is written in the basis m3*,m*2 m*, m'2 m' m! of Hy(T?),
and vy (resp. () are symmetric (resp. antisymmetric) 3 x 3 matrices. Gj; is the
metric on 7%, and G% the inverse metric. Decomposing the 3416-+3 B-fluxes into
Bs, Big, Bs, we arrive at our final parameterization of the moduli matrix at the T /Z,
orbifold point,

2
lII

VK3 ]_ B3
U_t 13
era = 16 : Lis
u 13 —Bé
Vi 1
I
1 B; 0 1 0 Byg —2ut" BieBle
o BB L ¢ g 5k
Lig : g —¢* =Bl |, (2.14)
13 13 0
1 1

where u is again a viel-bein for the metric v, i.e. u'u = 7. It is now straightforward to
identify the heterotic and type-IIA moduli (2.2) and (2.11), and obtain the complete
duality map,

VK3:R%7 Y =493, ﬁ:b337 B3 A7
Bis = 1, Bs = b3, ¢ =1y3 (2.15)

in respective string units. Forgetting for the moment the Wilson line moduli, what we
have obtained here is the triality mapping between the SO(4, 4) matrices in the vector
representation, as appropriate for the heterotic side whose BPS states transform as a
vector of SO(4,4), to the conjugate spinor representation, under which the D-brane
BPS states of type-ITA on the untwisted cycles of T*/Z, transform. In order to
appreciate this, it is useful to consider rectangular tori with vanishing B-field, in
which case the mapping reduces to

In R In RIA 11 1 1
In R In RIA 111 -1-1 5

—P. P== P =1, (2.16
In RY In RIA |7 211-11 —1|" . (216)
In RY In RIA 1-1-11

where P acts as triality on the Cartan torus of SO(4,4), mapping the conjugate
spinor C' to the vector representation V. We also note that the triality acts on the
charges of these representations according to

: L2 03 4 1\ _ (.. 34 42 23 12 13 14, 1234
(my;mg, m3, my;n”,n° 0% n) = (m;m>,m*>= m=;m*,m>,m S5m0 (2.17)
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We have however not entirely completed our duty, since we still need to determine
the values of the heterotic Wilson lines at the Zy orbifold point. For this, we switch
off the B-flux Big on the 16 collapsed spheres as well as B3. Due to the 16 A;
singularities on the orbifold, the type-IIA theory develops an SU(2)!® enhanced gauge
theory. From (2.15), we see that this amounts to setting the heterotic Wilson line y;
to zero. The three remaining Wilson lines should therefore be such that they break
SO(32) to SU(2)*. This is indeed the case for the Wilson lines in (123). The choice
of the fourth Wilson line may seem arbitrary, but this is not so: on the type-IIA
side, the orbifold conformal field theory 7/Z, has a discrete symmetry group G
generated by the D, dihedral discrete symmetry of the four S*/Z, CFT’s [48], to be
discussed further in section 4.2. As will become clear in section 3.2.3, (1.3) is the
only choice consistent with this symmetry. We therefore deduce the corresponding
values of the blow-up parameters ¢ and B-flux B¢ from (2.15).

Let us briefly discuss the case of the Zs orbifold point of K3. In that case,
there are 9 A, singularities, so the symmetry group is enhanced to SU(3)? in the
absence of discrete B-flux. This has rank 18, and can therefore only happen at
an enhanced symmetry point on the heterotic side. Moreover, SU(3)? cannot be
embedded in SO(32). It can however be embedded in Fg x Eg X Eg (the exceptional
gauge symmetry found in [43] for F-theory on K3 at the Zs orbifold point), which is
an enhanced symmetry of the Fg x Fg heterotic string. It is thus possible to identify
the T /Zs orbifold point in the K3 moduli space in an analogous way as we did, but
we shall refrain from attempting this here.

2.5 M-theory on Kj

As announced, we now recover the dual description of the heterotic string compacti-
fied on T? by decompactifying the heterotic circle of radius R; in the above descrip-
tion. Since momentum states along this circle are mapped to type-IIA DO-branes,
this is the limit that takes type ITA on K3 to M-theory on K3, with eleven-dimensional
Planck length I3; = gialf [47, 49]. We therefore obtain

4110
Inln
VK = )
3 ‘/?32

(2.18)

so that the fundamental heterotic string is identified with the M5-brane wrapped on
K3. The R* factor in (2.11) now parameterizes the volume of K3 in eleven-dimensional
Planck units,

elo7/3 Vi (2.19)

while the [SO(3) x SO(19)]\ SO(3,19,R) moduli still describe the unit-volume Ein-
stein metric of K3. At the T*/Z, point, the same parameterization as in (2.1T) is
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valid, restricted to the SO(3,19) subspace:

u! L ¢ -5
em = 16 : lig —(* ; (2.20)
u 13

so that the identification with the heterotic parameters is simply

v=5., B=b, =y (2.21)
sl

Whereas the mapping (2:15) could be seen as the statement of triality, the identifica-
tion (2721) can be seen as the realization of the exceptional isomorphism SO(3,3) =
SL(4). Note that all the B-field parameters have disappeared, in accordance with the
fact that M-theory does not possess any 2-form in its spectrum, nor does K3 have any
three-cycle. In particular, this implies that the 16 singularities are no more resolved
by the half-unit B-flux, and therefore a SU(2)'® symmetry is expected, arising from
the M2-branes wrapped on the collapsed spheres. This is the case if one chooses the
Wilson lines y as the last three in (1.3).

2.6 Type IIB on K;

We now turn to the five-dimensional compactification of the heterotic string on 7° =
T* x S', with the four Wilson lines (1:3) along T*, breaking the gauge symmetry to
U(1)!¢. This is dual to type ITA on K3 x S* from section 2.4, but we are interested
here in the type-1IB description obtained by a further T-duality. Using the standard
R — I?/R, g — gls/ R transformation rules, we find
2 2
geuB = li, In = Ingen, Rp = l%ﬂ,
H
so that in particular the heterotic five-dimensional dilaton is mapped to the size of
the type-I1IB circle in 6D type-1IB Planck units,
Ry

T I} = gousli - (2.23)
P

The [SO(5) x SO(21)]\ SO(5,21,R) moduli, on the other hand, do not involve the
circle direction, and actually give the moduli space of the six-dimensional type-11B
theory compactified on K3 only. The full moduli space is obtained from the [SO(4) x
SO(20)]\ SO(4,20,R) moduli by adjoining the six-dimensional type-IIB coupling,
together with the fluxes B of the Ramond Ramond even forms on the 4420 even-

(2.22)

gHs

cycles of Kj:

ge11B 1 B —iBnB!
enp = €4,20 . Loy —B* | (2.24)
1
1

ge11B
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The even forms wrapped on the same 4420 cycles with two directions less give
4420 two-form gauge potentials H with self-dual and anti-self-dual field-strength
respectively. The right-action by SO(5, 21, Z) matrices corresponds to the U-duality
symmetry of type-IIB on K. In section §.4, by mapping one-loop F* couplings in
five-dimensional heterotic string to type-IIB on K3 x S; and taking the decompactifi-
cation limit Ry — oo, we shall be able to derive the exact U-duality invariant t1oH*
couplings between 4 self-dual or anti-self-dual two-forms in IIB compactified on K3,
and analyze the resulting instanton contributions.

2.7 Type IIA and IIB on K3 x 1%

Finally, we want to briefly discuss the duality between the heterotic string on 7
and type-II theories on K3 x T5. This duality can be obtained straightforwardly
by compactification from the previously discussed ones, and yields the following
identifications:

SH = CTIIA = UHB ) TH = SHA = SIIB ) UH = UHA = ﬂIB (225)

between the four-dimensional couplings S = a + i/g3, Kéhler class T' and complex
structure U of T?, with the string scales related by lga = lng = lgv/Ton/Sen. Su
and its images parameterize the U(1)\ SL(2,R) part of the moduli space, while T
and Uy arise in the decomposition of SO(6,22) into SO(2,2) x SO(4,20). This will
enable us to obtain the NS5-brane instanton contributions to F* couplings on the
type IIA and B side in section b.5, and in particular extract the summation measure

in (5:32).

3. Heterotic amplitudes

Having identified the subspace of moduli space dual to Zs orbifold in various dimen-
sions, we now would like to compute the one-loop contribution on the heterotic side
for half-BPS saturated amplitudes, including the four-derivative couplings

ts Tr F*, ts Tr(F?)?, (3.1)

where F' denotes the field strength of the d + 16 right-moving gauge bosons or the d
left-moving graviphotons, as well as the couplings involving the gravitational sector,

ts Tr R> Tr F?, ts(Tr R?)?, ts Tr R*, (3.2)

where tg is the familiar eight-index tensor arising in various string amplitudes [50).
Before proceeding with the computation, it is probably worthwhile recalling the
arguments supporting the non-renormalization of these couplings beyond one-loop
on the heterotic side [12, 13, 14]. First, in ten dimensions these terms are related
by supersymmetry to CP-odd couplings such as B A Tr F'*, which should receive
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no corrections beyond one-loop for anomaly cancellation. A more explicit proof
can be given at the level of string amplitudes [12], and goes through in lower di-
mensions as well [14]. This argument does not apply to the particular combination
tstg R* = tg(4 Tr R* — (Tr R?)?), which forms a superinvariant on its own and could
therefore receive higher perturbative corrections. Second, the only heterotic half-BPS
instanton is the heterotic 5-brane, which needs a six-cycle to wrap in order to give a
finite action instanton effect. For d < 6 there can therefore be no non-perturbative
contributions beyond the one-loop result. Third, it is consistent with the factoriza-
tion of the moduli space (2.1) and the T-duality symmetry O(d, d + 16,7Z) to assume
that tg Tr F'* couplings are given at one-loop only and hence independent of the R*
factor. In d = 6 it is plausible that supersymmetry prevents the mixing of the
SL(2,R) dilaton factor with the Narain moduli in F'* couplings, in the same way as
neutral hypermultiplets decouple from vector multiplets in N = 2 supergravity, and
prevents corrections from NS5-brane instantons [11]. For d = 7, U-duality mixes the
dilaton with the Narain moduli, so that a similar statement cannot hold. Gauge fields
being Poincaré dual to scalars in 3 dimensions, the F* couplings translate into four-
derivative scalar couplings, and should receive non-perturbative corrections. We will
therefore assume that for all d < 6, the F'* amplitudes involving four right-moving
gauge fields are given at one-loop only on the heterotic side, and disregard a possible
tree-level contribution for tg Tr(£2)? couplings.

