

www.vishay.com

Vishay BCcomponents

AC Line Rated Ceramic Disc Capacitors Class X1, 760 V_{AC}, Class Y1, 500 V_{AC}

QUICK REFERENCE DATA				
DESCRIPTION	VALUE			
Ceramic Class	2	2		
Ceramic Dielectric	Y5U	Y5U		
Voltage (V _{AC})	500	760		
Min. Capacitance (pF)	470			
Max. Capacitance (pF)	4700			
Mounting	Radial			

OPERATING TEMPERATURE RANGE

-40 °C to +125 °C

TEMPERATURE CHARACTERISTICS

Y5U

SECTIONAL SPECIFICATIONS

Climatic category (according to EN 60058-1) 40/125/21

COATING

According to UL 94 V-0 Epoxy resin, isolating, flame retardant Halogen-free Reinforced insulation

APPROVALS

IEC 60384-14.4 UL 60384-14 DIN EN 60384-14 CSA E60384-1:03, CSA E60384-14:09 CQC11-471112-2009

PACKAGING

Bulk, tape and reel, taped ammopack

FEATURES

- Complying with IEC 60384-14 4th edition
- Can pass 10 kV pulses (10 per polarity)
- Withstands 85 / 85 / 1000 h test
- Reduced size (compact design)
- · High reliability
- · Vertical (inline) kinked or straight leads
- Singlelayer AC disc safety capacitors
- Material categorization: for definitions of compliance please see www.vishav.com/doc?99912

ROHS COMPLIANT HALOGEN FREE GREEN

(5-2008)

APPLICATIONS

- X1, Y1 according to IEC 60384-14.4
- · Across-the-line
- · Line by-pass
- · Antenna coupling

DESIGN

The capacitor consists of a ceramic disc which is copper plated on both sides. Connection leads are made of tinned copper clad steel having a diameter of 0.6 mm.

The capacitors may be supplied with vertical (inline) kinked leads having a lead spacing of 10.0 mm, or 12.5 mm. Encapsulation is made of flame retardant epoxy resin in accordance with UL 94 V-0.

CAPACITANCE RANGE

470 pF to 4700 pF

RATED VOLTAGE UR

IEC 60384-14.4: (X1): 760 V_{AC}, 50 Hz (Y1): 500 V_{AC}, 50 Hz

TEST VOLTAGE

Component test (100 %): 4000 V_{AC} , 50 Hz, 2 s Random sampling test (destructive test): 4000 V_{AC} , 50 Hz, 60 s Voltage proof of coating (destructive test): 4000 V_{AC} , 50 Hz, 60 s

INSULATION RESISTANCE

 \geq 10 000 $M\Omega$

CAPACITANCE TOLERANCE

± 20 %

DISSIPATION FACTOR

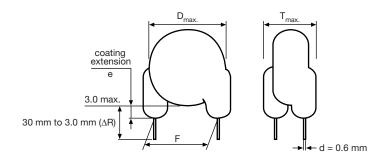
Max. 2.5 % (1 kHz)

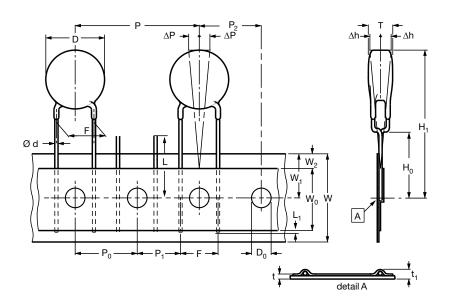
TECHNICAL DATA						
CAPACITANCE	CARACITANCE CAPACITANCE BODY BODY		LEAD SPACING	PART NUMBER		
C (pF)	TOLERANCE (%)	DIAMETER D _{max.} (mm)	THICKNESS T _{max.} (mm)	F (mm) ± 1 mm	MISSING DIGITS SEE ORDERING CODE BELOW	
470		7.5			VY1471M29Y5UC6###	
680		7.5		10.0 or 12.5	VY1681M29Y5UC6###	
1000		8.0			VY1102M31Y5UC6###	
1500		9.0			VY1152M35Y5UC6###	
2200	± 20	11.0	5.0		VY1222M43Y5UC6###	
2700		12.0			VY1272M47Y5UC6###	
3300		13.0			VY1332M51Y5UC6###	
3900		15.0			VY1392M59Y5UC6###	
4700		15.5			VY1472M61Y5UC6###	

