

Key Features & Benefits

- Best-in-class, 80 PLUS certified "Platinum" efficiency (certification pending)
- Auto-selected input voltage ranges: 90-140 VAC, 180-264 VAC
- AC input with power factor correction
- 2000 W continuous and 2100W peak output power capability
- Always-On 12V/5A standby output
- Hot-plug capable
- · Parallel operation with active current sharing
- Full digital controls for improved performance
- High density design: 42.1 W/in³
- Small form factor: 73.5 x 40.0 x 265 mm
- PMBus communication interface for control, programming and monitoring
- Status LED with fault signaling

PET2000-12-074NA

The PET2000-12-074NA is a 2000 Watt AC to DC, power-factor-corrected (PFC) power supply that converts standard AC power into a main output of +12 VDC for powering intermediate bus architectures (IBA) in high performance and reliability servers, routers, and network switches.

The PET2000-12-074NA utilizes full digital control architecture for greater efficiency, control, and functionality.

This power supply meets international safety standards and displays the CE-Mark for the European Low Voltage Directive (LVD).

North America +1-866.513.2839

Asia-Pacific +86.755.29885888

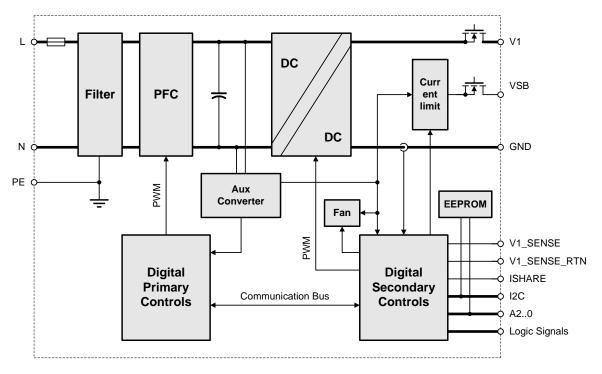
Europe, Middle East +353 61 225 977

1 ORDERING INFORMATION

PET	2000	-	12	-	074	N	Α	
Product Family	Power Level	Dash	V1 Output	Dash	Width	Airflow	Input	AC Inlet ¹
								Blank: C14
PET Front-Ends	2000 W		12 V		74 mm	N: Normal	A: AC	C: C16
								A: Saf-D-Grid®

2 OVERVIEW

The PET2000-12-074NA AC/DC power supply is a fully DSP controlled, highly efficient front-end power supply. It incorporates resonance-soft-switching technology to reduce component stresses, providing increased system reliability and very high efficiency. With a wide input operational voltage range the PET2000-12-074NA maximizes power availability in demanding server, network, and other high availability applications. The supply is fan cooled and ideally suited for integration with a matching airflow path.


The PFC stage is digitally controlled using a state-of-the-art digital signal processing algorithm to guarantee best efficiency and unity power factor over a wide operating range.

The DC/DC stage uses soft switching resonant techniques in conjunction with synchronous rectification. An active OR-ing device on the output ensures no reverse load current and renders the supply ideally suited for operation in redundant power systems.

The always-on standby output provides power to external power distribution and management controllers. It is protected with an active OR-ing device for maximum reliability.

Status information is provided with a front-panel LED. In addition, the power supply can be controlled and the fan speed set via the I2C bus. The I2C bus allows full monitoring of the supply, including input and output voltage, current, power, and inside temperatures.

Cooling is managed by a fan controlled by the DSP controller. The fan speed is adjusted automatically depending on the actual power demand and supply temperature and can be overridden through the I²C bus.

¹ C14 = IEC 60320-C14 type, C16 = IEC 60320-C16 type, Saf-D-Grid® = Anderson Saf-D-Grid®

866.513.2839 tech.support@psbel.com

3 ABSOLUTE MAXIMUM RATINGS

Stresses in excess of the absolute maximum ratings may cause performance degradation, adversely affect long-term reliability, and cause permanent damage to the supply.

PARAMETER	DESCRIPTION / CONDITION	MIN	NOM	MAX	UNIT
Vi maxc Maximum Input Volta	ge Continuous			264	VAC

4 INPUT

General Condition: $T_A = 0...55$ °C unless otherwise noted.

