

HEXFRED®

Ultrafast Soft Recovery Diode, 16 A

TO-247AC modified

FEATURES

- Ultrafast recovery
- Ultrasoft recovery
- Very low I_{RRM}
- Very low Q_{rr}
- Specified at operating conditions
- Lead (Pb)-free
- Designed and qualified for industrial level

RoHS*
COMPLIANT

BENEFITS

- Reduced RFI and EMI
- Reduced power loss in diode and switching transistor
- Higher frequency operation
- Reduced snubbing
- Reduced parts count

DESCRIPTION

HFA16PB120 is a state of the art ultrafast recovery diode. Employing the latest in epitaxial construction and advanced processing techniques it features a superb combination of characteristics which result in performance which is unsurpassed by any rectifier previously available. With basic ratings of 1200 V and 16 A continuous current, the HFA16PB120 is especially well suited for use as the companion diode for IGBTs and MOSFETs. In addition to ultrafast recovery time, the HEXFRED® product line features extremely low values of peak recovery current (I_{RRM}) and does not exhibit any tendency to "snap-off" during the t_b portion of recovery. The HEXFRED features combine to offer designers a rectifier with lower noise and significantly lower switching losses in both the diode and the switching transistor. These HEXFRED advantages can help to significantly reduce snubbing, component count and heatsink sizes. The HEXFRED HFA16PB120 is ideally suited for applications in power supplies and power conversion systems (such as inverters), motor drives, and many other similar applications where high speed, high efficiency is needed.

PRODUCT SUMMARY	
V_R	1200 V
V_F at 16 A at 25 °C	3.0 V
$I_{F(AV)}$	16 A
t_{rr} (typical)	30 ns
T_J (maximum)	150 °C
Q_{rr} (typical)	260 nC
$dI_{(rec)M}/dt$ (typical) at 125 °C	76 A/μs
I_{RRM} (typical)	5.8 A

ABSOLUTE MAXIMUM RATINGS				
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS
Cathode to anode voltage	V_R		1200	V
Maximum continuous forward current	I_F	$T_C = 100$ °C	16	A
Single pulse forward current	I_{FSM}		190	
Maximum repetitive forward current	I_{FRM}		64	
Maximum power dissipation	P_D	$T_C = 25$ °C	151	W
		$T_C = 100$ °C	60	
Operating junction and storage temperature range	T_J, T_{Stg}		- 55 to + 150	°C

* Pb containing terminations are not RoHS compliant, exemptions may apply

HFA16PB120PbF

Vishay High Power Products

HEXFRED®

Ultrafast Soft Recovery Diode, 16 A

ELECTRICAL SPECIFICATIONS ($T_J = 25^\circ\text{C}$ unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS		MIN.	TYP.	MAX.	UNITS
Cathode to anode breakdown voltage	V_{BR}	$I_R = 100 \mu\text{A}$	See fig. 1	1200	-	-	V
Maximum forward voltage	V_{FM}	$I_F = 16 \text{ A}$		-	2.5	3.0	
		$I_F = 32 \text{ A}$		-	3.2	3.93	
		$I_F = 16 \text{ A}, T_J = 125^\circ\text{C}$		-	2.3	2.7	
Maximum reverse leakage current	I_{RM}	$V_R = V_R \text{ rated}$	See fig. 2	-	0.75	20	μA
		$T_J = 125^\circ\text{C}, V_R = 0.8 \times V_R \text{ rated}$		-	375	2000	
Junction capacitance	C_T	$V_R = 200 \text{ V}$	See fig. 3	-	27	40	pF
Series inductance	L_S	Measured lead to lead 5 mm from package body		-	8.0	-	nH

DYNAMIC RECOVERY CHARACTERISTICS ($T_J = 25^\circ\text{C}$ unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS		MIN.	TYP.	MAX.	UNITS
Reverse recovery time See fig. 5, 10	t_{rr}	$I_F = 1.0 \text{ A}, dI_F/dt = 200 \text{ A}/\mu\text{s}, V_R = 30 \text{ V}$		-	30	-	ns
	t_{rr1}			-	90	135	
	t_{rr2}			-	164	245	
Peak recovery current See fig. 6	I_{RRM1}	$T_J = 25^\circ\text{C}$	$I_F = 16 \text{ A}$ $dI_F/dt = 200 \text{ A}/\mu\text{s}$ $V_R = 200 \text{ V}$	-	5.8	10	A
	I_{RRM2}	$T_J = 125^\circ\text{C}$		-	8.3	15	
Reverse recovery charge See fig. 7	Q_{rr1}	$T_J = 25^\circ\text{C}$		-	260	675	nC
	Q_{rr2}	$T_J = 125^\circ\text{C}$		-	680	1838	
Peak rate of fall of recovery current during t_b See fig. 8	$dl_{(rec)M}/dt1$	$T_J = 25^\circ\text{C}$		-	120	-	A/ μs
	$dl_{(rec)M}/dt2$	$T_J = 125^\circ\text{C}$		-	76	-	