Based on power counting, the F'* couplings are clearly half-BPS saturated, and
the same will appear to be true for their R2F? and R* cousins. Indeed, from the
point of view of the heterotic world-sheet, space-time supersymmetry arises from the
left-moving sector, and gravitons are on the same footing as gauge bosons. This is
not so obvious on the type-II side, where part of the gauge bosons arise from the
twisted Ramond-Ramond sector while the gravitons come from the untwisted Neveu-
Schwarz sector. It has however been argued that R* and more generally R*[F49—*
couplings were purely topological for type ITA on K3, and therefore should be half-
BPS saturated as well [52].

For the uncompactified heterotic string, the couplings (3.1) and (8.2) have been
computed in [53, 54, 65] and shown to involve the zero-modes of the right-moving
currents only, reducing to an elliptic genus. It is straightforward to adapt these
computations to toroidal compactifications, and in particular to compactifications
with discrete Wilson lines as in (1:3). This is what we now discuss, with a particular
emphasis on the miraculous simplifications that occur and allow the heterotic-type-I1
duality to hold.

3.1 Orbifold partition function

In order to take advantage of the simple half-integer values of the Wilson lines (1.3),
we shall follow [22] and describe the compactification on a torus T%(g,b) with d
Wilson lines from (1:3) as the (Z;)? freely acting orbifold of a torus of double radius
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by the Zs actions which combine a half-period translation on each circle with the
corresponding half-integer shift on the lattice. This breaks the SO(32) symmetry
to 2¢ copies of SO(2°79), as we want. More explicitly, we decompose the partition
function of the (d,d + 16) lattice as

1

Zaaris(9:,) —idf[ Z almm] @ve . 33

Here, Zyq[!] is the T? lattice partition function, with insertions of (=)™¢" and
winding shifts n® — n' 4+ h?/2, while © is given in terms of the usual f-functions as

2d_1 [o4-d

O[] (for}h) = EIH [0 [simia] @), (3.4)

abOdO I1=0

where bin(d) is the d-digit binary representation of d. We have split the 2° fermions
representing the SO(32) current algebra into 2% blocks of 2°~¢ fermions each. The
arguments v¢ allow to switch on a gauge background Fi = v in the I-th direction
of the Cartan torus of the d-th copy of the gauge group SO(2°~¢), and will be useful
in deriving the elliptic genus shortly. In particular, for d = 0 we recover the SO(32)
lattice partition function. Setting all the v’s to zero, the partition function reads

Zuswro(0.by) = a2 [ + g (B2 [+ 0332 [{] + 3373z [1]) . 9

Here, we have adopted a “modular Einstein convention” whereby a = 2,3,4 is
summed over all even spin structures and d = 0, ...,2¢ —1 is summed over all d-digit
nonnegative numbers, strictly positive if hatted. The three terms in the parenthesis
form an orbit of SL(2,7Z), and we will henceforth content ourselves with writing the
first term + orb. only. We also drop the d, d subscript on Z when no ambiguity is
possible. Note also that thanks to (B.13), the first unshifted term in (3.5) can be
distributed to the three shifted terms if we need to.

3.2 Elliptic genus for higher derivative couplings

We now would like to adapt the computation of [b5] to our particular toroidal com-
pactification. Since the amplitude is half-BPS saturated, the left-moving part of the
four-gauge-boson (or graviton) amplitude merely provides the kinematic structure,
whereas the right-moving currents reduce to their zero-mode part. Focusing on the
four-point amplitude for right-moving bosons first, we therefore obtain
2
A SRR N
F T PL:PRE d,d+16
qPL 2 PR/

g (3.6)

6 3

J, K, L I J KL 1J KL d/2
_|_— T.

(pRpRpRpR o pRpRg 1 229 9g ) 2
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where F}, stands for the field-strength of any of the d + 16 right-moving gauge bosons
in the Cartan torus of the gauge group. Note in particular that this is expression
is both modular invariant and covariant under T-duality. The Dedekind function
1/7** in (B26) is the contribution of the 24 right-moving oscillators, which generate
the tower of perturbative half-BPS states. The integral in (3.6) is actually infrared-
divergent and should be regularized. We assume in the following that this is done.

In order to further simplify this expression, we must now distinguish between the
(0, 16) right-moving bosons coming from the lattice Dy and the (0, d) from the torus.
In the first case, the insertion of a momentum pk amounts to taking a derivative
in (3.4) with respect to the appropriate v;. The non-holomorphic contributions
in (B.6) correct these derivatives 9/0v into modular covariant derivatives 9/0v. We
can therefore omit them and reinstate them at the end by covariance. In the case
of the (0, d) gauge bosons, it is more convenient to perform a Poisson resummation
on the momenta in the lattice sum: the insertion of p% then amounts to inserting
(m® — tn%) /75, which has modular weight (0,1) as it should. Finally, in the case
of gravitons and graviphotons, the analogous statement is that one should allow for
a curvature background, thereby inserting a factor &(z) = znPe *"/7™) /4, () for
each pair of space-time coordinates, and take derivatives with respect to z; for each
insertion of a gravi(pho)ton with helicity in the i-th direction. We will quote the
results in terms of the integrand = such that the modular integral

1 dZTEF%
AF‘*:N-i. 2d+1/}-7‘—22ﬁ (37)

gives the higher-derivative coupling tg Tr F'* in the effective action, where F' stands
for either a gauge field-strength or the Riemann tensor (seen as an SO(10 — d) field-
strength), and the trace structure will be made precise. We will denote by Fy the
field-strength of the right-moving gauge field in the d-th copy of the gauge group,
by F; the right-moving U(1) gauge fields from the torus, and by G; the left-moving
graviphotons. The overall normalization will not be fixed, but we will keep track of
the relative normalization of the various couplings, through the combinatorial factor
N. We will then make use of the modular identities in appendix B as well as the
theorem proven in appendix *A.4 to simplify these results and bring them in a form
appropriate for (i) comparison with the type-II tree-level amplitude in section 4 and
(ii) explicit evaluation and simplification for the comparison with the other dual
models in section §.

3.2.1 Tr F}{ and (Tr F?)?

We start with the four-point amplitude of gauge bosons in a single copy of SO(2°~%).
For d < 4, this is a non-Abelian gauge group, and we must therefore be careful with
the identification of the trace structure. Expanding (8:3) to fourth order in the v¢ for
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fixed d, the Tr F} combination corresponds to Y, (v$)*, while (Tr F?)? corresponds
to (3, (v$)?)2. We thus get

i

n ,19 19
s = 99 Z[9] + [(i + i) 05052 [%] + orb.] — 3= 2 (3.8)

"

U3 Uy

19// 2 19// 2
((vf) ¥ (19_1) )wgﬁzz[g} + orh.

where + orb. denotes the two extra terms obtained from the first by applying S and

Emerz p = 05 (0,)°Z 0] + . (3.9

ST modular transformations. For d = 4 and higher, the gauge group is U(1) and
there is no distinction between the two structures. Instead, the coupling (Fy,)* is
given by Eq pa in (B.8) without the Z, F2)? subtraction. We will discuss in detail
the procedure by which we simplify these integrands in the case of the first term
in (3.8), which we define as E(Fy, )4 Other cases can be treated similarly and we will
only quote the final result.

Using the summation identity (B.15), we can write the prefactor of Z[J] as n**

while the other Z[9] terms can be combined with the Z m, Z [g], and Z [ﬂ shifted
lattice sums to yield projected sums where d runs from 0 to 2¢ — 1:

St = 9672°2[3] + Kf,% n %) B2 (0] + orb.] S 310)
3 4

We can now use the results of appendix A to compute the integral of (B.10}) on the
fundamental domain F of SL(2,Z). For this, we note that the holomorphic form
n** in the first term cancels against the BPS partition function 1/7** in (3.7). As
far as the terms in brackets is concerned, the integral on F can be unfolded on
the fundamental domain F, of the I'; congruence subgroup of SL(2,7Z), a three-fold
cover of F, by keeping the first term only. According to the property stated in (A.28),
and using (B.22) we can then replace the modular form (95 /95 + 9, /94)9595 /n**
by two thirds its value under the Hecke operator (A.23) which turns out to be zero

in this case. We finally obtain

96 d*r 0
A(Fd1)4 = 41 9dr1 /]ETZ[O] ) (3.11)

T3

which we recall is the complete expression in the abelian case d = 4. The fact that
all oscillator contributions have cancelled will be crucial for heterotic type-II duality
to hold, as we will discuss in section .