PARAMET	TER	DESCRIPTION / CONDITION	MIN	NOM	MAX	UNIT
	N : 11	Rated Voltage High Line (Vinom HL)	200	230	240	VAC
V_{inom}	Nominal Input Voltage	Rated Voltage Low Line (Vinom LL)	100	115	127	VAC
1,		Normal operating ($V_{i min HL}$ to $V_{i max HL}$), High Line	180		264	VAC
V_i	Input Voltage Ranges	Normal operating ($V_{i min LL}$ to $V_{i max LL}$), Low Line	90		140	VAC
		<i>V</i> =100VAC, <i>I</i> ₁ =83A, <i>I</i> _{SB} =5A			13	
		<i>V</i> =200VAC, <i>I</i> ₁=167A, <i>I</i> ₂₽=5A			12	
I _{i max}	I _{i max} Maximum Input Current	<i>V</i> =200VAC, <i>I</i> ₁=145A, <i>I</i> _{SB} =5A			10	A _{RMS}
		<i>V</i> =220VAC, <i>I</i> ₁=158A, <i>I</i> _{SB} =5A			10	
		<i>V</i> =230VAC, <i>I</i> ₁=167A, <i>I</i> ₂₽=5A			10	
l _{i inrush}	Inrush Current Limitation	$V_{i min}$ to $V_{i max}$, T_{NTC} =25°C, 5ms			10	A_p
f_i	Input Frequency		47	50/60	63	Hz
	Power Factor	<i>V</i> =230VAC, 10% load	8.0	0.88		W/VA
PF		<i>V</i> =230VAC, 20% load	0.9	0.95		W/VA
PF	FOWER FACION	<i>V</i> =230VAC, 50% load	0.9	0.997		W/VA
		<i>V</i> =230VAC, 100% load	0.95	0.999		W/VA
THD	Total Harmonic Distortion	TBD			TBD	%
V_{ion}	Turn-on Input Voltage ²	Ramping up	87		90	VAC
V_{ioff}	Turn-off Input Voltage ²	Ramping down	82		87	VAC
		<i>V</i> =230VAC, 10% load	90	91.6		%
,	Efficiency ³	<i>V</i> =230VAC, 20% load	91	93.8		%
η	Liliciency	<i>V</i> =230VAC, 50% load	94	94.4		%
		<i>V</i> =230VAC, 100% load	91	92.8		%
T	Hold-up Time V1	<i>V</i> =230VAC, 50% load, 0°	20			ms
T _{V1} holdup	Hold-up fillie Vi	<i>V</i> =230VAC, 100% load, 0°	10			ms
T _{VSB} holdup	Hold-up Time V _{SB}	<i>V</i> =90 to 264VAC, 0 to 100% load	70			ms

³ Efficiency measured without fan power per EPA server guidelines

² The Front-End is provided with a minimum hysteresis of 3V during turn-on and turn-off within the ranges

4.1 Input connector

The PET2000-12-074NA power supply is available in 3 different input connector configurations. The versions with IEC 60320-C14 and IEC 60320-C16 have a limited current of 10A for areas outside North America, in addition the IEC 60320-C14 has a limited component temperature of 70°C. The Anderson Saf-D-Grid® has no limitation with respect to both current and temperature.

Below table shows the maximum rated operating conditions for the different input connector options. The applied operating condition must remain within these conditions to allow safety compliant operation.

See also to chapter 10.3 Maximum output power versus inlet temperature for Safety Compliancy for detailed derating curves.

Туре	Input connector	Region	Applied Rated Mains AC Voltage ⁴	Max /₁ at <i>T</i> ₄=55°C	Maximum derated I_1 at maximum T_A
		North	100 to 127VAC	83A	50A at <i>T</i> ₄ =70°C
		America	200 to 240VAC	167A	80A at <i>T</i> ₄ =70°C
PET2000-12-074NA	IEC 60320-C14		100 to 127VAC	67A	17.5A at <i>T</i> _A =65°C
	IEG 00320-G14	Other than North	200 to 220VAC	145A	32.5A at <i>T</i> _A =65°C
		America	220 to 230VAC	158A	40A at <i>T</i> _A =65°C
			230 to 240VAC	167A	43A at <i>T</i> _A =65°C
		North America	100 to 127VAC	83A	50A at <i>T</i> _A =70°C
			200 to 240VAC	167A	80A at <i>T</i> _A =70°C
PET2000-12-074NAC	IEC 60320-C16		100 to 127VAC	67A	40A at <i>T</i> _A =70°C
PE12000-12-074NAC	IEC 00320-C10	Other than North	200 to 220VAC	145A	87A at <i>T</i> _A =70°C
		America	220 to 230VAC	158A	95A at <i>T</i> _A =70°C
			230 to 240VAC	167A	100A at <i>T</i> _A =70°C
PET2000-12-074NAA	Anderson Saf-D-Grid®	All	100 to 127VAC	83A	50A at <i>T</i> _A =70°C
FE12000-12-0/4NAA	Anderson Sal-D-Gride	All	200 to 240VAC	167A	100A at <i>T</i> _A =70°C

4.2 Input Fuse

Time-lag 16A input fuse (5 x 20 mm) in series with the L-line inside the power supply protects against severe defects. The fuse is not accessible from the outside and is therefore not a serviceable part.

