

www.vishay.com

### Vishay Semiconductors

# **Insulated Gate Bipolar Transistor** (Ultrafast IGBT), 90 A



| 9       |
|---------|
|         |
|         |
|         |
|         |
| SOT-227 |

| PRODUCT SUMMARY                            |                        |  |  |  |  |
|--------------------------------------------|------------------------|--|--|--|--|
| V <sub>CES</sub>                           | 1200 V                 |  |  |  |  |
| V <sub>CE(on)</sub> typical at 75 A, 25 °C | 3.3 V                  |  |  |  |  |
| I <sub>C</sub> DC                          | 90 A at 90 °C          |  |  |  |  |
| Package                                    | SOT-227                |  |  |  |  |
| Circuit                                    | Single Switch no Diode |  |  |  |  |

#### **FEATURES**

- NPT Generation V IGBT technology
- Square RBSOA
- Positive V<sub>CE(on)</sub> temperature coefficient
- · Fully isolated package
- Speed 8 kHz to 60 kHz
- Very low internal inductance (≤ 5 nH typical)
- · Industry standard outline
- UL approved file E78996
- Material categorization: For definitions of compliance please see www.vishay.com/doc?99912

#### **BENEFITS**

- Designed for increased operating efficiency in power conversion: UPS, SMPS, welding, induction heating
- · Easy to assemble and parallel
- · Direct mounting on heatsink
- Plug-in compatible with other SOT-227 packages
- Low EMI, requires less snubbing

| ABSOLUTE MAXIMUM RATINGS                                   |                   |                                 |      |       |  |
|------------------------------------------------------------|-------------------|---------------------------------|------|-------|--|
| PARAMETER                                                  | SYMBOL            | TEST CONDITIONS                 | MAX. | UNITS |  |
| Collector to emitter voltage                               | V <sub>CES</sub>  |                                 | 1200 | V     |  |
| Continuous collector current I <sub>C</sub> <sup>(1)</sup> |                   | T <sub>C</sub> = 25 °C          | 149  |       |  |
| Continuous collector current                               | IC (")            | T <sub>C</sub> = 90 °C          | 90   | ^     |  |
| Pulsed collector current                                   | I <sub>CM</sub>   |                                 | 200  | А     |  |
| Clamped inductive load current                             | I <sub>LM</sub>   |                                 | 200  |       |  |
| Gate to emitter voltage                                    | V <sub>GE</sub>   |                                 | ± 20 | V     |  |
| Davis diasiastica IODT                                     |                   | T <sub>C</sub> = 25 °C          | 862  | W     |  |
| Power dissipation, IGBT                                    | P <sub>D</sub>    | T <sub>C</sub> = 90 °C          | 414  |       |  |
| Isolation voltage                                          | V <sub>ISOL</sub> | Any terminal to case, t = 1 min | 2500 | V     |  |

<sup>(1)</sup> Maximum collector current admitted is 100 A, to do exceed the maximum temperature of terminals



| <b>ELECTRICAL SPECIFICATIONS</b> (T <sub>J</sub> = 25 °C unless otherwise specified) |                         |                                                                               |      |      |       |       |
|--------------------------------------------------------------------------------------|-------------------------|-------------------------------------------------------------------------------|------|------|-------|-------|
| PARAMETER                                                                            | SYMBOL                  | TEST CONDITIONS                                                               | MIN. | TYP. | MAX.  | UNITS |
| Collector to emitter breakdown voltage                                               | V <sub>BR(CES)</sub>    | V <sub>GE</sub> = 0 V, I <sub>C</sub> = 250 μA                                | 1200 | -    | -     |       |
|                                                                                      |                         | V <sub>GE</sub> = 15 V, I <sub>C</sub> = 75 A                                 | -    | 3.3  | 3.8   |       |
| Collector to emitter voltage                                                         | V <sub>CE(on)</sub>     | $V_{GE} = 15 \text{ V}, I_{C} = 75 \text{ A}, T_{J} = 125 ^{\circ}\text{C}$   | -    | 3.6  | 3.9   | V     |
|                                                                                      |                         | $V_{GE} = 15 \text{ V}, I_{C} = 75 \text{ A}, T_{J} = 150 ^{\circ}\text{C}$   | -    | 3.7  | -     |       |
| Gate threshold voltage                                                               |                         | $V_{CE} = V_{GE}$ , $I_C = 250 \mu A$                                         | 4    | 5    | 6     |       |
| Gate threshold voltage V <sub>GE(th)</sub>                                           |                         | $V_{CE} = V_{GE}$ , $I_C = 250 \mu A$ , $T_J = 125  ^{\circ}C$                | -    | 3.2  | -     |       |
| Temperature coefficient of threshold voltage                                         | $V_{GE(th)}/\Delta T_J$ | $V_{CE} = V_{GE}$ , $I_{C} = 1$ mA (25 °C to 125 °C)                          | -    | -12  | -     | mV/°C |
|                                                                                      |                         | V <sub>GE</sub> = 0 V, V <sub>CE</sub> = 1200 V                               | -    | 7    | 250   | μA    |
| Collector to emitter leakage current                                                 | I <sub>CES</sub>        | $V_{GE} = 0 \text{ V}, V_{CE} = 1200 \text{ V}, T_{J} = 125 ^{\circ}\text{C}$ | -    | 1.4  | 10    | mA    |
|                                                                                      |                         | $V_{GE} = 0 \text{ V}, V_{CE} = 1200 \text{ V}, T_{J} = 150 ^{\circ}\text{C}$ | -    | 6.5  | 20    | IIIA  |
| Gate to emitter leakage current                                                      | I <sub>GES</sub>        | V <sub>GE</sub> = ± 20 V                                                      | -    | -    | ± 250 | nA    |