Moving on to the expression in (8.9), the manipulations are identical and making
use of the summation identity (B.17) and of the “Hecke” identity (B.23), yield

32 7 o
A 73_8‘%1/; —Z[%],  (d<3). (3.12)

> T2
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Combining (B:11) and (B:12) together, we thus obtain the full Tr F{ coupling for a
non-abelian gauge group,

32 d?
Mg, = g [ 2B - 2B, @<3. G

3.2.2 Tr F} Tr F3,

Considering now the coupling between two different gauge groups, we get for d > 1

Y 9 (0,)° 2 [o] + (3.14)

19// 19// 19// 2 ,19// 2
(21721712 [+ ((i) + (ﬁ—i*) ) Z [gg}) 05395 + orb.

Here, d in the second term runs over the (d—1)-digit binary numbers (zero included),

_|_

whereas d runs over the (d—1)-digit binary numbers in the last term (zero excluded).
Here we have made a particular choice of gauge fields Fy,, Fy, corresponding to
Wilson lines yq, = bin(0),yq, = bin(1), but the other amplitudes can be obtained
by T-duality, and the structure in (8.14) is generic. For d = 1, the second term does
not make sense, and we have instead

_ . 19// 19//
Ener merz = Vo (V6)" 211 [o] + [2_3_421,1 (1] 9505 + orb.] , (d=1).

(3.15)

The simplification of expression (3.14) is more involved than the ones of the previous
subsection. In this case, we use the summation identity (B.16) along with (B.10) to
bring the first and last term in the form of the middle one,

1"

_ 9 1
Sy s, = 16792 ()] + K%T»,EZ 3] + 03z [gg]> 9%+ orb} C(3.16)

"

Then, using the identity ¥,19394 = 213, we see that the first term and the second in
the bracket are proportional to n?*, while we can use the Hecke identity (B.24) for
the middle term arriving at

16 d>r
Muerg e, = 5oz | o (20 = 2[8] +32[3%)
2

72
16 d*r
e /]ET—§<2Z[3}—3Z[3?}) (@>1.  (317)

2

Similarly, for the special case d = 1 in (8.15) we find after analogous steps

16 d*r
ATng1 T FF, — T3.4.4 /f 7_—2221,1 m (d=1). (3.18)
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3.2.3 Fy Fy,Fy,Fy,

For d < 4, the gauge lattice partition function (3.4) is even under v§ — —v¢, so

that such a term cannot occur, in agreement with the fact that the generators of
SO(25-4) are traceless. For d = 4 however, it turns out that the coupling between
four different U(1) does not vanish, provided the selection rule

d1 + dz + d3 + d4 =0 mod 16 (319)
is obeyed, in which case

EFy, FayFa,Fa, = 0" (99093094)* x (3.20)
< (2[388] + 298] + 298] + 2] + 2068) + 2T))

Note that the modular orbit now involves six different shifted partition functions.
The precise orbit depends on the choice of the four U(1), and we have chosen one
example corresponding to yq, = (0000), yq, = (0001), ya, = (0010),yq, = (0011). Us-
ing the relation 99939, = 213, we see that the modular form again cancels against
the partition function of the half-BPS states,® and we are therefore left with

16 d*r
AFdldengFd4 = ?/}_ -2 Z[(l)(l)gg] (d = 4) ) (3‘21)
2 2

where the integration is over the six-fold cover F, of the fundamental domain F
of SL(2,Z). As we will see in section 4.1, the selection rule (3.19) has a direct
counterpart in the dual type-ITA theory.

3.2.4 TrR*, (Tr R*)? and Tr R*Tr F?

We now turn to four-point functions involving gravitons. For a four-graviton ampli-
tude, the elliptic genus [54] is as in the uncompactified heterotic theory, and yields

E
Enr = gy 0002 [ +2 (95952 [3] + orb)].,
E2
Eerey = g5g3 [0’ Z o] +2 (3952 [g] + orb))]. (3.22)

For two-graviton two-gauge-boson scattering on the other hand, we need to take two
derivatives with respect to vq, and we get

E2 15 0 ﬁg ,1921/ 8,98 0
—_ "
‘:T&“R2 T&.Fgl = 23 ] 3 |"l9a ’19QZ [0] —+ (19—3 —+ 19—4> ’l93’l94Z [a] + OI'b. . (323)

3The same mechanism was observed in [2 ].
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These amplitudes can all be simplified again by the now familiar method. In
particular using (B.13), (B.19) we obtain

480 Er
Areps = 27.32.5.9d+1 /f2 T—gz{d]’
96 d*t
A 2 = ————————— —71[%7. 3.24
(Tr R2) 29 .32, 9d+1 /f; 72 [d} ( )

It is worthwhile noting that Ay, g1 = 4A(1y gy2: this implies that the two terms can
be combined into a tgtsR* = tg(4Tr R* — (Tr R?)?) coupling, as also arises in type
ITA on K3 [62]. Using (B.14), (B.21) in (8:23) we similarly find for the coupling of
two gravitons and two right moving (0, 16) gauge fields,

16 d>r
Anmnry = 55 5 g0 3_2d+1/ = =z (3.25)

3.2.5 (0,d) gauge bosons

As we mentioned above, the insertion of momenta are more easily dealt with in the
lagrangean representation. We thus get

Err e = Gahdnds (0257 [§] +2 (95952 3] + orb.)], (3.26)

where ¢4 acts on the torus partition function by inserting a factor of (m' + d’/2 —
T(n' +d"/2)) /7, for Z [{]. We can also consider the mixed amplitudes of two (0, d)
gauge bosons and two gauge bosons or two gravitons respectively, for which

A

B,
Etnm) R = Qrlhyg 5 (a2 [0] +2 (93032 3] + orb)],

o 5 19// 19// 8587
E(FiFj)Trpgl = qran [19& I Z 9] + ( > V3957 5| + orb.| . (3.27)

Using the methods described above and (B.13), (B.18) or (B.14), (B.20), the corre-

sponding couplings are all zero, and we record
AFZ-FijFl = A(FiFj)TrR2 = A(FiFj)Tng =0. (3‘28)

3.2.6 Graviphotons and summary

We can simply obtain the amplitudes with graviphotons by noting that the gravipho-
ton and graviton vertex operators are similar. We thus obtain four powers of mo-
menta on the holomorphic side, and four on the antiholomorphic side, so that the
four graviphoton amplitude starts at eight-derivative order only. In the case of two
graviphotons and two right-moving gauge bosons, we obtain two extra powers of
momenta from the antiholomorphic side. As a result, the amplitude starts at six-
derivative order only. All F* effective couplings involving graviphotons thus vanish.
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We can summarize the above as follows. At a generic point of the moduli space,
and at heterotic one-loop:

(i) The first non-trivial correction to the (0,d + 16)* couplings occurs at the four-
derivative level.

(ii) The first non-trivial correction to the (d,0)* couplings occurs at the eight-
derivative level.

(iii) The first non-trivial correction to the (d, 0)%(0, d + 16)? couplings occurs at the
six-derivative level.

At the Zs-orbifold point of the six-dimensional heterotic string:

(a) The four-derivative (0, 16)* couplings have non-vanishing one-loop corrections.

(b) The one-loop four-derivative (4,4)* and (4,4)?(0,16)? couplings are vanishing.
The first non-trivial correction for these couplings occurs at the eight-derivative
level.

4. Heterotic-type-ITA duality in six dimensions

As we already argued in the introduction, the F* couplings in the heterotic string
on T* are given at one-loop only, and translate, through the standard duality map,
into a purely tree-level coupling in type ITA on K3. We can therefore perform a very
quantitative test of heterotic-type-IIA duality by computing the tree-level F'* ampli-
tude on the type-II side at an orbifold point, where the CFT is exactly soluble. This
is the object of the first subsection, the results of which will be summarized and com-
pared to the heterotic side in the second. The reader appalled by the technicalities
of section 4.1 should not feel guilty in proceeding to section 4.2.

4.1 Type ITA four gauge field amplitude

The 24 gauge fields in type IIA on K3 originate from the Ramond-Ramond sector.
The 4 graviphotons can be understood as the reduction G; of the 4-form field strength
in D = 10 on the 3 self-dual cycles of K3 together with the ten-dimensional 2-form
field-strength G, whereas the 20 vector multiplets come from the 4-form in D = 10
on the 19 anti-self-dual cycles together with the 6-form field strength Kj itself: we
denote them by F; and Fj respectively.