THERMAL - MECHANICAL SPECIFICATIONS

PARAMETER	SYMBOL	TEST CONDITIONS		MIN.	TYP.	MAX.	UNITS
Lead temperature	T_{lead}	0.063" from case (1.6 mm) for 10 s		-	-	300	°C
Thermal resistance, junction to case	R_{thJC}			-	-	0.83	K/W
Thermal resistance, junction to ambient	R_{thJA}	Typical socket mount		-	-	80	
Thermal resistance, case to heatsink	R_{thCS}	Mounting surface, flat, smooth and greased		-	0.50	-	
Weight				-	2.0	-	g
				-	0.07	-	oz.
Mounting torque				6.0 (5.0)	-	12 (10)	kgf · cm (lbf · in)
Marking device		Case style TO-247AC modified (JEDEC)		HFA16PB120			

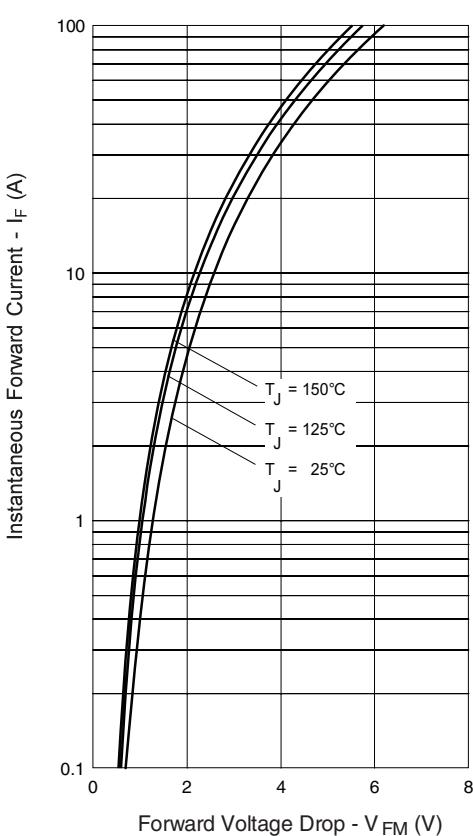

HEXFRED®
Ultrafast Soft Recovery Diode, 16 A
Vishay High Power Products

Fig. 1 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current