Notes

- Straight leads available on request
- · Coating extension DR valid for straight leads only

ORDER	ING CO	DE								
#	7 th digit		Capacitar	nce tolerance)	± 20 % =	М			
###	15 th to 17	^{7th} digit	Lead conf	figuration		Available	configuratio	ns see below		
Example	VY1	471	М	29	Y5U	С	6	Т	٧	0
	Series	Capacitance value	Tolerance code	Size code	Temperature coefficient	Rated voltage	Lead wire diameter	Packaging / lead length	Lead style	Lead spacing
						Compact size		3 = bulk T = tape and reel U = ammopack	L = straight V = inline kinked	0 = 10.0 X = 12.5

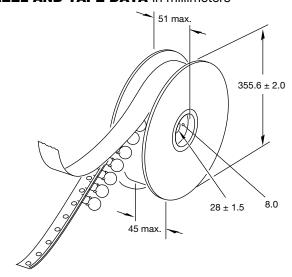



PACKAGING						
CAPACITANCE	SIZE CODE	BODY DIAMETER D _{max.} (mm)	PACKAGING QUANTITIES			
VALUE	SIZE CODE		BULK	REEL	АММО	
470 pF to 2700 pF	29 to 47	12.0	1000	500	750	
3300 pF to 4700 pF	51 to 61	15.5	500	500	750	

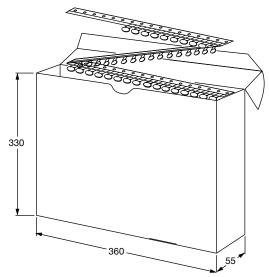
Note

• The capacitors are supplied in bulk packaging (cardboard boxes), in tape on reel or in ammopack

STRAIGHT LEADS


The sprocket hole pitch (P_0) is 12.7 mm for lead spacing 10.0 mm and 12.5 mm

DIMENSIONS	DIMENSIONS OF TAPE				
SYMBOL	PARAMETER	DIMENSIONS (mm)			
D ⁽¹⁾	Body diameter	16.0 max.			
d	Lead diameter	0.6 ± 0.05			
Р	Pitch of component	25.4 ± 1			
P ₀ ⁽²⁾	Pitch of sprocket hole	12.7 ± 0.3			
P ₁ ⁽³⁾	Distance, hole center to lead	7.7 or 6.4 ± 1.0			
P ₂ ⁽³⁾	Distance, hole to center of component	12.7 ± 1.5			
F	Lead spacing	10.0 or 12.5 + 0.6/- 0.4			
Δh	Average deviation across tape	± 1.0 max.			
ΔΡ	Average deviation in direction of reeling	± 1.0 max.			
W	Carrier tape width	18.0 + 1/- 0.5			
W ₀	Hold-down tape width	5.0 min.			
W ₁	Position of sprocket hole	9.0 + 0.75/- 0.5			
W ₂	Distance of hold-down tape	3.0 max.			
H ₁	Maximum component height	40.0			
H ₀	Height to seating plane (for kinked leads)	16.0 ± 0.5			
H ₀	Height to seating plane (for straight leads)	20.0 ± 0.5			
L	Length of cut leads	11.0 max.			
L ₁	Length of lead protrusion	1.0 max.			
D ₀	Diameter of sprocket hole	4.0 ± 0.2			
t	Total tape thickness	0.9 max.			
t ₁	Total tape thickness with lead wire	t + d			


Notes

- (1) See "Technical Data" table
- (2) Cumulative pitch error: ± 1 mm/20 pitches
- (3) Obliquity maximum 3°

REEL AND TAPE DATA in millimeters

Reel with capacitors on tape

Ammopack with capacitors on tape

APPROVALS

IEC 60384-14.4 - Safety tests

This approval together with CB test certificate substitutes all national approvals.

