
VS-40TPS16PbF, VS-40TPS16-M3

Vishay Semiconductors

Thyristor High Voltage, Phase Control SCR, 40 A

PRODUCT SUMMARY								
Package	TO-247AC							
Diode variation	Single SCR							
I _{T(AV)}	35 A							
V _{DRM} /V _{RRM}	1600 V							
V_{TM}	1.45 V							
I _{GT}	150 mA							
TJ	-40 °C to 125 °C							

FEATURES

- High voltage (up to 1600 V)
- Designed and qualified according to JEDEC®-JESD47

APPLICATIONS

 Typical usage is in input rectification crowbar (soft start) and AC switch in motor control, UPS, welding and battery charge

DESCRIPTION

The VS-40TPS16... high voltage series of silicon controlled rectifiers are specifically designed for medium power switching and phase control applications. The glass passivation technology used has reliable operation up to 125 °C junction temperature.

MAJOR RATINGS AND CHARACTERISTICS								
PARAMETER	TEST CONDITIONS	VALUES	UNITS					
I _{T(AV)}	Sinusoidal waveform	35	A					
I _{RMS}		55						
V _{RRM} /V _{DRM}		1600	V					
I _{TSM}		500	A					
V _T	40 A, T _J = 25 °C	1.45	V					
dV/dt		1000	V/µs					
dl/dt		100	A/μs					
T _J		-40 to 125	°C					

VOLTAGE RATINGS									
PART NUMBER	V _{RRM} /V _{DRM} , MAXIMUM REPETITIVE PEAK AND OFF-STATE VOLTAGE V	V _{RSM} , MAXIMUM NON-REPETITIVE PEAK REVERSE VOLTAGE V	I _{RRM} /I _{DRM} AT 125 °C mA						
VS-40TPS16PbF, VS-40TPS16-M3	1600	1700	10						

VS-40TPS16PbF, VS-40TPS16-M3

Vishay Semiconductors

ABSOLUTE MAXIMUM RATINGS								
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS				
Maximum average on-state current	I _{T(AV)}	$T_C = 79 ^{\circ}\text{C}$, 180° conduction half sine wave	35					
Maximum continuous RMS on-state current as AC switch	I _{T(RMS)}			55	Α			
Maximum peak, one-cycle	I _{TSM}	10 ms sine pulse, rated V_{RRM} applied		420				
non-repetitive surge current	TISM	10 ms sine pulse, no voltage reapplied		500				
Maximum I ² t for fusing	l ² t	10 ms sine pulse, rated V _{RRM} applied	Initial $T_J = T_H$ maximum	880	A ² s			
Waxiiiluiii i-t for fusiiig	I-t	10 ms sine pulse, no voltage reapplied	. 0	1250				
Maximum I ² √t for fusing	I ² √t	t = 0.1 to 10 ms, no voltage reapplied	12 500	A²√s				
Low level value of threshold voltage	V _{T(TO)1}		1.02	V				
High level value of threshold voltage	V _{T(TO)2}	T _J = 125 °C		1.23	V			
Low level value of on-state slope resistance	r _{t1}	1j = 125 C		9.74	0			
High level value of on-state slope resistance	r _{t2}			7.50	mΩ			
Maximum peak on-state voltage	V_{TM}	110 A, T _J = 25 °C		1.85	V			
Maximum rate of rise of turned-on current	dl/dt	T _J = 25 °C		100	A/μs			
Maximum holding current	I _H	Anode supply = 6 V, resistive load, initial I_T	200					
Maximum latching current	ΙL	Anode supply = 6 V, resistive load, T _J = 25	300	A				
Marian na n	. //	T _J = 25 °C		0.5	mA			
Maximum reverse and direct leakage current	I _{RRM} /I _{DRM}	$T_J = 125 ^{\circ}\text{C}$ $V_R = \text{Rated } V_{RRM} / V_{DR}$	°C V _R = Rated V _{RRM} /V _{DRM}					
Maximum rate of rise of off-state voltage	dV/dt	$T_J = T_J$ maximum, linear to 80 % V_{DRM} , $R_g - k = Open$ 1000						

