

Vishay High Power Products

SCR/SCR and SCR/Diode (MAGN-A-PAKTM Power Modules), 230 A

MAGN-A-PAKTM

PRODUCT SUMMARY					
I _{T(AV)}	230 A				

FEATURES

- · High voltage
- · Electrically isolated base plate
- 3500 V_{RMS} isolating voltage
- · Industrial standard package
- · Simplified mechanical designs, rapid assembly
- High surge capability
- Large creepage distances
- Compliant to RoHS directive 2002/95/EC
- Designed and qualified for industrial level

DESCRIPTION

This new VSK series of MAGN-A-PAKTM modules uses high voltage power thyristor/thyristor and thyristor/diode in seven basic configurations. The semiconductors are electrically isolated from the metal base, allowing common heatsinks and compact assemblies to be built. They can be interconnected to form single phase or three phase bridges or as AC-switches when modules are connected in anti-parallel mode. These modules are intended for general purpose applications such as battery chargers, welders, motor drives, UPS, etc.

MAJOR RATINGS AND CHARACTERISTICS									
SYMBOL	CHARACTERISTICS	VALUES	UNITS						
I _{T(AV)}	85 °C	230							
I _{T(RMS)}		510	Α						
I _{TSM}	50 Hz	7500	A						
	60 Hz	7850							
I ² t	50 Hz	280	1.42-						
1-1	60 Hz	260	kA ² s						
I²√t		280	kA²√s						
V _{DRM} /V _{RRM}		Up to 2000	V						
T _J	Range	- 40 to 130	°C						

ELECTRICAL SPECIFICATIONS

VOLTAGE RATINGS									
TYPE NUMBER	VOLTAGE CODE	V _{RRM} /V _{DRM} , MAXIMUM REPETITIVE PEAK REVERSE AND OFF-STATE BLOCKING VOLTAGE V	V _{RSM} , MAXIMUM NON-REPETITIVE PEAK REVERSE VOLTAGE V	I _{RRM} /I _{DRM} AT 130 °C MAXIMUM mA					
	08	800	900						
	12	1200	1300						
VSK.230- 16 18		1600	1700	50					
		1800	1900						
	20	2000	2100						

Document Number: 93053 Revision: 15-Sep-09

VSK.230..PbF Series

Vishay High Power Products

SCR/SCR and SCR/Diode (MAGN-A-PAKTM Power Modules), 230 A

ON-STATE CONDUCTION						
PARAMETER	SYMBOL	TEST CONDITIONS			VALUES	UNITS
Maximum average on-state current	I _{T(AV)}	190° conduction	n, half sine wave		230	Α
at case temperature		180 Conduction	i, iiaii siile wave		85	°C
Maximum RMS on-state current	I _{T(RMS)}	As AC switch			510	
		t = 10 ms	No voltage		7500	
Maximum peak, one-cycle on-state		t = 8.3 ms	reapplied		7850	Α
non-repetitive, surge current	I _{TSM}	t = 10 ms	100 % V _{RRM}	Sinusoidal	6300	
		t = 8.3 ms	reapplied	half wave,	6600	
		t = 10 ms	No voltage	initial T _J = T _J maximum	280	kA ² s
Maximum I ² t for fusing	I ² t	t = 8.3 ms	reapplied		256	
	1-1	t = 10 ms	100 % V _{BBM}		198	
		t = 8.3 ms	reapplied		181	
Maximum I ² √t for fusing	I ² √t	t = 0.1 ms to 10 ms, no voltage reapplied			2800	kA²√s
Low level value or threshold voltage	V _{T(TO)1}	(16.7 % x π x I _T T _J = T _J maximu	$I_{(AV)} < I < \pi \times I_{T(AV)}$),	1.03	V
High level value of threshold voltage	V _{T(TO)2}	$(I > \pi \times I_{T(AV)} <$	$I < \pi \times I_{T(AV)}$, $T_J =$	T _J maximum	1.07	
Low level value on-state slope resistance	r _{t1}	(16.7 % x π x I _T T _J = T _J maximu	$I_{(AV)} < I < \pi \times I_{T(AV)}$	0.77	mΩ	
High level value on-state slope resistance	r _{t2}	$(I > \pi \times I_{T(AV)} <$	$I < \pi \times I_{T(AV)}$, $T_J =$	0.73		
Maximum on-state voltage drop	V_{TM}	$I_{TM} = \pi \times I_{T(AV)}$, $T_J = T_J$ maximum, 180° conduction, average power = $V_{T(TO)} \times I_{T(AV)} + r_f \times (I_{T(RMS)})^2$			1.59	V
Maximum holding current	I _H	Anode supply = 12 V, initial I_T = 30 A, T_J = 25 °C			500	
Maximum latching current	ΙL		12 V, resistive load, $T_J = 25$		1000	mA