CB Certificate

Y1-capacitor: CB test certificate: US-26561-UL 470 pF to 4.7 nF 500 V_{AC} X1-capacitor: CB test certificate: US-26561-UL 470 pF to 4.7 nF 760 V_{AC}

VDE

Y1-capacitor: VDE marks approval: 40012673 470 pF to 4.7 nF 500 V_{AC} X1-capacitor: VDE marks approval: 40012673 470 pF to 4.7 nF 760 V_{AC}

DIN EN 60384-14 VDE 0565-1-1:2006-04 - Safety tests

Underwriters Laboratories Inc./Canadian Standards Association

Y1-capacitor: CSA test certificate: E183844 470 pF to 4.7 nF 500 V_{AC} X1-capacitor: CSA test certificate: E183844 470 pF to 4.7 nF 760 V_{AC}

UL 60384-14, CSA E60384-1:03, CSA E60384-14:09

Fixed capacitors for electromagnetic interference suppression and connection to the supply mains.

CQC

Y1-capacitor: CQC test certificate: CQC05001015032 470 pF to 4.7 nF 500 V_{AC}
X1-capacitor: CQC test certificate: CQC05001015032 470 pF to 4.7 nF 760 V_{AC}

MARKING

Sample (2 sides)

4 digit date code (year/week; add suffix "C" for compact series)

DC2:

PN: VY1472M61Y5UC63V0

QTY: 500 PO:/

SO:

