

Vishay High Power Products

HEXFRED® Ultrafast Soft Recovery Diode, 2 x 15 A

Anode

Common cathode

TO-247AC

PRODUCT SUMMARY						
V_{R}	600 V					
V _F at 15 A at 25 °C	1.7 V					
I _{F(AV)}	2 x 15 A					
t _{rr} (typical)	19 ns					
T _J (maximum)	150 °C					
Q _{rr} (typical)	80 nC					
dl _{(rec)M} /dt (typical)	160 A/μs					
I _{RRM} (typical)	4.0 A					

FEATURES

- · Ultrafast recovery
- · Ultrasoft recovery
- Very low I_{RRM}
- Very low Q_{rr}
- · Specified at operating conditions
- · Lead (Pb)-free
- · Designed and qualified for industrial level

BENEFITS

- Reduced RFI and EMI
- · Reduced power loss in diode and switching transistor
- Higher frequency operation
- · Reduced snubbing
- Reduced parts count

DESCRIPTION

HFA30PA60C is a state of the art center tap ultrafast recovery diode. Employing the latest in epitaxial construction and advanced processing techniques it features a superb combination of characteristics which result in performance which is unsurpassed by any rectifier previously available. With basic ratings of 600 V and 15 A per leg continuous current, the HFA30PA60C is especially well suited for use as the companion diode for IGBTs and MOSFETs. In addition to ultrafast recovery time, the HEXFRED® product line features extremely low values of peak recovery current (I_{RRM}) and does not exhibit any tendency to "snap-off" during the t_b portion of recovery. The HEXFRED features combine to offer designers a rectifier with lower noise and significantly lower switching losses in both the diode and the switching transistor. These HEXFRED advantages can help to significantly reduce snubbing, component count and heatsink sizes. The HEXFRED HFA30PA60C is ideally suited for applications in power supplies and power conversion systems (such as inverters), motor drives, and many other similar applications where high speed, high efficiency is needed.

ABSOLUTE MAXIMUM RATINGS						
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS		
Cathode to anode voltage	V _R		600	V		
Maximum continuous forward current per leg		T _C = 100 °C	15	٨		
per device	l _E		30			
Single pulse forward current	I _{FSM}		150	Α		
Maximum repetitive forward current	I _{FRM}		60			
Maximum power dissipation	-	T _C = 25 °C	74	W		
wiaximum power dissipation	P_D	T _C = 100 °C	29	VV		
Operating junction and storage temperature range	T _J , T _{Stg}		- 55 to + 150	°C		

^{*} Pb containing terminations are not RoHS compliant, exemptions may apply

HFA30PA60CPbF

Vishay High Power Products

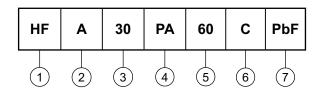
HEXFRED® Ultrafast Soft Recovery Diode, 2 x 15 A

ELECTRICAL SPECIFICATIONS PER LEG (T _J = 25 °C unless otherwise specified)							
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS	
Cathode to anode breakdown voltage	V _{BR}	I _R = 100 μA		600	-	-	
	I _F = 15 A			-	1.3	1.7	V
Maximum forward voltage	V _{FM}	I _F = 30 A	See fig. 1	-	1.5	2.0	
		I _F = 15 A, T _J = 125 °C		-	1.2	1.6	
Maximum reverse	,	$V_R = V_R$ rated	See fig. 2	-	1.0	10	
leakage current	I _{RM}	$T_J = 125 ^{\circ}\text{C}, V_R = 0.8 \text{x} V_R \text{rated}$	See lig. 2	-	400	1000	μΑ
Junction capacitance	C _T	V _R = 200 V	See fig. 3	=	25	50	pF
Series inductance	L _S	Measured lead to lead 5 mm from package body		-	12	-	nH

DYNAMIC RECOVERY CHARACTERISTICS PER LEG (T _J = 25 °C unless otherwise specified)							
PARAMETER	SYMBOL	TEST CO	MIN.	TYP.	MAX.	UNITS	
	t _{rr}	$I_F = 1.0 \text{ A}, dI_F/dt = 200 \text{ A/}\mu\text{s}, V_R = 30 \text{ V}$		-	19	-	
Reverse recovery time See fig. 5, 10	t _{rr1}	T _J = 25 °C		-	42	60	ns
3ee lig. 3, 10	t _{rr2}	T _J = 125 °C		-	70	120	
Peak recovery current	I _{RRM1}	T _J = 25 °C	$I_F = 15 \text{ A}$ $dI_F/dt = 200 \text{ A/}\mu\text{s}$ $V_R = 200 \text{ V}$	-	4.0	6.0	A nC
See fig. 6	I _{RRM2}	T _J = 125 °C		-	6.5	10	
Reverse recovery charge	Q _{rr1}	T _J = 25 °C		-	80	180	
See fig. 7	Q _{rr2}	T _J = 125 °C		-	220	600	IIC
Peak rate of fall of recovery current during t _b See fig. 8	dI _{(rec)M} /dt1	T _J = 25 °C		-	250	-	Δ /
	dI _{(rec)M} /dt2	T _J = 125 °C		-	160	-	A/μs