TRIGGERING					
PARAMETER	SYMBOL	1	VALUES	UNITS	
Maximum peak gate power	P_{GM}			10	W
Maximum average gate power	P _{G(AV)}			2.5	vv
Maximum peak gate current	I _{GM}			2.5	Α
Maximum peak negative gate voltage	- V _{GM}			10	
Maximum required DC gate voltage to trigger		T _J = - 40 °C	Anode supply = 6 V resistive load	4.0	V mA
	V_{GT}	T _J = 25 °C		2.5	
voltage to trigger		T _J = 125 °C		1.7	
	l _{GT}	T _J = - 40 °C		270	
Maximum required DC gate augreent to trigger		T _J = 25 °C	Anode supply = 6 V resistive load	150	
Maximum required DC gate current to trigger		T _J = 125 °C		80	
		T _J = 25 °C, for 40	40		
Maximum DC gate voltage not to trigger	V_{GD}	T _J = 125 °C, V _{DRM} = Rated value		0.25	V
Maximum DC gate current not to trigger	I_{GD}	$\frac{1}{1}$ $\frac{1}$	6	mA	

THERMAL AND MECHANICAL SPECIFICATIONS									
PARAMETER		SYMBOL	TEST CONDITIONS	VALUES	UNITS				
Maximum junction and storage temperature range		T_J, T_Stg		-40 to 125	°C				
Maximum thermal resistance, junction to case		R_{thJC}	DC operation	0.6					
Maximum thermal resistance, junction to ambient		R _{thJA}		40	°C/W				
Maximum thermal resistance, case to heatsink		R _{thCS}	Mounting surface, smooth and greased	0.2					
Approximate weight				6	g				
Approximate weight				0.21	OZ.				
Mounting torque	minimum			6 (5)	kgf ⋅ cm				
wounting torque	maximum			12 (10)	(lbf · in)				
Marking device			Case style TO-247AC	40TF	PS16				

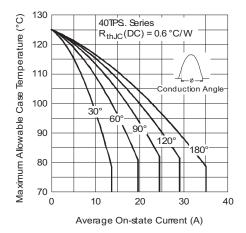


Fig. 1 - Current Rating Characteristics

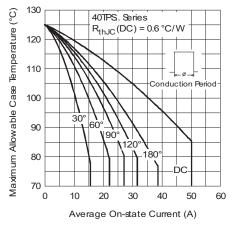


Fig. 2 - Current Rating Characteristics

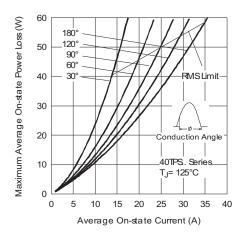


Fig. 3 - On-State Power Loss Characteristics

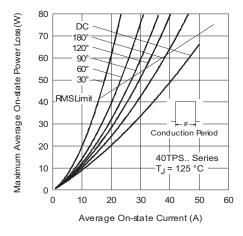


Fig. 4 - On-State Power Loss Characteristics

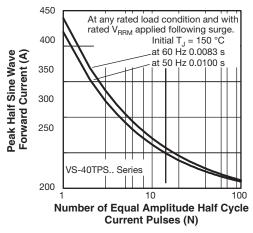


Fig. 5 - Maximum Non-Repetitive Surge Current

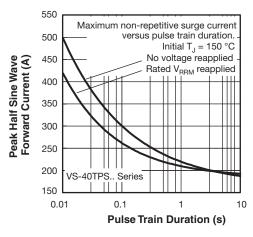


Fig. 6 - Maximum Non-Repetitive Surge Current

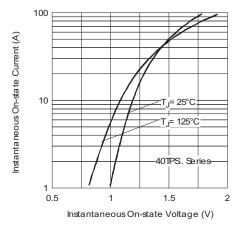


Fig. 7 - On-State Voltage Drop Characteristics

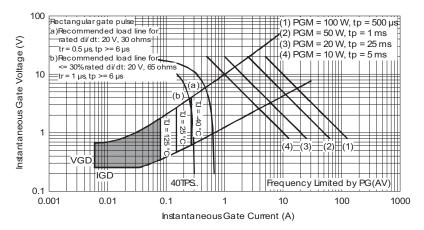


Fig. 8 - Gate Characteristics

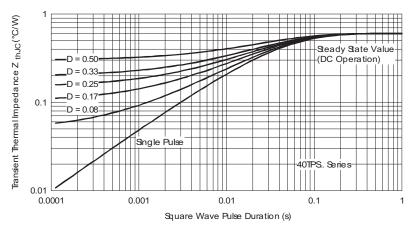
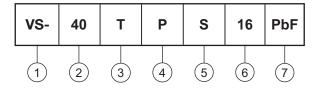