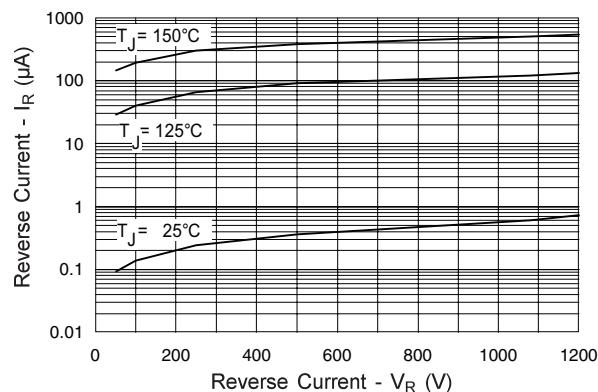


Fig. 2 - Typical Values of Reverse Current vs. Reverse Voltage

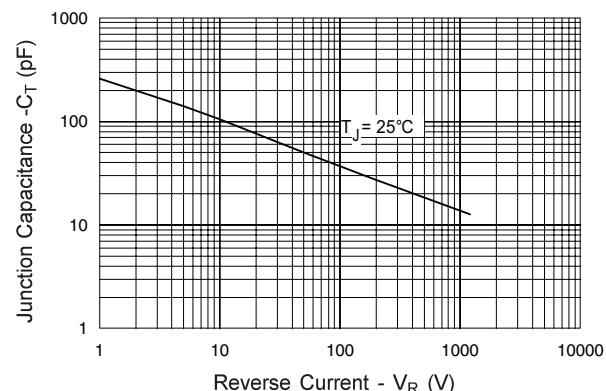


Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage

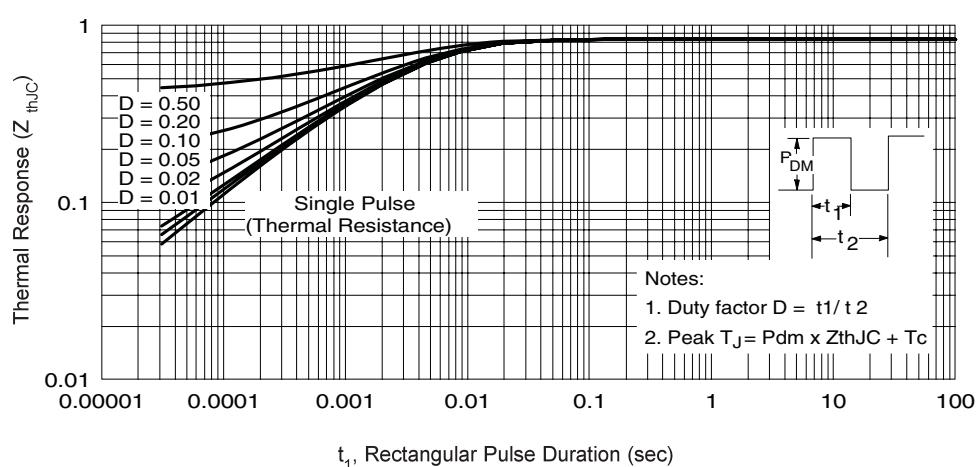


Fig. 4 - Maximum Thermal Impedance Z_{thJC} Characteristics

HFA16PB120PbF

Vishay High Power Products

HEXFRED®
Ultrafast Soft Recovery Diode, 16 A

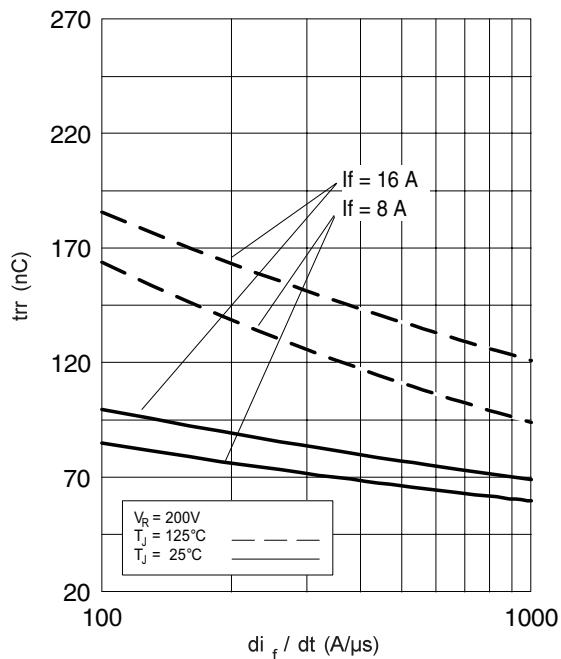


Fig. 5 - Typical Reverse Recovery Time vs. di_F/dt (Per Leg)

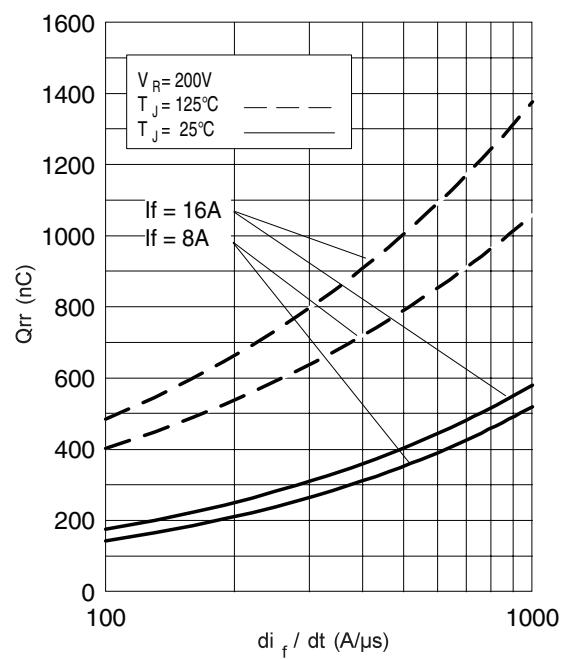


Fig. 7 - Typical Stored Charge vs. di_F/dt (Per Leg)

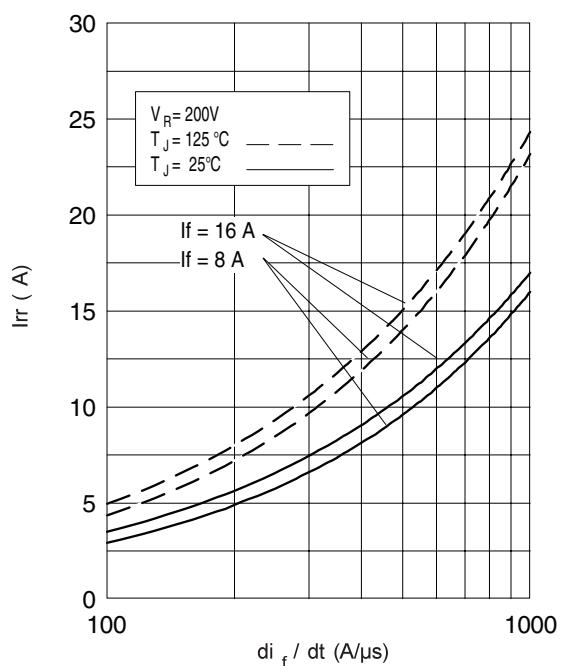


Fig. 6 - Typical Recovery Current vs. di_F/dt (Per Leg)

