

Vishay High Power Products

HEXFRED® Ultrafast Soft Recovery Diode, 2 x 8 A

TO	-220)AB
----	------	-----

PRODUCT SUMMARY					
V _R	600 V				
V _F at 8 A at 25 °C	1.7 V				
I _{F(AV)}	2 x 8 A				
t _{rr} (typical)	18 ns				
T _J (maximum)	150 °C				
Q _{rr}	65 nC				
dl _{(rec)M} /dt	240 A/μs				

FEATURES

- Ultrafast recovery
- Ultrasoft recovery
- Very low I_{RRM}
- Very low Q_{rr}
- · Specified at operating conditions
- · Designed and qualified for industrial level

BENEFITS

- · Reduced RFI and EMI
- · Reduced power loss in diode and switching transistor
- · Higher frequency operation
- · Reduced snubbing
- · Reduced parts count

DESCRIPTION

HFA16TA60C is a state of the art center tap ultrafast recovery diode. Employing the latest in epitaxial construction and advanced processing techniques it features a superb combination of characteristics which result in performance which is unsurpassed by any rectifier previously available. With basic ratings of 600 V and 8 A per leg continuous current, the HFA16TA60C is especially well suited for use as the companion diode for IGBTs and MOSFETs. In addition to ultrafast recovery time, the HEXFRED® product line features extremely low values of peak recovery current (I_{RRM}) and does not exhibit any tendency to "snap-off" during the t_b portion of recovery. The HEXFRED features combine to offer designers a rectifier with lower noise and significantly lower switching losses in both the diode and the switching transistor. These HEXFRED advantages can help to significantly reduce snubbing, component count and heatsink sizes. The HEXFRED HFA16TA60C is ideally suited for applications in power supplies and power conversion systems (such as inverters), motor drives, and many other similar applications where high speed, high efficiency is needed.

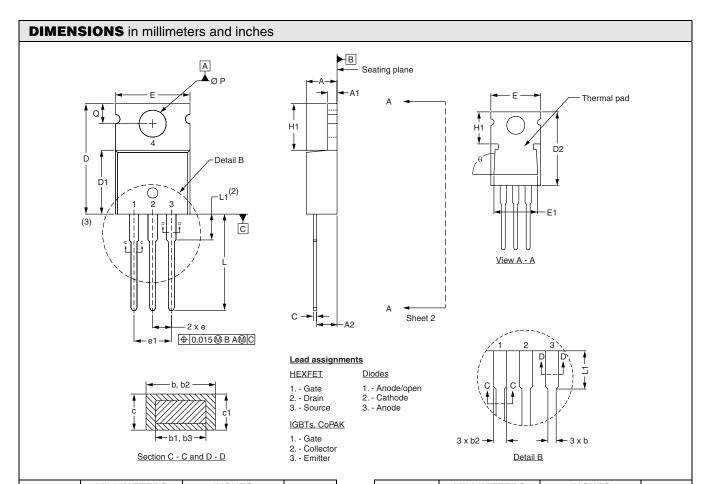
ABSOLUTE MAXIMUM RATINGS						
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS		
Cathode to anode voltage	V_R		600	V		
Maximum continuous forward current per leg	I_	T _C = 100 °C	8			
per device	$I_{F} = 100^{\circ}C$	16	Α			
Single pulse forward current	I _{FSM}		60	A		
Maximum repetitive forward current	I _{FRM}		24			
Maximum nawar dissination	Б	T _C = 25 °C	36	14/		
Maximum power dissipation	P_{D}	T _C = 100 °C	14	W		
Operating junction and storage temperature range	T _J , T _{Stg}		- 55 to + 150	°C		

HFA16TA60C

Vishay High Power Products

HEXFRED® Ultrafast Soft Recovery Diode, 2 x 8 A

ELECTRICAL SPECIFICATIONS PER LEG (T _J = 25 °C unless otherwise specified)								
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS		
Cathode to anode breakdown voltage	V _{BR}	I _R = 100 μA		600	-	-		
		I _F = 8 A		-	1.4	1.7	V	
Maximum forward voltage	V_{FM}	I _F = 16 A	See fig. 1	=	1.7	2.1		
		I _F = 8 A, T _J = 125 °C		-	1.4	1.7		
Maximum reverse		$V_R = V_R$ rated	See fig. 2	-	0.3	5.0		
leakage current	I _{RM}	$T_J = 125 ^{\circ}\text{C}, V_R = 0.8 \text{x} V_R \text{rated}$	See lig. 2	-	100	500	μΑ	
Junction capacitance	C _T	V _R = 200 V	See fig. 3	=	10	25	pF	
Series inductance	L _S	Measured lead to lead 5 mm from p	ackage body	-	8.0	-	nH	