SWITCHING								
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS				
Typical delay time	t _d	$T_J = 25 ^{\circ}\text{C}$, gate current = 1 A $dl_g/dt = 1 A/\mu s$	1.0					
Typical rise time	t _r	$V_d = 0.67 \% V_{DRM}$	2.0	μs				
Typical turn-off time	tq	I_{TM} = 300 A; dI/dt = 15 A/μs; T_J = T_J maximum; V_R = 50 V; dV/dt = 20 V/μs; gate 0 V, 100 Ω	50 to 150	μ0				

BLOCKING									
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS					
Maximum peak reverse and off-state leakage current	I _{RRM,} I _{DRM}	$T_J = T_J$ maximum	50	mA					
RMS insulation voltage	V _{INS}	V _{INS} 50 Hz, circuit to base, all terminals shorted, 25 °C, 1 s		V					
Critical rate of rise of off-state voltage	dV/dt	$T_J = T_J$ maximum, exponential to 67 % rated V_{DRM}	1000	V/μs					

Document Number: 93053 Revision: 15-Sep-09

SCR/SCR and SCR/Diode (MAGN-A-PAKTM Power Modules), 230 A

Vishay High Power Products

TRIGGERING						
PARAMETER	SYMBOL	TEST (CONDITIONS	VALUES	UNITS	
Maximum peak gate power	P_{GM}	$t_p \le 5 \text{ ms}, T_J = T_J r$	maximum	10.0	W	
Maximum average gate power	$P_{G(AV)}$	$f = 50 Hz, T_J = T_J r$	maximum	2.0	VV	
Maximum peak gate current	+ I _{GM}	$t_p \le 5 \text{ ms}, T_J = T_J r$	maximum	3.0	Α	
Maximum peak negative gate voltage	- V _{GT}	$t_p \le 5 \text{ ms}, T_J = T_J r$	maximum	5.0		
		T _J = - 40 °C	Anode supply = 12 V, resistive load; Ra = 1 Ω	4.0	V	
Maximum required DC gate voltage to trigger	V_{GT}	T _J = 25 °C		3.0		
		T _J = T _J maximum	100101170 1000, 110 - 1 32	2.0		
		T _J = - 40 °C		350		
Maximum required DC gate current to trigger	I _{GT}	T _J = 25 °C	Anode supply = 12 V, resistive load; Ra = 1 Ω	200	mA	
		$T_J = T_J$ maximum	103131110 1044, 114 - 1 32	100		
Maximum gate voltage that will not trigger	V_{GD}	$T_J = T_J$ maximum, rated V_{DRM} applied		0.25	V	
Maximum gate current that willnot trigger	I _{GD}	$T_J = T_J$ maximum, rated V_{DRM} applied		10.0	mA	
Maximum rate of rise of turned-on current	dI/dt	T _J = T _J maximum, I _{TM} = 400 A, rated V _{DRM} applied		500	A/μs	

THERMAL AND MECHANICAL SPECIFICATIONS							
PARAMETER		SYMBOL	TEST CONDITIONS	VALUES	UNITS		
Junction operating temperature range		TJ		- 40 to 130	°C		
Storage temperature rang	е	T _{Stg}		- 40 to 150	O		
Maximum thermal resistance, junction to case per junction		R _{thJC}	DC operation	0.125	K/W		
Typical thermal resistance, case to heatsink per module		R _{thCS}	Mounting surface flat, smooth and greased	0.02	K/VV		
Mounting targue + 10 %	MAP to heatsink		A mounting compound is recommended and the torque should be rechecked after a	4 to 6	Nm		
Mounting torque ± 10 % busbar to MAP			period of about 3 h to allow for the spread of the compound.	4 10 6	MIII		
Approximate weight				500	g		
Approximate weight	Approximate weight			17.8	OZ.		
Case style				MAGN	-A-PAK		

AR CONDUCTION PER JUNCTION											
DEVICES	SINUS	OIDAL COI	NDUCTION	I AT T _J MA	XIMUM	RECTANGULAR CONDUCTION AT T _J MAXIMUM				XIMUM	UNITS
DEVICES	180°	120°	90°	60°	30°	180°	120°	90°	60°	30°	UNITS
VSK.230-	0.009	0.010	0.010	0.020	0.032	0.007	0.011	0.015	0.020	0.033	K/W

Note

 $\bullet \quad \text{Table shows the increment of thermal resistance } \ R_{\text{thJC}} \ \text{when devices operate at different conduction angles than DC} \\$