| <b>SWITCHING CHARACTERISTICS</b> (T <sub>J</sub> = 25 °C unless otherwise specified) |                     |                                                                                                                                                                                                     |                                      |      |      |      |       |
|--------------------------------------------------------------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------|------|------|-------|
| PARAMETER                                                                            | SYMBOL              | TEST CONDITIONS                                                                                                                                                                                     |                                      | MIN. | TYP. | MAX. | UNITS |
| Total gate charge (turn-on)                                                          | Qg                  |                                                                                                                                                                                                     |                                      | -    | 690  | -    |       |
| Gate to emitter charge (turn-on)                                                     | Q <sub>ge</sub>     | $I_C = 50 \text{ A}, V_{CC} = 600 \text{ V},$                                                                                                                                                       | V <sub>GE</sub> = 15 V               | -    | 65   | -    | nC    |
| Gate to collector charge (turn-on)                                                   | Q <sub>gc</sub>     |                                                                                                                                                                                                     |                                      | -    | 250  | -    |       |
| Turn-on switching loss                                                               | E <sub>on</sub>     |                                                                                                                                                                                                     |                                      | -    | 1.2  | -    |       |
| Turn-off switching loss                                                              | E <sub>off</sub>    |                                                                                                                                                                                                     |                                      | -    | 2.1  | -    | mJ    |
| Total switching loss                                                                 | E <sub>tot</sub>    | $I_C = 75 \text{ A}, V_{CC} = 600 \text{ V},$                                                                                                                                                       |                                      | -    | 3.3  | -    |       |
| Turn-on delay time                                                                   | t <sub>d(on)</sub>  | $V_{GE} = 15 \text{ V}, R_g = 5 \Omega,$                                                                                                                                                            | -                                    | 250  | -    |      |       |
| Rise time                                                                            | t <sub>r</sub>      | L = 500 µH, T <sub>J</sub> = 25 °C                                                                                                                                                                  | Energy losses include tail and diode | -    | 38   | -    | ns    |
| Turn-off delay time                                                                  | t <sub>d(off)</sub> |                                                                                                                                                                                                     |                                      | -    | 280  | -    |       |
| Fall time                                                                            | t <sub>f</sub>      |                                                                                                                                                                                                     |                                      | -    | 90   | -    |       |
| Turn-on switching loss                                                               | E <sub>on</sub>     |                                                                                                                                                                                                     | recovery Diode used HFA16PB120       | -    | 1.7  | -    | mJ    |
| Turn-off switching loss                                                              | E <sub>off</sub>    |                                                                                                                                                                                                     |                                      | -    | 4.08 | -    |       |
| Total switching loss                                                                 | E <sub>tot</sub>    | $I_C = 75 \text{ A}, V_{CC} = 600 \text{ V},$                                                                                                                                                       |                                      | -    | 5.78 | -    |       |
| Turn-on delay time                                                                   | t <sub>d(on)</sub>  | $V_{GE} = 15 \text{ V}, R_g = 5 \Omega,$                                                                                                                                                            |                                      | -    | 245  | -    |       |
| Rise time                                                                            | t <sub>r</sub>      | $L = 500 \mu H, T_J = 125 °C$                                                                                                                                                                       |                                      | -    | 48   | -    |       |
| Turn-off delay time                                                                  | t <sub>d(off)</sub> |                                                                                                                                                                                                     |                                      | -    | 280  | -    | ns    |
| Fall time                                                                            | t <sub>f</sub>      |                                                                                                                                                                                                     |                                      | -    | 140  | -    |       |
| Reverse bias safe operating area                                                     | RBSOA               | $T_{J} = 150  ^{\circ}\text{C},  I_{C} = 200  \text{A},  R_{g} = 22  \Omega, \\ V_{GE} = 15  \text{V to 0 V},  V_{CC} = 900  \text{V}, \\ V_{P} = 1200  \text{V},  L = 500  \mu\text{H}$ Fullsquare |                                      |      |      |      |       |