4.3 Inrush Current

The AC-DC power supply exhibits an X-capacitance of only $5.2\mu F$, resulting in a low and short peak current, when the supply is connected to the mains. The internal bulk capacitor will be charged through an NTC which will limit the inrush current.

NOTE: Do not repeat plug-in / out operations within a short time, or else the internal in-rush current limiting device (NTC) may not sufficiently cool down and excessive inrush current or component failure(s) may result.

4.4 Input Under-Voltage

If the sinusoidal input voltage stays below the input undervoltage lockout threshold Vi on, the supply will be inhibited. Once the input voltage returns within the normal operating range, the supply will return to normal operation again.

 $^{^4}$ Nominal grid voltage, does not include typical fluctuations of $\pm 10\%$; e.g. listed range 230-240VAC allows operation at 230VAC -10% to 240VAC +10%, so 207 ... 264VAC actual voltage to account for grid fluctuations

belpowersolutions.com

4.5 Power Factor Correction

Power factor correction (PFC) is achieved by controlling the input current waveform synchronously with the input voltage. A fully digital controller is implemented giving outstanding PFC results over a wide input voltage and load ranges. The input current will follow the shape of the input voltage. If for instance the input voltage has a trapezoidal waveform, then the current will also show a trapezoidal waveform.

4.6 Efficiency

High efficiency (see *Figure 1*) is achieved by using state-of-the-art silicon power devices in conjunction with soft-transition topologies minimizing switching losses and a full digital control scheme. Synchronous rectifiers on the output reduce the losses in the high current output path. The speed of the fan is digitally controlled to keep all components at an optimal operating temperature regardless of the ambient temperature and load conditions.

Figure 1 - Efficiency vs. Load current, $V_i = 230VAC$ (ratio metric loading)

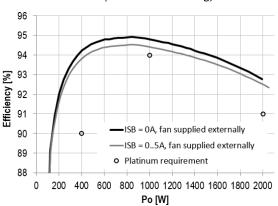
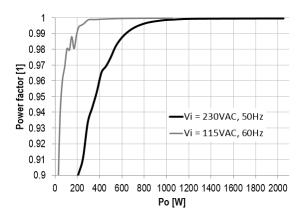
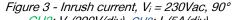
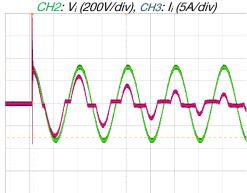
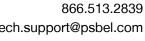





Figure 2- Power factor vs. Load current



OUTPUT

Main output V_1 5.1

General Condition: $T_A = 0...55$ °C, $V_i = 230$ VAC unless otherwise noted.