4.1.1 Vertex operators

At the T*/7Z, orbifold point, the gauge fields split into untwisted and twisted sectors.
The untwisted sector contributes (4,4) of them, whose vertex operators are simple
projections of the ten-dimensional Ramond vertex [56, 57], and can be decomposed
into a product of SO(6) and SO(4) spin fields times a ghost part. The SO(6) spin
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fields S, (z), Sa(Z) have conformal dimension 3/8 and transform as an SO(6) spinor
of positive chirality, while S® and S%(z) are SO(6) spinors of negative chirality. The
SO(4) spin-fields ¥, and ¥, involve both chiralities, and are most easily described
using the standard dotted notation for SO(4) ~ SU(2) x SU(2). The ten-dimensional
SO(10) spinor decomposes under SO(4) x SO(6) as (2,4) + (2,4), while the SO(10)
conjugate spinor decomposes as (2,4) + (2,4). The orbifold projection on T% acts
on the SO(4) spinors as (2,2) — (2, —2). Hence, the vertex operators for untwisted
gauge fields read

1’}/2 — #2902 xm SaS"g Z“”g Cuw R X

77y = e PR K G5y B, oK )
where we use the covariant formalism of [58]. X//; are the SO(6) rotation matrices
in the spinor representation, and (,, the polarisation tensors of the field strengths.

e~?/2 is the bosonized superconformal ghost of conformal dimension 3/8. X™ X™
are the fermion combinations

X — (xy%aﬁifﬁ,wa%ﬁ\iﬂ) . X = (wdedgifﬁ,wdagéxiﬂ) , (4.2)

where m runs from 0 to 3 and 0™ = (ils, 0"). Because of self-duality, only 3 compo-
nents of 0¥ contribute. Together, X™ and X™ transform as a conjugate spinor of the
T-duality group SO(4,4). We shall refer to the gauge fields with vertex operators V'
and V as chiral and antichiral respectively. The vertex operators have been displayed
in the (—1/2,—1/2) ghost picture, as appropriate for a tree-level four-point ampli-
tude. The 16 remaining gauge bosons come from the 16 twisted sectors, and their
vertex operators involve twist fields H?, I = 1,...,16 of conformal dimension 1/4,

VI = e 9292 g1 5o 8,308 ¢, (4.3)

We have omitted the momentum part, since the Ramond-Ramond vertex operators
couple to the world-sheet only through their field-strength, which already provides
the 4 necessary derivatives. We now consider a tree-level amplitude with four vertex
operators inserted at 0,x, 1, 00 on the complex plane. The correlator factorizes into
the ghost part,

<e_¢/2(oo)e_¢/2(1) 6_¢/2(.Z‘)6_¢/2(0)> = [2(1 —2)]7 V4, (4.4)
a 6D spin field part,
(Sa(00)85(1) S,()S5(0)) = [2(1 — 2)] " eapys,
(Sa(00)SP(1) S, (2)S°(0)) = [55523: + (5‘;(55(1 — )] [z(1 - z)] 4 (4.5)

and an internal part which depends on the gauge bosons of interest. Equations (4.5)
are easily obtained by bosonizing the spin-fields along the lines of [b7], and show that
we already get the correct kinematical structure,

€apro€apss(Zaa * €)(Zgg - O)(Das - Q) (Vs - ¢) = tsC" (4.6)
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4.1.2 Four-twist-field amplitude

We now consider more specifically the amplitude between four gauge bosons from
the twisted sector. The internal part is given by the correlator of four twist fields on
T*/Zs. Since twist fields create a Z, cut in the world-sheet, this is equivalent to a
vacuum amplitude on the covering surface of the sphere with 4 punctures, namely a
genus one surface [68]. This equivalence will turn out to be crucial for the heterotic-
type-II duality to hold. More precisely, the modular parameter of the torus is related
to the vertex positions through the Picard map

05\ * dr
= <£) : ?:mﬁng, (4.7)

so that the four-point amplitude for T*/Z, twist fields is given by a slight adaptation
from 23],

et
—8/3 Z4’4 Liif%} -1/3
<H€1(OO)H62(1)H63(.73)H64(0)> =2 W‘x(l - .CI?)’ (48)
2
if charge conservation €} + €2 + € + ¢} = 0 mod 2 is obeyed for every i = 1,...,4,

zero otherwise. This selection rule results from a discrete group of symmetries of
the orbifold CFT [4§], which correspond to half lattice translations on the covering
torus 1%, as well as their T-dual counterparts. The four translations exchange the
16 twisted sectors in pairs, while the T-dual translations act by —1 on eight of the
16 twisted sectors. These symmetries commute up to a global —1 factor on all
twisted sectors, and thus generate a dihedral group Z, x Z§ which generalizes the Dy
symmetry of the S;/Zs orbifold CFT. The above selection rule is precisely the one
encountered on the heterotic side (8.19), providing new support for the duality.
Putting (4.8) together with (4.4) and (4.5), and changing the integration variable
from z to 7, we therefore obtain
ul

A= —Z44 61122] (G/I%, B), (4.9)

TS
where we dropped an overall constant. The integration runs over the fundamental
domain of the index 6 subgroup of SL(2,Z), which is the moduli space of the sphere
with 4 punctures (see appendix A.2 for a discussion of congruence 2 subgroups of
SL(2,Z)). Note in particular, that the oscillators in (4.8) have dropped, in agreement
with the fact that this amplitude should be half-BPS saturated. The normalization
factor (% /Vi, has been chosen so as to agree with the heterotic result.

It is useful to discuss more specifically which shifts occur in the lattice partition
function. Firstly, we note that a permutation of the four twist fields can be re-
absorbed by a modular transformation which maps the extended fundamental domain
F5 to itself, and hence leaves the integral invariant. We thus have only three possible
results, up to permutations of the torus directions:
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(i) if all twist fields sit at the same point,

16 d*r 16 d*r
A 4 = 11 Z 0000 — 6 11 / Z 0000 410
(Fr) Vi, -, 7_22 4,4 [oooo] Vs Jr 7_22 4,4 [oooo] ) ( )

(ii) if they are separated in two pairs,

19 d*r 19 d*r
A — 11 / 7 0000 =3 1T 7 0000 4.11
(Fr)*(Fy)? Vs Jx, p 4,4 [0001] —VK3 - —7_22 4,4 [0001] ) ( )

(iii) if they sit at different fixed points, yet satisfying the selection rule,
1% d>r

74, 01001 4.12
VKS T 7_22 44 [1000] ( )

Appyrgr, =
Again, the precise shifts appearing in (4.11) and (4.12) depend on the choice of twist
fields, but the orbit structure is general. In the above amplitudes, we have implicitly
subtracted the infrared divergence coming from the vacuum in the lattice partition
functions, which from the point of view of the tree-level amplitude correspond to the
exchange of massless particles.

4.1.3 Four-untwisted-field amplitude

In contrast to the previous case, the correlator between four untwisted fields does
not involve the covering torus, and we have to deal with a genuine tree-level com-
putation. The computation of various scattering amplitudes of four gauge bosons
is then identical to the analogous computation in the maximally supersymmetric
type-II theory. This computation has not been done to our knowledge but a quick
argument already indicates that the four derivative couplings of (4,4) gauge bosons
vanish at tree level. Indeed, the leading corrections to gravitational couplings occur
at the 8-derivative level [59]. By supersymmetry, we expect that non-trivial correc-
tions to Ramond-Ramond self-couplings should start at the eight-derivative level as
well. Since Ramond-Ramond fields in ten dimensions descend to the (4,4) gauge
fields upon compactification to six-dimensions, it is evident that there should be
no (four-derivative) F* terms for these fields. This of course does not preclude the
existence of F'* couplings mixing twisted and untwisted gauge fields.

The correlators of SO(4) spin fields can be simply obtained by the usual bosoniza-
tion techniques, and read

(Wa(00)Us(1)W,(2)W5s(0)) = ﬁ [€ap€ys — T €ary€ps) s

(Wa(00)W (1) W, (2)¥5(0)) = €avegs, (4.13)

and similarly for the right-moving fields. Including the contribution from the ghost,
6D spin fields, as well as the momentum dependence |z|~%/* |1 — | %4 with ky - ks =
—t/2, kg -ky = —s/2, s+t +u =0, the total amplitude reduces to a combination of
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standard integrals

I(1-

/d2I|x|_a_S/4|1 . x|—b—t/4 —
(4.14)

with (a,b) = (0,2),(2,0) and (2,2) in the s,t, u-channels respectively. Expanding a
typical contribution for small momenta, we have

Als,t) = I'(1—s/8)'(—t/8)'(~u/8) s* ( 1 ¢(3) > .

~ 8 \Gta T2s6 T

(4.15)

D(1+u/8)[(s/8)(1+1t/8) 8
The pole term corresponds to the tree-level massless exchange, and has to be sub-
tracted in order to extract a correction to the effective action as in the twisted
case. The correction only occurs at order s?, corresponding to an eight-derivative
coupling in the effective action. Hence there are no F* couplings at tree-level be-
tween four untwisted chiral fields, nor between four antichiral fields, as we antic-
ipated at the beginning of this section. The first non-trivial correction however
implies 9*F* couplings, which are nothing but the ten-dimensional eight-derivative
couplings, related by supersymmetry to the tgtgR* couplings [59], reduced on the
torus T,
There is a puzzle concerning the (4,0)?(0,16)? threshold. In the heterotic string
this was shown to vanish. A type-II computation along the lines above seems to give
a non-zero answer. Clearly this deserves further study.