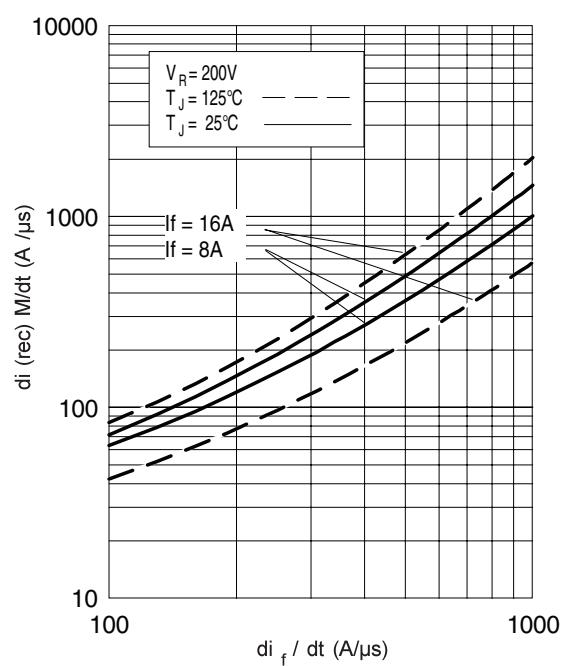


Fig. 8 - Typical $di_{(rec)M}/dt$ vs. di_F/dt (Per Leg)

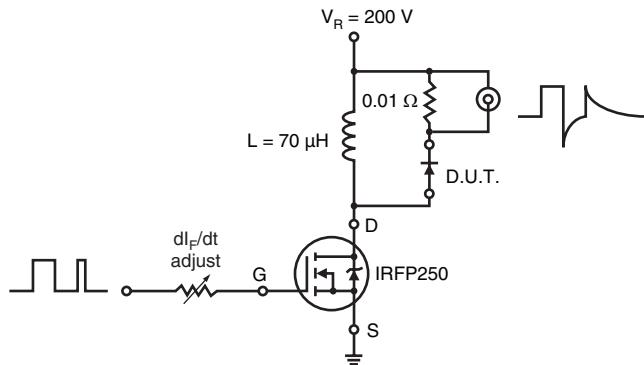
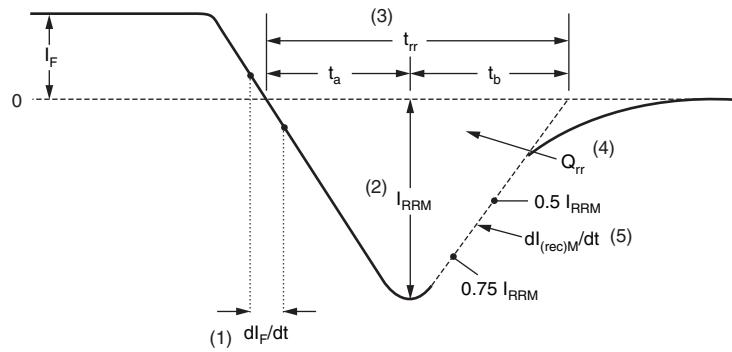



Fig. 9 - Reverse Recovery Parameter Test Circuit

(1) dl_F/dt - rate of change of current through zero crossing

(2) I_{RRM} - peak reverse recovery current

(3) t_{rr} - reverse recovery time measured from zero crossing point of negative going I_F to point where a line passing through $0.75 I_{RRM}$ and $0.50 I_{RRM}$ extrapolated to zero current.

(4) Q_{rr} - area under curve defined by t_{rr} and I_{RRM}

(5) $dl_{(rec)M}/dt$ - peak rate of change of current during t_b portion of t_{rr}

Fig. 10 - Reverse Recovery Waveform and Definitions

HFA16PB120PbF

Vishay High Power Products

HEXFRED®
Ultrafast Soft Recovery Diode, 16 A

ORDERING INFORMATION TABLE

Device code	HF	A	16	PB	120	PbF
	(1)	(2)	(3)	(4)	(5)	(6)

- 1** - HEXFRED® family
- 2** - Process designator: A = Electron irradiated
B = Platinum diffused
- 3** - Current rating (16 = 16 A)
- 4** - Package outline (PB = TO-247, 2 pins)
- 5** - Voltage rating (120 = 1200 V)
- 6** - • None = Standard production
• PbF = Lead (Pb)-free

LINKS TO RELATED DOCUMENTS	
Dimensions	http://www.vishay.com/doc?95253
Part marking information	http://www.vishay.com/doc?95255

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.