PARAME	TER	DESCRIPTION / CONDITION	MIN	NOM	MAX	UNIT
V _{1 nom}	Nominal Output Voltage	0.5 / 7 0500		12.0		VDC
V _{1 set}	Output Setpoint Accuracy	$0.5 \cdot I_{1 nom}, T_A = 25^{\circ} C$	-0.5		+0.5	% V _{1 nom}
dV _{1 tot}	Total Static Regulation	Vi min LL to Vi max HL, 0 to 100% In nom	-1		+1	% V _{1 nom}
$P_{1 nom}$	Nominal Output Power ⁵	V _{i min HL} to V _{i max HL}		2000		W
I 1 nom	Nonlina Output i owei	V _{i min LL} to V _{i max LL}		1000		W
P _{1 peak}	Peak Output Power ⁶	V _{i min HL} to V _{i max HL}		2100		W
т греак	r can Output i owei	$V_{i min LL}$ to $V_{i max LL}$		1320		W
I _{1 nom}	Output Current	Vi min HL to Vi max HL	0		167	ADC
I _{1 nom red}	Output Ourient	Vi min LL to Vi max LL	0		83	ADC
I _{1 peak}	Peak Output Current ⁶	Vi min HL to Vi max HL	0		175	ADC
I _{1 peak red}	r can Output Ourrent	Vi min LL to Vi max LL	0		110	ADC
		$V_{i min LL}$ to $V_{i max HL}$, 0 to 75% $I_{1 nom}$, $C_{ext} = 0$ mF			120	mVpp
V_{1pp}	Output Ripple Voltage ⁷	$V_{i min LL}$ to $V_{i max HL}$, 75 to 100% $I_{1 nom}$, $C_{ext} = 0$ mF			150	mVpp
		$V_{l min LL}$ to $V_{l max HL}$, 0 to 100% $I_{1 nom}$, $C_{ext} \ge 1 mF/Low$ ESR			120	mVpp
dV _{1 load}	Load Regulation	0 to 100% I _{1 nom}	-83	-110	-138	mV
dV₁ line	Line Regulation	V_{iminHL} to $V_{imaxHL},~0.5\cdot I_{1nom}$	-24	0	24	mV
dV₁ temp	Thermal Drift	$0.5 \cdot I_{1 \text{ nom}}, T_A = 0 \dots 55^{\circ}\text{C}$		-0.4		mV/°C
dI _{1 share}	Current Sharing	Difference between individual I_t , 0 8 power supplies in parallel	-8		+8	ADC
VISHARE	Current Share Bus Voltage	I _{1 peak}		9.14		VDC
$dV_{1/t}$	Load Transient Response	$\Delta h = 50\% \ I_{1 \ nom}, \ I_{1} = 5 \dots 100\% \ I_{1 \ nom}, \ C_{ext} = 0 \text{mF},$		0.35	0.6	VDC
		$\Delta h = 10\% I_{1 nom}, I_{1} = 0 \dots 10\% I_{1 nom}, C_{ext} = 0 \text{mF},$		0.35	0.6	VDC
<i>t</i> _{rec}	Recovery Time	$dh/dt = 1A/\mu s$, recovery within 1% of $V_{1 nom}$		0.5	1	ms
V _{1 dyn}	Dynamic Load Regulation	$\Delta I_1 = 60\% I_{1 \text{ nom}}, I_1 = 1 \dots 167 \text{A}, f = 50 \dots 5000 \text{Hz},$ Duty cycle = 10 \dots 90\%, $C_{ext} = 2 \dots 30 \text{mF}$	11.4		12.6	V
t _{V1 rise}	Output Voltage Rise Time	$V_1 = 1090\% \ V_{1 \ nom}, \ C_{ext} < 10 mF$	6	8	10	ms
t _{V1 ovr sh}	Output Turn-on Overshoot	0 to 100% I _{1 nom}			0.6	V
dV₁ sense	Remote Sense	Compensation for cable drop, 0 to 100% $I_{1 nom}$			0.25	V
Cv1 load	Capacitive Loading		0		30	mF

⁵ See also chapter TEMPERATURE AND FAN CONTROL

⁶ Peak combined power for all outputs must not exceed 2100 W; maximum of peak power duration is 20 seconds without asserting the SMBAlert signal ⁷ Measured with a 10uF low ESR capacitor in parallel with a 0.1uF ceramic capacitor at the point of measurement

5.2 Standby output V_{SB}

General Condition: $T_A = 0...55$ °C, $V_i = 230$ VAC unless otherwise noted.