THERMAL - MECHANICAL SPECIFICATIONS PER LEG							
PARAMETER	SYMBOL	TEST CONDITIONS	TYP.	MAX.	UNITS		
Lead temperature	T _{lead}	0.063" from case (1.6 mm) for 10 s	-	-	300	°C	
Junction to case, single leg conduction	В		-	-	1.7		
Junction to case, both legs conducting	R _{thJC}		-	-	0.85	1////	
Thermal resistance, junction to ambient	R _{thJA}	Typical socket mount	-	-	40	K/W	
Thermal resistance, case to heatsink	R _{thCS}	Mounting surface, flat, smooth and greased	-	0.25	-	-	
Woight			-	6.0	-	g	
Weight			-	0.21	-	OZ.	
Mounting torque			6.0 (5.0)	-	12 (10)	kgf ⋅ cm (lbf ⋅ in)	
Marking device		Case style TO-247AC (JEDEC)	(310)	HFA30	PA60C	1 (2)	

HFA30PA60CPbF

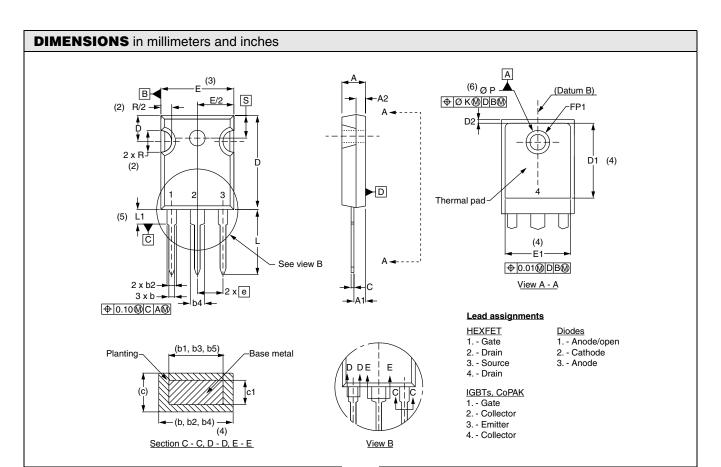

Vishay High Power Products

HEXFRED® Ultrafast Soft Recovery Diode, 2 x 15 A

ORDERING INFORMATION TABLE

Device code

- 1 HEXFRED® family
- Process designator: A = Subs. electron irradiated


B = Subs. platinum

- 3 Current rating (30 = 30 A)
- Package outline (PA = TO-247, 3 pins)
- 5 Voltage rating (60 = 600 V)
- 6 Configuration (C = Center tap common cathode)
- 7 • None = Standard production
 - PbF = Lead (Pb)-free

Vishay High Power Products

TO-247

SYMBOL	MILLIM	IETERS	INC	HES	NOTES
STWIBOL	MIN.	MAX.	MIN.	MAX.	NOTES
Α	4.65	5.31	0.183	0.209	
A1	2.21	2.59	0.087	0.102	
A2	1.50	2.49	0.059	0.098	
b	0.99	1.40	0.039	0.055	
b1	0.99	1.35	0.039	0.053	
b2	1.65	2.39	0.065	0.094	
b3	1.65	2.37	0.065	0.094	
b4	2.59	3.43	0.102	0.135	
b5	2.59	3.38	0.102	0.133	
С	0.38	0.86	0.015	0.034	
c1	0.38	0.76	0.015	0.030	
D	19.71	20.70	0.776	0.815	3
D1	13.08	-	0.515	-	4

SYMBOL	MILLIMETERS		INCHES		NOTES
STWIBOL	MIN.	MAX.	MIN.	MAX.	NOTES
D2	0.51	1.30	0.020	0.051	
E	15.29	15.87	0.602	0.625	3
E1	13.72	-	0.540	-	
е	5.46 BSC		0.215	BSC	
FK	2.	54	0.010		
L	14.20	16.10	0.559	0.634	
L1	3.71	4.29	0.146	0.169	
N	7.62	BSC	3		
FP	3.56	3.66	0.14	0.144	
FP1	-	6.98	-	0.275	
Q	5.31	5.69	0.209	0.224	
R	0.452	5.49	0.178	0.216	
S	5.51	BSC	0.217 BSC		

Notes

- (1) Dimensioning and tolerancing per ASME Y14.5M-1994
- (2) Contour of slot optional
- (3) Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outermost extremes of the plastic body
- (4) Thermal pad contour optional with dimensions D1 and E1
- (5) Lead finish uncontrolled in L1
- (6) Ø P to have a maximum draft angle of 1.5 to the top of the part with a maximum hole diameter of 3.91 mm (0.154")
- $^{(7)}$ Outline conforms to JEDEC outline TO-247 with exception of dimension c