Lot1: 1401444M08 Lot2: Batch: 201451CN

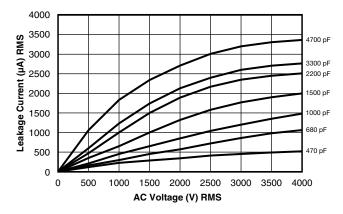
Batch: 201451CN Region: 9520

SL: 0010

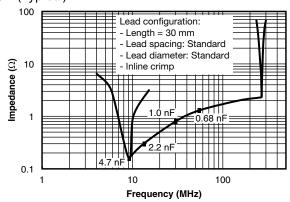
DC1: 1451

Ser.No: 1451M09589

.140. 140 11003


1/1

VY1 Compact Series


Vishay BCcomponents

TEST CONDITION	TEST LIMITS
Optical inspection, dimensions measured with caliper	No visible damage, marking legible
25 °C \pm 3 °C , relative humidity (RH) \leq 75 %,	Capacitance within specified tolerance
$1.0 \text{ V}_{\text{RMS}} \pm 0.2 \text{ V}_{\text{RMS}}$ at 1 kHz	DF ≤ 2.5 %
Measured within 60 s \pm 5 s after charging at 500 V_{DC}	10 000 M Ω min.
4000 V _{AC} at 50 Hz/60 Hz for 1 min, 50 mA max.	No failure
RH ≤ 75 %, 1.0 V_{RMS} ± 0.2 V_{RMS} at 1 kHz	+22 % / -56 %
Pulse voltage: 10 kV Pulses per polarity: 10 Polarity: ± (both) Time between pulses of same polarity: 20 s Time between pulses of different polarity: 30 s	No failure
1000 h at 125 °C ± 2 °C, 850 V _{AC} / 50 Hz; once every hour 1000 V _{AC} for 0.1 s	External appearance: no visible damage $\Delta C/C \le \pm 15~\%$ DF $\le 5~\%$ IR $\ge 3000~\mathrm{M}\Omega$ Dielectric strength: no failure
1000 h + 48 h / - 0 h at 85 % relative humidity, 85 °C \pm 3 °C, loading voltage: 760 V_{AC}	No failure
500 h at 500 V_{AC} , 50 Hz and 500 h unloaded 40 °C, RH = 90 % to 95%	External appearance: no visible damage $\Delta C/C \le \pm 15~\%$ DF $\le 5~\%$ IR $\ge 3000~M\Omega$ Dielectric strength: no failure
Pull test: 0.5 kg tensile weight in radial direction for 10 s \pm 1 s Bending strength: capacitor body rotated by 90° in both directions	No damage to capacitor body and lead wire
Immersion of lead wires into 260 °C \pm 5 °C solder for 10 s \pm 2 s; min. distance from body: 1.5 mm Hand soldering at 400 °C \pm 10 °C for 3 s to 4 s; min. distance from body: 1.5 mm	External appearance: no visible damage $\Delta C/C \le \pm 10 \%$ Dielectric strength: no failure
Solder the capacitor onto test jig (glass epoxy body) and use resin (adhesive) to stick the body to the test jig. The capacitor must be soldered firmly to the supporting lead wire. Vibration change from 10 Hz to 2000 Hz and back to 10 Hz; Total amplitude: 1.5 mm; Acceleration: 100 m/s²;	External appearance: no visible damage Capacitance within specified tolerance DF \leq 2.5 % IR \geq 10 000 $G\Omega$
	Optical inspection, dimensions measured with caliper $25^{\circ}\text{C} \pm 3^{\circ}\text{C}$, relative humidity (RH) $\leq 75\%$, 1.0 V _{RMS} ± 0.2 V _{RMS} at 1 kHz Measured within 60 s ± 5 s after charging at 500 V _{DC} 4000V_{AC} at 50 Hz/60 Hz for 1 min, 50 mA max. RH $\leq 75\%$, 1.0 V _{RMS} ± 0.2 V _{RMS} at 1 kHz Pulse voltage: 10 kV Pulses per polarity: 10 Polarity: \pm (both) Time between pulses of same polarity: 20 s Time between pulses of different polarity: 30 s 1000h at 125 °C $\pm 2^{\circ}\text{C}$, 850 V _{AC} / 50 Hz; once every hour 1000 V _{AC} for 0.1 s 1000h + 48 h / - 0 h at 85 % relative humidity, 85 °C $\pm 3^{\circ}\text{C}$, loading voltage: 760 V _{AC} 1000h at 500 V _{AC} , 50 Hz and 500 h unloaded 1000k h at 500 V _{AC} , 50 Hz and 500 h unloaded 1000k h at 500 V _{AC} , 50 Hz and 500 h unloaded 1000k h at 500 V _{AC} , 50 Hz and 500 h unloaded 1000k h at 500 V _{AC} , 50 Hz and 500 h unloaded 1000k h at 500 V _{AC} , 50 Hz and 500 h unloaded 1000k h at 500 V _{AC} , 50 Hz and 500 h unloaded 1000k h at 500 V _{AC} , 50 Hz and 500 h unloaded 1000k h at 500 V _{AC} , 50 Hz and 500 h unloaded 1000k h at 500 V _{AC} , 50 Hz and 500 h unloaded 1000k h at 500 V _{AC} , 50 Hz and 500 h unloaded 1000k h at 500 V _{AC} , 50 Hz and 500 h unloaded 1000k h at 500 V _{AC} , 50 Hz and 500 h unloaded 1000k h at 500 V _{AC} , 50 Hz and 500 h unloaded 1000k h at 500 V _{AC} , 50 Hz and 500 h unloaded 1000k h at 500 V _{AC} , 50 Hz and 500 h unloaded 1000k h at 500 V _{AC} , 50 Hz and 500 h unloaded 1000k h at 500 V _{AC} , 50 Hz and 500 h unloaded 1000k h at 500 V _{AC} , 50 Hz and 500 h unloaded 1000k h at 500 V _{AC} , 50 Hz and 500 h unloaded 10000k h at 500 V _{AC} , 50 Hz and 500 h unloaded 10000k h at 500 V _{AC} , 50 Hz and 500 h unloaded 10000k h at 500 V _{AC} , 50 Hz and 500 h unloaded $1000000000000000000000000000000000000$

LEAKAGE CURRENT VS. VOLTAGE (Typical)

IMPEDANCE VS. FREQUENCY (Typical)

Note

The capacitors meet the essential requirements of "EIA 198". Unless stated otherwise all electrical values apply at an ambient temperature
of 25 °C ± 3 °C, at normal atmospheric conditions.

RELATED DOCUMENTS			
General Information	www.vishay.com/doc?28536		
CB Test Certificate	www.vishay.com/doc?22249		
VDE Marks Approval	www.vishay.com/doc?22251		
UL Test Certificate	www.vishay.com/doc?22250		
CQC Test Certificate	www.vishay.com/doc?22248		

SAMPLE KIT	
Part Number	VY11-KIT-CS
Link	www.vishay.com/doc?28556

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Revision: 13-Jun-16 1 Document Number: 91000