PARAME	TER	DESCRIPTION / CONDITION	MIN	NOM	MAX	UNIT
V _{SB nom}	Nominal Output Voltage	$I_{SB} = OA$. $T_A = 25$ °C		12.1		VDC
$V_{SB set}$	Output Setpoint Accuracy	158 – UA, 1A – 23 O	-1		+1	$%V_{\textit{SBnom}}$
dV _{SB tot}	Total Regulation	$V_{i min LL}$ to $V_{i max HL}$, 0 to 100% $I_{SB nom}$	-5		+1	$%V_{\textit{SBnom}}$
P _{SB nom}	Nominal Output Power	$V_{i min LL}$ to $V_{i max HL}$		60		W
P _{SB peak}	Peak Output Power ⁸	$V_{i min LL}$ to $V_{i max HL}$		60		W
I _{SB nom}	Output Current	$V_{i min LL}$ to $V_{i max HL}$	0		5	ADC
I _{SB peak}	Peak Output Current ⁸	$V_{i min LL}$ to $V_{i max HL}$	0		5	ADC
	0 · · · Di · · · · · · · · · · · · · · ·	$V_{i min LL}$ to $V_{i max HL}$, 0 to 100% $I_{SB nom}$, $C_{ext} = 0$ mF			120	mVpp
V _{SB pp}	Output Ripple Voltage ⁷	$V_{i \min LL}$ to $V_{i \max HL}$, 0 to 100% $I_{SB nom}$, $C_{ext} \ge 1 \text{mF/Low}$ ESR			120	mVpp
dV _{SB load}	Load Regulation	0 to 100% I _{SB nom}	-290	-430	-570	mV
dV _{SB line}	Line Regulation	$V_{i min HL}$ to $V_{i max HL}$, $I_{SB nom} = 0A$	-24	0	24	mV
dVsB temp	Thermal Drift	$I_{SB} = OA$		-0.5		mV/°C
dl _{SB share}	Current Sharing	Deviation from $I_{SB tot} / N$, $I_{SB} = 0.5 \cdot I_{SB nom}$	-1		+1	ADC
dV _{SB It}	Load Transient Response	$\Delta I_{SB} = 50\% I_{SB nom}, I_{SB} = 0 \dots 100\% I_{SB nom},$		0.2	0.3	VDC
t _{rec}	Recovery Time	$dI_{SB}/dt = 1A/\mu s$, recovery within 1% of $V_{SB nom}$		1	2	ms
$V_{SB\ dyn}$	Dynamic Load Regulation	$\Delta I_{SB} = 1A$, $I_{SB} = 0$ $I_{SB nom}$, $f = 50$ 5000 Hz, Duty cycle = 10 90% , $C_{ext} = 0$ 5 mF	11.4		12.6	V
t _{VSB rise}	Output Voltage Rise Time	$V_{SB} = 1090\% \ V_{SB \ nom}, \ C_{ext} < 1 \text{mF}$	1	2	5	ms
tvsB ovr sh	Output Turn-on Overshoot	0 to 100% I _{SB nom}			0.6	V
$C_{\it VSB\ load}$	Capacitive Loading		0		3100	μF

Figure 4 - Turn-On AC Line 230VAC, full load (200ms/div) CH1: Vin (400V/div) CH2: PWOK_H (5V/div) CH3: V_1 (2V/div) CH4: V_{SB} (2V/div)

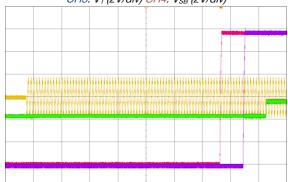
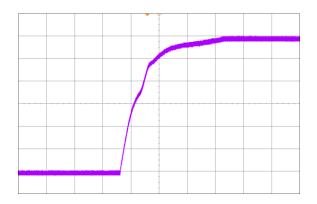



Figure 5 – Rise time V₁ at 230VAC, full load (2ms/div) CH3: V₁ (2V/div)

⁸ In single power supply configuration

Figure 6 – Rise time V_{SB} at 230VAC, full load (2ms/div) CH4: V_{SB} (2V/div)

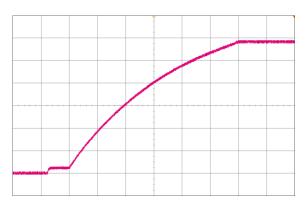


Figure 8 - Turn-Off AC Line 230VAC, half load (20ms/div)

CH1: Vin (400V/div) CH2: PWOK_H (5V/div)

CH3: V1 (2V/div) CH4: V5B (2V/div)

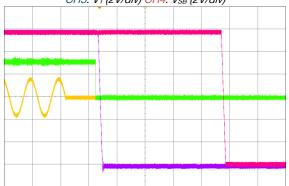


Figure 10 - Load transient V₁, 83 to 167A (500µs/div) CH3: V₁ (200mV/div) CH4: I₁ (50A/div)

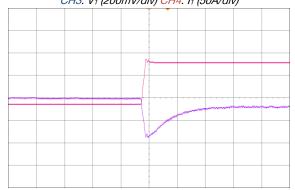


Figure 7 - Turn-Off AC Line 230VAC, full load (20ms/div)

CH1: Vin (400V/div) CH2: PWOK_H (5V/div)

CH3: V1 (2V/div) CH4: VSB (2V/div)

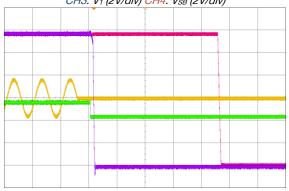


Figure 9 - Short circuit on V1 (10ms/div) CH3: V₁ (2V/div) CH4: I₁ (100A/div)