| THERMAL AND MECHANICAL SPECIFICATIONS  |                                   |                       |      |      |       |       |
|----------------------------------------|-----------------------------------|-----------------------|------|------|-------|-------|
| PARAMETER                              | SYMBOL                            |                       | MIN. | TYP. | MAX.  | UNITS |
| Junction and storage temperature range | T <sub>J</sub> , T <sub>Stg</sub> |                       | -40  | -    | 150   | °C    |
| Thermal resistance junction to case    | R <sub>thJC</sub>                 |                       | -    | -    | 0.145 | °C/W  |
| Thermal resistance case to heatsink    | R <sub>thCS</sub>                 | Flat, greased surface | -    | 0.05 | -     | C/VV  |
| Weight                                 |                                   |                       | =-   | 30   | -     | g     |
| Mounting torque                        |                                   |                       | -    | -    | 1.3   | Nm    |
| Case style                             |                                   | SOT-227               |      |      |       |       |



#### www.vishay.com

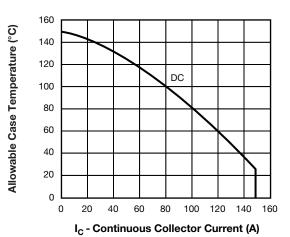



Fig. 1 - Maximum DC IGBT Collector Current vs.

Case Temperature

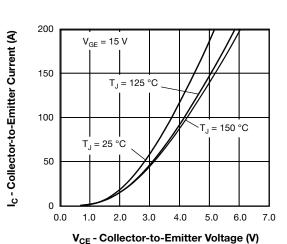



Fig. 2 - Typical Collector to Emitter Current Output Characteristics of IGBT

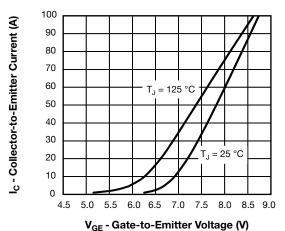



Fig. 3 - Typical IGBT Transfer Characteristics

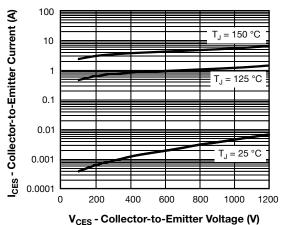



Fig. 4 - Typical IGBT Zero Gate Voltage Collector Current



Fig. 5 - Typical IGBT Threshold Voltage

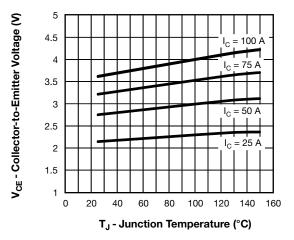



Fig. 6 - Typical IGBT Collector to Emitter Voltage vs. Junction Temperature,  $V_{GE} = 15 \text{ V}$ 

#### www.vishay.com

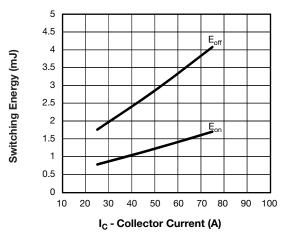



Fig. 7 - Typical IGBT Energy Losses vs. I $_{C}$  T $_{J}$  = 125 °C, L = 500  $\mu$ H, V $_{CC}$  = 600 V, R $_{q}$  = 5  $\Omega$ , V $_{GE}$  = 15 V, Diode used HFA16PB120

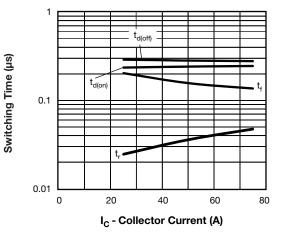



Fig. 8 - Typical IGBT Switching Time vs.  $I_C$   $T_J$  = 125 °C, L = 500  $\mu\text{H},~V_{CC}$  = 600 V,  $R_g$  = 5  $\Omega,~V_{GE}$  = 15 V, Diode used HFA16PB120

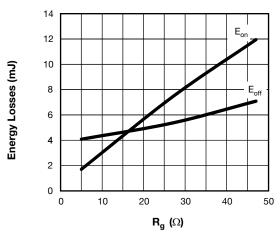



Fig. 9 - Typical IGBT Energy Loss vs. Rg, TJ = 125 °C, IC = 75 A, L = 500  $\mu$ H, VCC = 600 V, VGE = 15 V, Diode used HFA16PB120