4.2 Duality and triality

Let us summarize the salient features of our computations so far, concentrating on
the simple case of four-(0,16) gauge boson scattering for now.

e On the heterotic side, the one-loop amplitude was expressed as the integral
over the fundamental domain of the lattice partition function of the torus 7%
with particular shifts, with an insertion of an elliptic genus ®(7) = (aEy +
ﬁE’%)ﬁgﬁi /n?*. This structure is characteristic of half-BPS heterotic couplings,
where the fermionic zero-modes are just saturated on the left-hand side and
the right-moving oscillators generate the Hagedorn density of BPS states.
Thanks to the Hecke identities described in appendix B.3, the elliptic genus has
dropped, leaving a simple integral of a shifted lattice partition function such
as (3.1I), (3.I7) and (B:2T). A particular selection rule (8.19) was also found.

e On the type-ITA side, the tree-level amplitude of four twist fields has turned
out to secretly be a genus 1 amplitude (4.9) on the covering of the 4-punctured
sphere. The BPS nature of the coupling was revealed in the cancellation of the
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bosonic and fermionic determinants on the covering surface. The selection rule
was a simple consequence of the Z, x Z§ discrete symmetries of the orbifold.
Eventually, the amplitude reduced to an integral (4.9) of the shifted partition
function of the torus covering the K3 surface, in agreement with the heterotic
results (8:1T), (3.I7), (8:2L). The tree-level amplitude for untwisted fields on
the other hand was shown in (4.15) to vanish at 4 derivative order for (0, d) or
(d,0) gauge bosons, in accordance with the heterotic result (3.28).*

However, it takes yet another miracle to identify the heterotic result with the
type-1I result: indeed the two tori of moduli (g,b) and (G, B) are not identical, but,
as we argued in section 2.4, related by triality,

Vi, = R, Y =93, B = Bas, Bs;=A, Bs = By3. (4.16)

This transformation is certainly not a symmetry of the integrand Z4 4[], as a simple
study of various decompactification limits makes clear. However, it has been shown
in [10, 60] that the integrated result could be rewritten as an Eisenstein series in
either the vector, spinor or the conjugate spinor representation,

1
580(4,4,2) o SO(4,4,7) (4.17)

2
d TZ [0} 1 gsouaz) _
—5 2444 = = g = e == g
- 2 0 T Vis=1 S;s=1 T C;s=1 ’

1
T4 m

which implies the identity of the heterotic and type-II results,

/ %24,4 0] (9,0) = / %24,4 0] (G, B). (4.18)
F F

2 2

This claim was supported in [10] by showing that either of the terms in (4.17) was an
eigenmode of the laplacean operator on [SO(4) x SO(4)]\ SO(4, 4, R), and of another
non-invariant second order differential operator as well; it was also shown that the
large volume and decompactification limits agreed. The same arguments can also be
made for the two terms of (4.18) without using Eisenstein series as an intermediate
step. While heterotic-type-II duality clearly implies (4.18), it would be useful to have
a mathematically rigorous proof for it.

In the case of four identical gauge fields, the identity (4.17) directly matches the
heterotic result (8.11) with the corresponding type-II result (4.1(). More generally,
we need an extension of this identity to the case with half-integer shifts. This can
be obtained by re-expressing the shifted lattice sums as unshifted lattice sums with
redefined moduli, and apply the triality (4.7). For example, we may rewrite the

4As mentioned before the issue of matching the (0,4)(0,16)? threshold remains obscure.
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heterotic amplitude

12 g b 12 2
. py = 12 gsouaz) (9 b\ _ 12 -
/f_ 44 [d} (9,b) 1 Vis=1 279 T Z M5, (g,b)

m;€2Z,nEZ

— B Z 2 _ E 580(4,4,2;) &
T MZ(G,B)  n Ol 2

m,m;; €2Z,mY neZ

- / (624 [39%] (G, B) + 2244 [339] (G, B)) (4.19)

2

in a form suitable for comparison with type-II amplitudes. Here, we have used (A.25)
and (A.264) in the first step to convert to an Eisenstein series in the vector represen-
tation, in the second step we have rewritten this series as a constrained Eisenstein
series involving the vector mass at the original heterotic moduli. The third step
consists of the application of the triality map (2.15), (2.17) to write the vector mass
as a conjugate spinor mass with type-II moduli, which is re-expressed as a conjugate
spinor Eisenstein series in the fourth step. Then, the fifth step uses again (A.26d)
and (A.25) to present the result as a tree-level type-II amplitude of the form (4.9).
However, the precise matching will require the exact identification of the gauge fields
on the type-II side with those on the heterotic side, which we have not been able to
achieve. It would be also interesting to understand how the duality holds at other
orbifold points of K3, since naively the correlator of Z, twist fields on the sphere
involves higher genus Riemann surfaces, albeit of a very symmetric type.

Finally, let us comment on R* gravitational couplings. In that case, the one-loop
heterotic result translates into a two-loop contribution on the type-ITA side. On the
other hand, it is known that there is a tgtgR* coupling arising at tree-level and one-
loop on the type-IIA side, which translate into a two- and three-loop contribution
on the heterotic side. It would be interesting to carefully determine the combination
of these gravitational couplings that obeys a non-renormalization theorem, if any. It
would also be very interesting to compute higher-derivative R*F*9~* couplings on
the heterotic side, and compare them with the topological amplitudes on the type-II

side [52].

5. Dual interpretation of higher derivative couplings

Having reproduced the type-IIA tree-level F'* coupling in 6 dimensions from the
heterotic one-loop amplitude, we now would like to use the duality map to obtain
some non-trivial results in other dimensions. This will provide further checks of
duality, and at the same time give new insights into non-perturbative effects on the
dual side.
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5.1 Type I’ thresholds

As discussed in section 2.3, the heterotic string on S; at the SO(16) x SO(16) point is
dual to type I’ with eight D8-branes located at each of the two orientifold points. The
modular integrals of shifted lattices are quite simple to compute using the summation
identity (A-12) together with the modular integral (A.26a) for an unshifted lattice.
For (0, 16) gauge fields, we then obtain from (8.13), (3.13) and (3:18),

1 R TR
Aryps = 6 (QII(RH) -1 (7H>> = gl_gHa
f

1 R T
ATngTufd? = _ATng1 T F3 — 6 (Il(RH) — 24 (7}1)) = Ea (5.1)

where we reinstated the powers g on dimensional ground. Translating to type-I’
variables using (2.7), the heterotic thresholds translate into

T TRy
ATerTer2 = —ATnglTng2 ~ 32 (5.2)
I/

ATr F} = 3guly )

Given the heterotic non-renormalization theorem, these couplings should therefore
be given by a disk and cylinder diagram respectively, without further corrections. In
particular, note that the absence of factorized couplings (Tr F?)? at tree-level is con-
sistent with the fact that these couplings need (at least) two boundaries. Moreover,
the absence of non-perturbative corrections is consistent with the fact that there
are no half-BPS instantons in type I’ in 9 dimensions. The F* couplings have been
studied in [14] in the context of the duality between the SO(32) heterotic string and
type I, where it was noticed that the duality requires contributions of higher genus
surfaces (x = —1,—2) on the type-I side, due to non-holomorphic contributions to
the elliptic genus. The SO(16) x SO(16) point therefore appears to be a simpler set-
ting to further understand heterotic-type-I duality, and this is indeed the point where
this duality can be derived from the eleven-dimensional strong coupling dynamics of
the heterotic string [40].

We may also consider how the gravitational couplings (3.24) translate under the
duality. In that case,

T ( Ry 2 s 1 Ry
Anp =4Ampp=—|—-5+5 ) =— 2— 5.3

so that they receive contributions both at tree-level and one-loop on the type-I’ side.
As already discussed, it is unclear if the non-renormalization theorem applies on the

heterotic side, and they may therefore get contributions from higher loops.

5.2 F-theory on K3 and O7-plane interactions

As discussed in section 2.3, the heterotic string on T? at the SO(8)* point is dual
to type IIB on a T?/Z, orientifold, which is nothing but F-theory on Kj at the
orbifold point. The F* and related couplings have been considered in detail in [23]
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and it is a useful check on our formalism® to rederive their results. For d = 2 (as for
d = 1) the modular integrals can be evaluated thanks to the summation identities
For the (0,16) gauge couplings (B.13), (8.13) in a -gi-\;en SO(8), we can use the
identity (A.25) along with the explicit result (A.20H) to obtain

i

ATrFél:IQ(T,U)_IQ <%,U) :_IOg%a (5'4)

T 1 1 drel=E T T/9)[8 4
:b<=U)——bHWU:—4%l”6 2Us [n(T/2) % [n(U)]

Ay =2 {3 0) 75 25| 505 PG
Under the duality, 7', U map to the complex structures Ur, Up of the fiber and the
base respectively, so that (5.5) appear to give a tree-level result together with an
infinite series of D-instanton corrections of classical action S = NUg. Such effects
have been discussed in a related context in [21].

For the couplings (8.17%) between the four different SO(8) factors we have 3 pairs
of possibilities, for which we use the summation identities (A.13), (A.14) and (A.15)

respectively, yielding after some algebra

T U T 2|n(U)[*
A01=A23=I2( >—[2 (—’U) —logimm( )

272 2 (U/2)+’
T T [n(@)I*
Ap=An=5(=20)-L(=U)=1
02 13 2 (27 U) 2 (27U) 0g 2‘7](2(])’4 ’
T U1 T 2 (U)*
Aog = A12 = 12 (—, —> - IQ <—, U) = IOg T - (55)
2" 2 2 (55 H)1

In that case, the F-theory couplings arise at one-loop only from the point of view
of the IIB orientifold perturbative description. This is consistent with the fact that
gauge bosons from different branes have to be inserted on opposite sides of the
cylinder in a one-loop computation. For the gravitational couplings (8.24), we find
instead

1 T 1 4relE
A pt =4Amp2ye = —1 | — =——1 —T T/2)|* 8
e = 48 = 1512 (5.0 = =g low | o 2T (/2 O
(5.6)

which exhibits an infinite series of D-instanton effects from expanding the Dedekind
function.
5.3 M theory on K3 and enhanced gauge symmetry

We now turn to the heterotic string compactified on 7% at the SU(2) point. One
dual description is provided by type ITA on a T3/Z, orientifold, which is similar to

Sand on the results of [23] as well, some of which have been corrected in the erratum in [23].