DYNAMIC RECOVERY CHARACTERISTICS PER LEG (T _J = 25 °C unless otherwise specified)								
PARAMETER	SYMBOL	TEST CO	TEST CONDITIONS			MAX.	UNITS	
	t _{rr}	$I_F = 1.0 \text{ A}, dI_F/dt = 200$) A/μs, V _R = 30 V	-	18	-		
Reverse recovery time See fig. 5 and 10	t _{rr1}	T _J = 25 °C		-	37	55	ns	
occ lig. o una ro	t _{rr2}	T _J = 125 °C		-	55	90		
Peak recovery current	I _{RRM1}	T _J = 25 °C	I _F = 8.0 A dI _F /dt = 200 A/μs	-	3.5	5.0	A nC	
See fig. 6	I _{RRM2}	T _J = 125 °C		-	4.5	8.0		
Reverse recovery charge	Q _{rr1}	T _J = 25 °C		-	65	138		
See fig. 7	Q _{rr2}	T _J = 125 °C	V _R = 200 V	- 124	360	iiC		
Peak rate of fall recovery	dI _{(rec)M} /dt1	T _J = 25 °C		-	240	-	Δ/	
current during t _b See fig. 8	dI _{(rec)M} /dt2	T _J = 125 °C		-	210	-	A/μs	

		CIFICATIONS PER LEG		TVD	NA A V	LINUTO
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS
Lead temperature	T _{lead}	0.063" from case (1.6 mm) for 10 s	-	-	300	°C
Junction to case, single leg conducting	Б		-	-	3.5	
Junction to case, both legs conducting	R _{thJC}		-	-	1.75	K/W
Thermal resistance, junction to ambient	R _{thJA}	Typical socket mount	-	-	80	- NVV
Thermal resistance, case to heatsink	R _{thCS}	Mounting surface, flat, smooth and greased	-	0.5	-	
\\/-:-b+			-	2.0	-	g
Weight			-	0.07	-	oz.
Mounting torque			6.0 (5.0)	-	12 (10)	kgf · cm (lbf · in)
Marking device		Case style TO-220AB		HFA16	TA60C	•

Vishay High Power Products

TO-220AB

SYMBOL	MILLIM	IETERS	INCHES		NOTES
STWIDOL	MIN.	MAX.	MIN.	MAX.	NOTES
Α	3.56	4.82	0.140	0.190	
A1	0.51	1.40	0.020	0.055	
A2	2.04	2.92	0.080	0.115	
b	0.38	1.01	0.015	0.040	
b1	0.38	0.96	0.015	0.038	4
b2	1.15	1.77	0.045	0.070	
b3	1.15	1.73	0.045	0.068	
С	0.36	0.61	0.014	0.024	
c1	0.36	0.56	0.014	0.022	4
c2	0.31	1.14	0.012	0.045	
D	14.22	15.87	0.560	0.625	3

SYMBOL	MILLIM	ETERS	INCHES		NOTES	
STWBOL	MIN.	MAX.	MIN.	MAX.	NOTES	
D1	8.38	9.02	0.330	0.355		
D2	12.19	12.88	0.480	0.507		
E	9.66	10.66	0.380	0.420	3	
E1	8.38	8.89	0.330	0.350		
е	2.54	BSC	0.100 BSC			
H1	5.85	6.86	0.230	0.230 0.270		
L	12.70	14.73	0.500	0.580		
L1	-	6.35	-	0.250	2	
ØΡ	3.54	3.73	0.139	0.147		
Q	2.54	3.05	0.100	0.120		
θ	90° t	o 93°	90° to 93°			

Notes

- (1) Dimensioning and tolerancing per ASME Y14.5M-1994
- (2) Lead dimension and finish uncontrolled in L1
- (3) Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outermost extremes of the plastic body
- (4) Dimension b1 and c1 apply to base metal only
- (5) Controlling dimensions: inches