Fig. 9 - Thermal Impedance Z_{thJC} Characteristics

ORDERING INFORMATION TABLE

Device code

- 1 Vishay Semiconductors product
- 2 Current rating (40 = 40 A)
- 3 Circuit configuration:

T = Thyristor

Package:

P = TO-247

5 - Type of silicon:

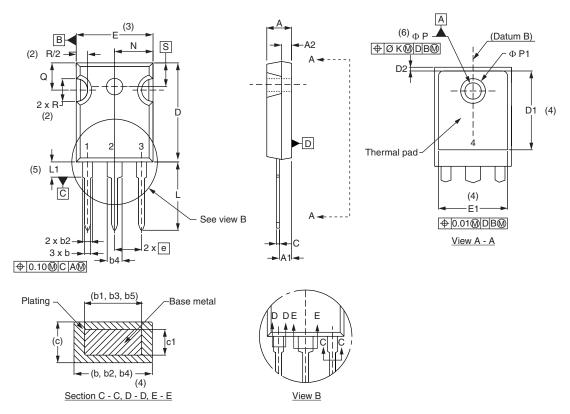
S = Standard recovery rectifier

6 - Voltage rating (16 = 1600 V)

7 - Environmental digit:

PbF = Lead (Pb)-free and RoHS compliant

-M3 = Halogen-free, RoHS compliant, and terminations lead (Pb)-free


ORDERING INFORMATION (Example)								
PREFERRED P/N	QUANTITY PER T/R	MINIMUM ORDER QUANTITY	PACKAGING DESCRIPTION					
VS-40TPS16PbF	25	500	Antistatic plastic tubes					
VS-40TPS16-M3	25	500	Antistatic plastic tubes					

LINKS TO RELATED DOCUMENTS						
Dimensions <u>www.vishay.com/doc?95542</u>						
Part marking information	TO-247AC PbF	www.vishay.com/doc?95226				
	TO-247AC -M3	www.vishay.com/doc?95007				

TO-247 - 50 mils L/F

DIMENSIONS in millimeters and inches

SYMBOL	MILLIN	IETERS	ETERS INCHE		NOTES		SYMBOL	MILLIMETERS		INCHES		NOTES
STMBOL	MIN.	MAX.	MIN.	MAX.	NOTES	STWIDOL	MIN.	MAX.	MIN.	MAX.	NOTES	
Α	4.65	5.31	0.183	0.209			D2	0.51	1.35	0.020	0.053	
A1	2.21	2.59	0.087	0.102			E	15.29	15.87	0.602	0.625	3
A2	1.17	1.37	0.046	0.054			E1	13.46	-	0.53	-	
b	0.99	1.40	0.039	0.055			е	5.46	BSC	0.215	BSC	
b1	0.99	1.35	0.039	0.053			ØK	0.2	254	0.0)10	
b2	1.65	2.39	0.065	0.094			L	14.20	16.10	0.559	0.634	
b3	1.65	2.34	0.065	0.092			L1	3.71	4.29	0.146	0.169	
b4	2.59	3.43	0.102	0.135			N	7.62 BSC 0.3				
b5	2.59	3.38	0.102	0.133			ØΡ	3.56	3.66	0.14	0.144	
С	0.38	0.89	0.015	0.035			Ø P1	-	7.39	-	0.291	
c1	0.38	0.84	0.015	0.033			Q	5.31	5.69	0.209	0.224	
D	19.71	20.70	0.776	0.815	3		R	4.52	5.49	0.178	0.216	
D1	13.08	-	0.515	-	4		S	5.51	BSC	0.217	BSC	

Notes

- (1) Dimensioning and tolerancing per ASME Y14.5M-1994
- (2) Contour of slot optional
- (3) Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outermost extremes of the plastic body
- (4) Thermal pad contour optional with dimensions D1 and E1
- (5) Lead finish uncontrolled in L1
- (6) Ø P to have a maximum draft angle of 1.5 to the top of the part with a maximum hole diameter of 3.91 mm (0.154")
- (7) Outline conforms to JEDEC® outline TO-247 with exception of dimension c and Q

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Revision: 13-Jun-16 1 Document Number: 91000