Document Number: 93053 Revision: 15-Sep-09

Vishay High Power Products

SCR/SCR and SCR/Diode (MAGN-A-PAKTM Power Modules), 230 A

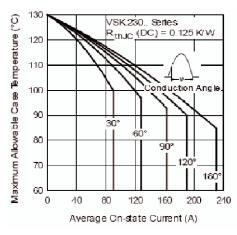


Fig. 1 - Current Ratings Characteristics

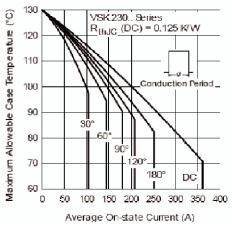


Fig. 2 - Current Ratings Characteristics

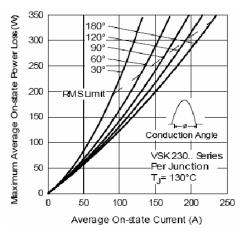


Fig. 3 - On-State Power Loss Characteristics

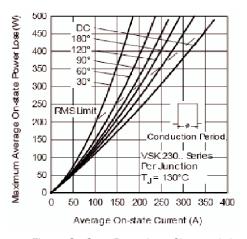


Fig. 4 - On-State Power Loss Characteristics

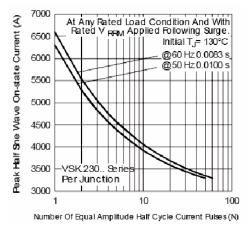


Fig. 5 - Maximum Non-Repetitive Surge Current

Fig. 6 - Maximum Non-Repetitive Surge Current

SCR/SCR and SCR/Diode (MAGN-A-PAKTM Power Modules), 230 A

Vishay High Power Products

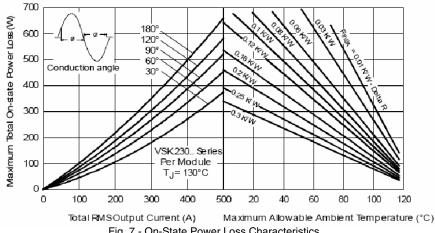
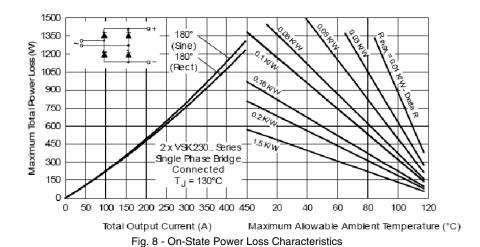
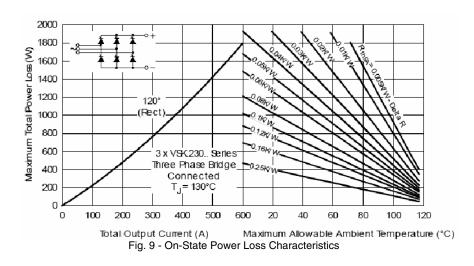




Fig. 7 - On-State Power Loss Characteristics

Vishay High Power Products

SCR/SCR and SCR/Diode (MAGN-A-PAK $^{\text{TM}}$ Power Modules), 230 A

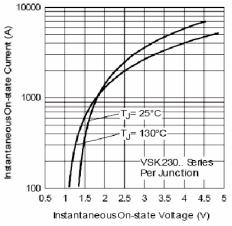


Fig. 10 - On-State Voltage Drop Characteristics

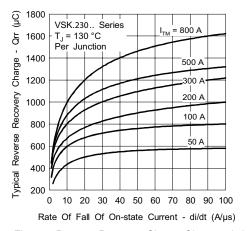


Fig. 11 - Reverse Recovery Charge Characteristics

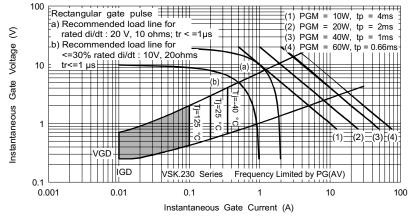


Fig. 12 - Gate Characteristics

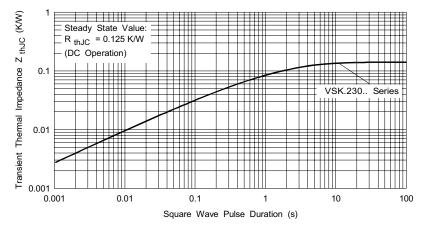
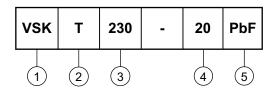


Fig. 13 - Thermal Impedance Z_{thJC} Characteristics

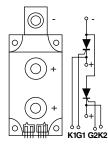


SCR/SCR and SCR/Diode (MAGN-A-PAKTM Power Modules), 230 A

Vishay High Power Products

ORDERING INFORMATION TABLE

- 1 Module type
- 2 Circuit configuration (see dimensions link at the end of datasheet)
- 3 Current rating
- Voltage code x 100 = V_{RRM} (see Voltage Ratings table)
- None = Standard production
 - PbF = Lead (Pb)-free


Note

• To order the optional hardware go to www.vishay.com/doc?95172

CIRCUIT CONFIGURATION

VSKV...

Available 800 V; contact factory for different requirements.

LINKS TO RELATED DOCUMENTS					
Dimensions	www.vishay.com/doc?95086				

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Document Number: 91000 Revision: 18-Jul-08