32



the two previous cases. We are however more interested in the M-theory description,
which involves compactification on K3 with A; conical singularities (see section 2.5).
Each of the 8 fixed points of the T /Z, orientifold has thus split into two distinct
fixed points of the T*/Zy M-theory orbifold. Using the duality map (2:18), we find
that the F* couplings (8:13), (8:12), (B:I7) translate into

3 d2
ATng = 7‘/& - 2 (22[ } [g}) (v, 8), (5.7)
3 d2
Ay p2ye = 7‘/}( - Z[2] (v, B), (5.8)
A = L d — (22 %] =32 [§]) (. 5) (5.9)
T&«FngrF(i B VK?) 7 7-2 dl Y ) .

where (7, 3) encode the shape of the orbifold T*/Z,. The 3-digit numbers d label
one of the 8 copies of the gauge group SO( ) =SU(2) x SU( ) We can rewrite these

integrals in terms of SO(3,3,Z) Eisenstein series in the spinor representatlon along
with the identity (A’25). For example, the Tr(Fy)* coupling (5-7) can be rewritten as

i SO v B
A _ ™M (3,3,2) S0(3,3.2) (1 P 1
Tr i o VK3 |: gS;szl ( 7 ) \/_ gS s=1 279 ) (5 0)
where the SO(3,3,7Z) Eisenstein series is defined by [{U]:
£506B32) gy _ - - det v (5.11)
st 0= D iy 1 )+ (@t

ml:23 nez

with 8° = €%, /2, and the hat restricts the sum to non-zero integers. Using (2.13),
we can re-express this in terms of the metric G of the type-IIA orbifold

SO(3,3,Z SL 4 Z
50650 () = 3 Y TKs er =V & i(e (5.12)
mrez

where m, can be thought of as momenta along 7% We can now rewrite (5.10) in
terms of Eisenstein series for a congruence 2 subgroup of SL(4,Z),

I3 - 1 . 1
A =M — 4 — | . 5.13
T o Z (mrGsm?) Z (mrG,sm?) (5.13)
mreZ m?3:4¢27,
mlez

The fact that the direction 1 is singled out should not come as a surprise, since the
16 orbifold fixed points originate from the 8 orientifold points which have split along
direction 1. The 16 fixed points should however appear on the same footing from
the M-theory point of view. This is indeed so, since, upon decomposing the SO(4)
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gauge field Fy = Fyo ® 1+ 1 ® Fy; into its SU(2) x SU(2) components and using the
identity Tr F* = (Tr F?)? for SU(2) gauge fields, we have

TrF* =T Fy +TrFf, +6Tr F3 T Fyy
(Tr F?)? = Tr Fyy+ Tr Fy, +2Tr F3 Tr F3, (5.14)

The SO(4) gauge couplings (5.13) can thus be rewritten as SU(2) gauge couplings

B, < 1
Baerly = ANEL = 4r 2 GG
3 2
Arerg,mer, = 5o 5Y (er ) 16 Z er | (5.15)
mrez 234€2Z rs

mleZ

The Tr Fj; now makes no reference to any particular direction as it should, while
the Tr F3, Tr F?, singles out the direction 1 along which the two gauge fields are
separated.

The results (5.15) are given exactly at first order in i3;/1/Vk,, which is the
natural expansion parameter on the M-theory side problem. They cannot however
be obtained from eleven-dimensional supergravity in perturbation theory due to the
conical singularity, and it is necessary to include the M2-brane in order to provide
the SU(2) degrees of freedom. It would be very interesting to devise a perturbative
approach in this situation, perhaps along the lines of [61], in order to recover the
result (5.13). We also note that the F'* couplings that we have computed in M-theory
on T* /7 also give the F* couplings in type ITA on T*/Z, in the absence of B-flux on
the vanishing cycles, where the conformal field theory is singular. Surprisingly, they
are finite. They should presumably correspond to the finite part of the F* amplitude
when the singularity has been subtracted, and it would be interesting to analyze the
behaviour of the amplitude when the B-flux is perturbed away from zero.

5.4 Type ITA on K3 x 51, IIB on K3 and D-instantons

For d > 4, the dual description of the heterotic string compactified on T¢ at the
special U(1)'® point now allows for non-perturbative effects. In particular, for d = 5,
the type-IIA string theory compactified on K3 x S; has instanton configurations
coming from even D-branes whose euclidean world-volume is wrapped on even-cycles
of K3 times the circle S;. In the type-IIB picture, instanton configurations exist
already in 6 dimensions, as odd euclidean D-branes wrapped on even cycles of Kj.
These effects were first computed in [26], and here we want to get a more quantitative
understanding of them.
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From the duality relation Ry /ly = Ra/(geualun) = 1/geun, we see that the weak
coupling regime on the type-IIA or IIB side corresponds to the decompactification
limit Ry > [y on the heterotic side. In this limit, the heterotic result exhibits a series
of world-sheet instanton contributions which will be interpreted as D-instanton effects
on the type-II side. For simplicity, we will focus on the Tr(Fy)* couplings in (3:11),
given by a modular integral of an unshifted partition function,

d*r R
ASD:zg/—225 (g,b z ) (5.16)
F T ) lH

2
where we dropped the numerical factor, and denoted by w the Wilson lines of the
six-dimensional (4,4) gauge fields around the extra circle. We will comment on the
effects of shifts at the end.

In order to determine the large Ry behaviour of (5.16), it is convenient to adopt
a lagrangean representation for the S! part and a hamiltonian representation for the
T* part:

d’T Rlp — 74/’ : i\ 2 p7/250%/2
Asp = ZHRH E E exp T + 2mipwin’ | 5" TqPR 7
H'2

P,q my;,n’

(5.17)

where m;, n’ denote the momenta and windings on T¢. We apply the standard orbit
decomposition method on the integers (p, q), trading the sum over SL(2,7Z) images
of (p,q) for a sum over images of the fundamental domain F [62] (see [I§, 10] for
relevant formulae). The zero orbit gives back the six-dimensional result (4.18) up to
a volume factor, and reproduces the tree-level type-II contribution in 5 dimensions:

=g [ 72 (2.0) = masic 519
H

The degenerate orbit on the other hand, with representatives (p,0), can be unfolded
onto the strip |71| < 1/2. The 7, integral then imposes the level matching condition
p? —p%h = 2m;n’ = 0, and the 7 integral can be carried out in terms of Bessel
functions to give

N =R Y S Sty (2l N ) e
p#0 (m;,n?)#0 th am

(5.19)
up to a divergent contribution 7?R$I'(—1)/3, coming from the origin of the (4,4)

lattice, which we assume to be regularized. Here m‘My4sm = p? + p% with m =
(m®, n;). Tt is straightforward to translate this result to the type-ITA side,

Agi)g = 29611AlHRiZ Z §(mn') x

p#0 (mun")#ﬂ

XLK < ——|p[/m 44m) Zmipwin’ (5.20)
/mtMyam genalu
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where My 4 is now the mass matrix (2.19) of D-brane states wrapped on the untwisted
cycles of T*/Z,. Given the asymptotic behaviour K;(z) ~ \/7/2xe™®, we see that
this is a sum of order e~/% non-perturbative effects corresponding to N = pr eu-
clidean (anti) D-branes wrapped on S; times a cycle of homology charges (m;, n')/r
on T*, where 7 is the greatest common divisor of (m;, n).

It is worth pointing out a number of peculiarities of the result (5.20). First, due
to the absence of a holomorphic insertion in (5.16), all instanton effects are due to
untwisted D-branes wrapped along even cycles of K3, even though we are discussing
F* couplings between fields located on the fixed points of the orbifold. This is in
contrast to the result in four-derivative scalar couplings [26], where a contribution
from the whole Hagedorn density of BPS states was found. This is an important
simplification due to our choice of the orbifold point in the K3 moduli space. Second,
the integration measure corresponding to a given number of D-branes N is easily
seen to be > v (1/ r?), where r runs over the divisors of N, just as in the case of D-
instanton effects in theories with 32 supersymmetries [61, 2]. This is an unexpected
result, since the bulk contribution to the index for the quantum mechanics with 8
unbroken symmetries is 1/N? instead [3], which did arise in four derivative scalar
couplings at the enhanced symmetry point [26, 63]. Finally, it is clear that the above
analysis goes through in the case with shifts on the lattice, since those only affect
the momenta and windings on 7. They translate into corresponding shifts on the
lattice of D-instantons contributing to Tr F*.