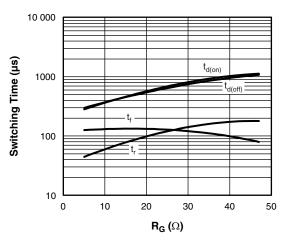



Fig. 10 - Typical IGBT Switching Time vs.  $R_g$   $T_J$  = 125 °C, L = 500  $\mu$ H,  $V_{CC}$  = 600 V,  $R_g$  = 5  $\Omega$ ,  $V_{GE}$  = 15 V

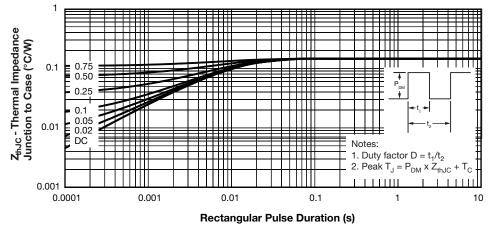



Fig. 11 - Maximum Thermal Impedance Z<sub>thJC</sub> Characteristics (IGBT)

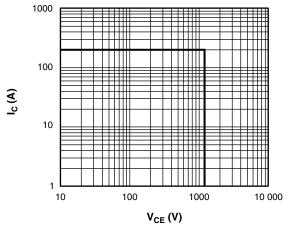
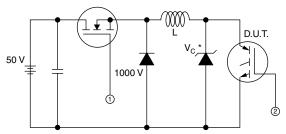




Fig. 12 - IGBT Reverse Bias SOA, TJ = 150 °C,  $V_{GE}$  = 15 V



- \* Driver same type as D.U.T.; V  $_{\rm C}$  = 80 % of V  $_{\rm ce(max.)}$  \* Note: Due to the 50 V power supply, pulse width and inductor
- will increase to obtain Id

Fig. 13a - Clamped Inductive Load Test Circuit

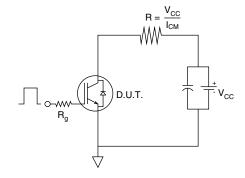



Fig. 13b - Pulsed Collector Current Test Circuit

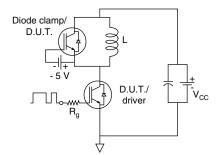



Fig. 14a - Switching Loss Test Circuit

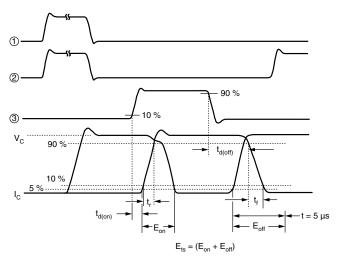
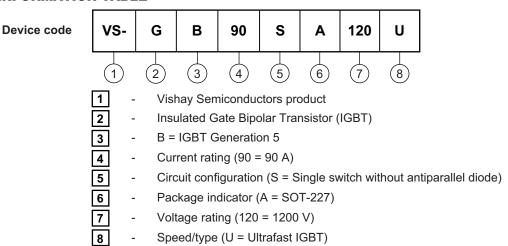
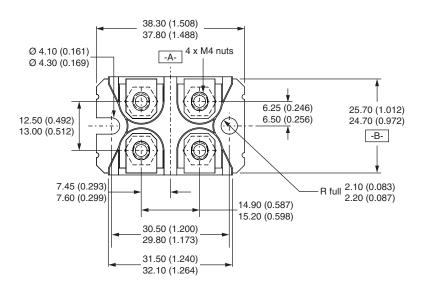
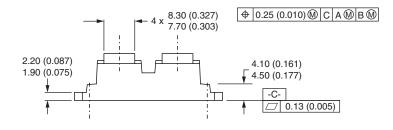



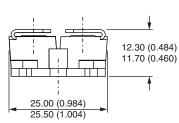

Fig. 14b - Switching Loss Waveforms Test Circuit

#### **ORDERING INFORMATION TABLE**




| CIRCUIT CONFIGURATION                |                               |                  |                          |  |  |
|--------------------------------------|-------------------------------|------------------|--------------------------|--|--|
| CIRCUIT                              | CIRCUIT<br>CONFIGURATION CODE | CI               | RCUIT DRAWING            |  |  |
| Single switch, no antiparallel diode | S                             | 2 (G) O 1, 4 (E) | Lead Assignment  4  1  2 |  |  |


| LINKS TO RELATED DOCUMENTS |                          |  |  |  |  |
|----------------------------|--------------------------|--|--|--|--|
| Dimensions                 | www.vishay.com/doc?95423 |  |  |  |  |
| Packaging information      | www.vishay.com/doc?95425 |  |  |  |  |




### **SOT-227 Generation II**

### **DIMENSIONS** in millimeters (inches)







#### Note

Controlling dimension: millimeter



### **Legal Disclaimer Notice**

Vishay

### **Disclaimer**

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

# **Material Category Policy**

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.

Revision: 02-Oct-12 Document Number: 91000