The situation from the T-dual type-IIB point of view is also interesting. From
the mapping (2:23), we see that the one-loop heterotic F* coupling in 5 dimensions

BN\* [ dr
Asp = | = —Z 5.21
w=(12) [z, (5.21)

where now Z5 5 depends on the K3 untwisted moduli and on the six-dimensional string

translates into

coupling, but not on the size of the circle S! in six-dimensional Planck units. We
can therefore simply take the limit Ry — co to recover a six-dimensional amplitude.
The powers of Rp in (521) are precisely such as to yield a finite ¢;, H* coupling in 6
dimensions, where H is one of the 16 anti-self-dual three-form field strengths arising
from the twisted sectors of type-IIB compactified on T*/Z,, and t15 is a 12-index
tensor constructed from tg. We therefore get

d*r
A = lg/szs,& (5.22)

2

which is the exact non-perturbative coupling of four self-dual twisted three-forms,
invariant under the SO(5,5,7) subgroup of the U-duality group SO(5,21,Z) left
unbroken by the choice of the external legs. The above analysis of the heterotic
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decompactification limit still holds, and yields the tree-level and D-instanton contri-
butions to this amplitude,

120 g2 120 3/2
AIB _ 911 / Z o ( dm'm % 593
H VK3 4,4 + VK3 ( )
1/2
\ /m M m ,7 o
* Z Z O(mn |10|474 ( Hl2 plv/m! 44m) o
p#0 my;,ni

which exhibits non-perturbative contributions from odd D-branes wrapped on even
untwisted cycles of K3. In particular, the ten-dimensional decompactification limit
Vi, > lf; reproduces the R* couplings in type IIB, as demonstrated in [26].

5.5 Type II on K3 x T? and NS5-brane corrections

Finally, we would like to discuss the four-dimensional case, which on the type-II side
receives corrections from NS5-branes wrapped on K3 x T2. Similar corrections could
also in principle arise on the heterotic side from 5-branes wrapped on 7%, but they do
not affect four-gauge-boson couplings from the right-moving sector according to our
conjecture. From the duality map Ty = Sia = Sus, the weak coupling regime on
the type-1I side again corresponds to the limit where the heterotic 7% decompactifies.

The study of the decompactification limit proceeds as in (b.I7) by performing
an orbit decomposition on the integers running in the lagrangean representation of
the T? lattice, and the zero orbit and degenerate orbit reproduce the tree-level and
D-instanton contributions on the type-II side. The novelty in that case is that there
is a third orbit, namely the non-degenerate orbit, which contributes as well. The
integral on 7 is Gaussian, and the subsequent integral along 7 is again given by
a Bessel function. Before carrying out this integration, it is more enlightening to
determine the saddle point, which controls the instanton effects at leading order.
The saddle point equations are easily found to be

¢'91,(p” — 1q”?) + imymin’ = 0,
~(p" = 1491, (p” = m1¢”) +73(d' grsq” + m' Myam) =0, (5.24)
where p! and ¢ are the integers running in the 72 lattice partition function, and

should be summed over SL(2,7Z) orbits such that p'q? — p¢' # 0 only. g;; is the
metric on 7 in heterotic units. The solution of these equations is given by

o P p*¢®> — (pq)
q2 q2 (q2)2 + qutM474m + (mlnz)Q ’

2 _ 2
S B s (pq) . (5.25)
(¢%)? + ¢®m! Myam + (min?)
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where contractions with g;; are understood, and corresponds to a classical action

mt My qm (mini)2> N
q* (¢%)?

+ 2mipBq . (5.26)

S =27r\/(p2q2 — (p9)?) (1 +

(pq)(min®)

+ 2me 7

Reinstating the Iy dependence and mapping to dual type-IIA variables using (2.9),
the real part of the classical action

2,2 _ 2 2)2 2mt M
Re S, = 27r\/p q*> — (pq) < ) n qm-Vig 4m + (mmi)2> (5.27)

(q2)2 ggHAlflI ggHAlIZI

scales as 1/g24. The corresponding non-perturbative effects should therefore be
interpreted as coming from N = |p'¢® — p?q'| NS5-branes wrapped on K3 x T2,
and bound to D-brane states wrapped on an even cycle of K3 times a circle on T2
determined by the integers ¢!, ¢>. The result of the 7 integration thus gives

22 | 2,0t 2\ 3/4
N + ¢“m' My aom + (m;n iTm
ALY = 4l E E ((q S 4 72 - 2 (i) ) K35 (Re Sq) e,
; p*¢® — (pa)

t,qt mi,nt

(5.28)

In particular, we may look at the contribution of pure NS5-brane instantons, corre-
sponding to m; = n' = 0. Choosing the orbit representatives as

1,1 -
ap k‘y) .
= . 0<j<k, p#0, 5.29
(q2p2) (Op J # ( )

and using the exact expression for the Bessel function

Ky pa(z) = \/g (1 + %) e (5.30)

1
27'('52

we obtain

AYR = 2(gsualu)'Us ZM(N) <N + ) e BTN (2T 4 om2mINSL) 1 (5.31)
N

where we used the type-II variable S = a+ Vi, Vrz/(g7l%) and extracted the instan-
ton measure

1
w(N) = Z 3 (NS5-brane on K3 x T?). (5.32)

r|N

This result gives a prediction for the index (or rather the bulk contribution thereto)
of the world-volume theory of the type-II NS5-brane wrapped on K3 xT?. It is a chal-
lenging problem to try and derive this result from first principles. It is also remarkable
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that, in virtue of (5.30) and in contrast to D-instantons, the NS5-instantons contri-
butions do not seem to receive any perturbative subcorrections beyond one-loop.

It is interesting to compare this result to the corresponding index of the het-
erotic 5-brane wrapped on T, which can be extracted from the non-perturbative R?
couplings in the heterotic string compactified on 7° [17, i1]. Those can be computed
by duality from the one-loop exact R? couplings in type Il on K3 x T2 [15], and read

Ape = &P = —rlog(Saln(S)[Y)

2
- %52 +2m\/ Sy Y p(IN)e NS (PTNS 4 g BmNSY) - (5.33)
N

The summation measure turns out to be different from (5.32) and given instead by

1
u(N) = Z o (Het 5-brane on T°). (5.34)

r|N

It is also worthwhile to notice that there are no subleading corrections around the
instanton in the heterotic 5-brane case, whereas, by virtue of (5.30), these corrections
occur at first order only in the type-II NS5-brane on K3 x T?. This is in contrast
to D-instantons, for which the saddle point approximation to the Bessel function K,
is not exact. It would be interesting to have a deeper understanding of these non-
renormalization properties, possibly using the CFT description of the 5-brane [64].
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A. Shifted partition functions and lattice integrals

A.1 Hamiltonian and lagrangean representation

As discussed in section B.Ti, the compactification on a torus with half-integer Wilson
lines (1.3) is most conveniently described in terms of shifted lattice sums, which in
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the hamiltonian representation read

Zaa|li] (g.0,7) =7 ST (—ymegirigivh, (A1)

m;,nteZ
The left-moving and right moving momenta py, pgr are given by

i

, . h y . K
pp=n"+—=xg" mi+B; (" +—=])]|, (A.2)
R 2 2

and the integers h?, g; are defined modulo 2, and when non-zero, break the T-duality
O(d,d,Z) to a finite index subgroup. Modular invariance on the other hand is man-
ifest in the lagrangean representation, obtained after Poisson resumming on the mo-
menta m;:

Zga [31] (g,0,7) =V Z exp (—T—2 (mZ - TTLZ) Gij (mZ —7n ) + 2mim Bijn3> )
mi€Z+gt/2
nt€Z+h/2

(A.3)

In particular, insertions of left-moving and right-moving momenta in the hamiltonian
representation translate into

i mt + nir i mt + nir
pp— ————, Pr—> ————
1To 1To

, (A4)
where the m’ and n’ are integers shifted by g°/2 and h'/2 respectively. This transla-
tion is up to contractions which are easily fixed by demanding modular invariance.
In particular, under modular transformations of 7, p; and pr have modular weight
(1,0) and (0,1) respectively.

When h' or g* is non-zero, the shifted blocks (A.3) are not modular invariant.

Instead, they transform among themselves as

T: Zid [Z] (T+1) = Z4a [Z-i—h} (),
5o zals] (=) =zl @, (4.5)

so that like T-duality, modular invariance is broken to a finite index subgroup, namely
the subgroup of SL(2,Z) leaving all (h?, ¢*) invariant modulo 2. It will be quite useful
to have a precise understanding of these subgroups, to which we now turn.
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A.2 Congruence 2 subgroups of SL(2,7)

Under the modular group SL(2, Z), the characteristics (h, g) transform as a doublet.
The subgroup of SL(2,Z) leaving (h, g) invariant modulo 2 is easily found to be

10 T2 .7 > 71742
m:[(l)]: F;::<*1>’ {STSIT—) T
1—7
- 1 % T:7—=71+1
m B m : Iy = <0 1> ’ {ST2SI7‘—) T ’
1-—-2r
10 01 T2IT—)T+2
] =101 1“8::(01)01«(10>, oL . (AD
T

where we represented the subgroups by the value of the allowed matrices modulo 2
(where * stands for 0 or 1), and listed their generators. These three subgroups are
of index 3 in SL(2,Z), and correspond to the invariance groups (modulo phases and
weights) of ¥4, J2, ¥5 respectively. Equivalently, they are the invariance subgroups of
Z(1/2), Z(271), Z((T 4+ 1)/2) respectively, where Z is an SL(2,Z) modular form. The
intersection of any two of these subgroups gives the index 6 subgroup of SL(2,Z)

10 T? : 7 — 742,
[y := (0 1> , {STZS N T ) (A.7)
1-27
Therefore, for several non-vanishing shifts (h¢, g*), the unbroken group is either I'y Ot
if all the (h',¢%) are the same, or Iy if they are different. The lattice sums (A.3)
hence either form a length-3 orbit in the first case, or a length-6 orbit in the second.

The fundamental domains F," 07 of the upper-half-plane for the groups I, 0T are

three-fold and six-fold covers respectively of the fundamental domain F of SL(2,Z).
Integral over these fundamental domains can be converted into each other at the
expense of introducing appropriate orbits. In particular, we have, for a I'J modular
invariant function @,

/_ %@(7) = /f% {@(7) +® (—%) + @ (—Tilﬂ (A.8)

2

and for an SL(2,7Z) modular invariant function Z,

/fcf—; [Z(2T)+Z(%) +Z (T;rlﬂ - /% %TZ(?T) (A.9)

d>r T d>r T+1
= 772G) = 72 ()
F T2 Fo T3

Moreover, by changing integration variables to p = 27, this can yet be rewritten as

/f ﬁ2TZ(ZT)Z/JT ﬁQpZ(P)=?>/]Ed2—ZTZ(2T). (A.10)

- +
5 T2 5 P2 T
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A.3 Summation identities

Since the string world-sheet theory is modular invariant, the shifted sums (A.1)
have to appear in modular invariant combinations. These combinations amount
to projecting the original unshifted partition function Z;4[9] to even momenta or
add half-integer winding sectors. As a result, they can be re-expressed as unshifted
partition functions of tori with different moduli. In particular,

, b
ZZd,d [3} (9,b57) =2 de(z 7 ) (A.11)
d,d’
In particular, for d = 1 we have

1

L2 B (R + 2o [ (B + Zua [} (B) + 20 [1] (R)) = 21, <§> (A1)

N}

For d = 2, we will also need the following identities (see for instance [1G]):

%(Z[SSMZ[ ) 4+ Z [ + 2! }):z(g,@, (A13)
%(Z[SSHZ[ N+ 27 [%] +2[%]) = z(%%) (A14)
ez ez -2 (L0 e
Lzml v 2420 2 [+ 2 [+ 2 ) - )

coz(T) - 2(Zav) - 2(LY) 2 (LU sz

We also note the partial sums, valid for any d,

M ‘

b

Zaa 3] (1) = 2% Zy 4 (‘g 5 27) , (A.17)
b T

Zd,d [8} (T) = 2d/ZZd,d (g, 5, 5) , (A18)
b T+1

Zd,d [ﬂ (T) = 2d/ZZd,d (g 2 5 > , (Alg)

where the summation over the d-digit numbers d is implicit. This shows that the
three sums in (A.19) form a length-3 orbit of SL(2,Z).

A.4 Lattice integral on extended fundamental domain

We now would like to evaluate modular integrals of the form

)= [ 5 2043 . 71000), (4.20)

2 7-2
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where ®(7) is an almost holomorphic form invariant under the index 2 subgroup I'y
of SL(2,Z), a typical example being ®(7) = (aEy + BE2)9593 /n?*. The sum over
d=0,...,27 — 1 is implicit, and we shall focus here on p = d, even though many of
the results can be extended to the less symmetric case p < d. For ® = 1,d = 2, this
integral has been computed in [35] and later in [65] by a different method. For ® # 1
and d = 2, the basic observations have been made in [23], and we will streamline and
greatly extend their result to all d.

In order to compute this integral, we first convert the shifted lattice sum Z [{]
into a standard unshifted sum using (A.19), and then change variables to p = 27 as

in (A.10). We obtain
?p, (g b p
L@ =2¥2 | —ZZ(Z,-.p)®(%). A21
i) =2 [ 207 (3.50)2 (5) (A21)

We then unfold the integral on the extended fundamental domain F, into an integral
on the fundamental domain of SL(2, Z):

d? b D 1 p+1
Idd[q>]:2d/2/ Pz (2.2, @(3)+q> Ve (2EN)] (a2
’ F P 22 2 2p 2
Using the definition of the Hecke operator on a I'; modular form of weight w,

Hy - 9(r) = % (T% <—%> +o(2)+o (T ;“ 1)) , (A.23)

we recognize in (A.22) the action of this operator on the modular form &:

b
I4[®] = 23+1/ 2z (g §;T> Hy. - ®(7). (A.24)

This operator maps I'; modular forms into SL(2,Z) modular forms and preserves
the weight. Hy - ®is therefore an almost holomorphic form of SL(2,Z) of zero
weight, so that (A.24) is well defined. We can now use the standard techniques to
express this integral as a sum over zero, degenerate and non-degenerate orbits. A
great simplification comes from the fact under suitable assumptions, the image of ®
under the Hecke operator has no pole, and has therefore to be a constant A [35]. The
relevant constants are listed in appendix B.3 This observation is at the heart of the
simplifications that allow the heterotic-type-II duality to work. In that case, we can
thus rewrite (A.22) as

2
Id,d[<1>]:2%+u/ Ty <3 b > (A.25)

y o0 T
F TS 22

This is now a standard integral I; = f Z44(g,b,7) over the fundamental domain of
SL(2,7Z), which can be for instance represented in terms of Eisenstein series [10]. For
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d=1,2,3,4, we recall in particular

l2
L(R) = g (R+Eﬁ) , (A.26a)
LT U) = —log S 0 0 1o (0 Al (T A.26b
o(T,U) = —log 2Us|n(U)|*In(T)|*, (A.26Db)

33

1
ERY = = gl (A.26c)

13(9? b) =

14(97 b) =

N ==

1
SO(4,4,Z SO(4,4,Z
V;S(:l ) = ; SC;S(zl ) ) (A26d)

where the normalization here differs from that of [10]. For a given discrete duality
symmetry group G(Z), the order s Eisenstein series of representation R is defined by

En) = Y dmAam) [MAR)] (A.27)
meAR\{0}

where we refer to [LU] for explicit expressions of the G(Z)-invariant BPS masses
M?(R) and the half-BPS condition m A m = 0, that are relevant for the cases

The simplification that occurred in the computation of (A2() is actually of
much more general validity, and would hold provided the shifted lattice sum can be
rewritten as Z(27) for some modular invariant function 7. The insertion ® can then
be replaced by its value, when constant, under the Hecke operator H, S

Id,d[é]:%ld@[l] it H. (®)=\. (A.28)

2

The same also holds for fractional shifts 1/n, n > 2 that occur in Z, orbifolds,
although we will not explore this topic. We also mention that the rule (A.28) holds

as well in the presence of insertions of momenta p, pt .

B. Useful modular identities

We refer to appendix F of [66] for generalities and useful identities on modular forms.
Here we list the modular identities that are useful for the present work.

B.1 Theta functions and their derivatives

Our conventions for the Jacobi Theta functions are

9 [g] (’U, 7_) _ Z q%(n_%)2e(v_mb)(n_%) : q= e27m'7-, (Bl)

nel

where the normalization of v is non-standard. We also use the Erderlyi notation

n=oll], Gh=0f, %=0f, 6=0[. ®2
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Note that Y534 are even functions of their argument v while ¥, is odd, and ¥} =
—in® where we denote by a prime the differentiation with respect to v. For more
than one derivation 0/0v, the result is not modular covariant anymore, and has
to be corrected by non-holomorphic contributions, analogous to the replacement
Ey, — Eg = Ey — 3/(n13). We use the multiprime symbols for the result of this
covariantization. We hence have

91 -
2= (E2 + o +z93) (B.3)
9y 1
o =12 (E2 + 193) (B.4)
19// 1 N
=5 (B -0t -3) (B.5)
19,2”/ 1 12 - 4 4 8
T (—2E4 4 B2 4 2B, (0t + 90 + 3192) (B.6)
2
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2 - (—2E4 4 B2y 2B,(0% — 94y + 3193) (B.7)
3
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- (—2E4 B2 2B, (0 4+ 90y + 3194) . (B.8)
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The following combinations will be particularly relevant

" " "\ 2 N 2
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-4+ —=3(==) =3 ) =—3v B.9
g O <ﬁ3> (m 5"2 (B:9)
Uy 2+ U 2—219—1"”/19—:‘/—3198 (B.10)
0 W P30, 167 '
and the following identities are useful to make contact with [23]:
"N 2 N 2 2
s Uy 1 [~ U5+ 1 5
—= — | === Es— —U B.11
(193) +(q94) 72( ? 2 METRE (B.11)
959, 1 ([ vi+0i\? 1
234 — — (F,— 2 —2) — 5. .
050, 72 ( ? 2 52> (B12)

B.2 Summation identities

In our “modular Einstein convention”, a = 2,3,4 is summed over all even spin
structures. The following equations are useful to convert the contribution of the
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unshifted orbit into a sum of shifted orbits:

16
9, —
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3 U4 |
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3 4
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]=0
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= 967>
= 160>

= —32n**.

(B.13)

(B.14)

(B.15)

(B.16)

(B.17)

where + orb. denotes the two extra terms obtained from the first by applying S and

ST modular transformations.

B.3 Hecke identities

As proven in appendix ‘A .4, insertions of almost holomorphic modular forms into

integrals of projected lattice sums can be replaced by two-thirds their value A under

the Hecke operator (A.23).
forms of interest
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Here we list the corresponding value for the modular

(B.18)

(B.19)
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These formulae can be obtained by looking at the leading g expansions, or by using

the following duplication identities:

1 2 2 _ 1 /e - 2(r
Ua(27) = ﬁ v5(r) — Ji(7), Us(27) = /2 v5(7) + 95(7)
94(27) = V/95(7)a(7). n(2r) = 272203 (r) (9s(7)0a (7)) °
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94 (3) = Vo) — 930, n(5) =27V @) a(r)a(7)
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