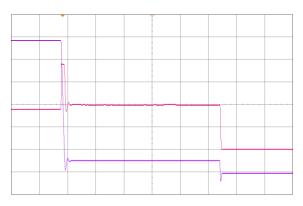


Figure 11 - Load transient V₁, 167 to 83A (500μs/div) CH3: V₁ (200mV/div) CH4: I₁ (50A/div)

5.3 Output Ground / Chassis Connection

The output return path serves as power and signal ground. All output voltages and signals are referenced to these pins. To prevent a shift in signal and voltage levels due to ground wiring voltage drop a low impedance ground plane should be used as shown in *Figure 12*. Alternatively separated ground signals can be used as shown in

Figure 13. In this case the two ground planes should be connected together at the power supplies ground pins.

NOTE: Within the power supply the output GND pins are connected to the Chassis, which in turn is connected to the Protective Earth terminal on the AC inlet. Therefore it is not possible to set the potential of the output return (GND) to any other than Protective Earth potential.

Figure 12 – Common low impedance ground plane

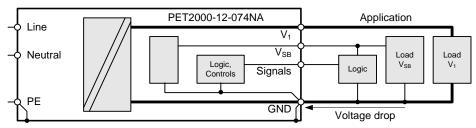
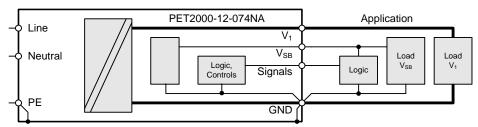



Figure 13 - Separated power and signal ground

6 PROTECTION

PARAME	TER	DESCRIPTION / CONDITION	MIN	NOM	MAX	UNIT
F	Input fuse (L)	Not use accessible, time-lag (T)		16		Α
V _{1 OV}	OV Threshold V ₁	Over Voltage V ₁ Protection, Latch-off Type	13.3	13.9	14.5	VDC
$t_{V1~OV}$	OV Trip Time V_1	Over voltage v ₇ Protection, Lateri-on Type			1	ms
$V_{SB\ OV}$	OV Threshold V_{SB}	Over Voltage V_I Protection, Automatic retry each 1s	13.3	13.9	14.5	VDC
t_{VSBOV}	OV Trip Time V_{SB}	Over voltage v7 Frotection, Automatic retry each 15			1	ms
In OC Slow	OC Limit V ₁	Over Current Limitation, Latch-off, $V_{i \min HL}$ to $V_{i \max HL}$	169		173	ADC
11 OC Slow	OO LIITIIL V7	Over Current Limitation, Latch-off, $V_{i min LL}$ to $V_{i max LL}$	85		88	ADC
t _{V1 OC} Slow	OC Trip time V_1	Over Current Limitation, Latch-off time	20			s
I _{1 OC Fast}	Fast OC Limit V ₁	Fast Over Current Limit., Latch-off, $V_{i min HL}$ to $V_{i max HL}$	175		180	ADC
11 OC Fast	rasi og Lillil vi	Fast Over Current Limit., Latch-off, $V_{i min LL}$ to $V_{i max LL}$	110		115	ADC
t _{V1 OC Fast}	Fast OC Trip time V_1	Fast Over Current Limitation, Latch-off time	50	55	60	ms
I _{1 SC}	Max Short Circuit Current V_1	<i>V</i> ₇ < 3V			180	Α
t _{V1} sc	Short Circuit Regulation Time	$V_7 < 3V$, time until I_7 is limited to $< I_{1sc}$			2	ms
I _{SB OC}	OC Limit V _{SB}	Over Current Limitation, Constant-Current Type	5.2		7.5	Α
t _{VSB OC}	OC Trip time V _{SB}	Over Current Limit., time until I_{SB} is limited to $I_{SB\ OC}$			1	ms
T_{SD}	Over Temperature	See chapter 10.2				°C

6.1 Overvoltage Protection

The PET2000-12-074NA front-end provides a fixed threshold overvoltage (OV) protection implemented with a HW comparator for both the main and the standby output. Once an OV condition has been triggered on the main output, the supply will shut down and latch the fault condition. The latch can be unlocked by disconnecting the supply from the AC mains or by toggling the PSON_L input. The standby output will continuously try to restart with a 1 s interval after OV condition has occurred.

6.2 Undervoltage Detection

Both main and standby outputs are monitored. LED and PWOK_H pin signal if the output voltage exceeds ±5% of its nominal voltage.

The main output will latch off if the main output voltage V_1 falls below 10V (typically in an overload condition) for more than 55 ms. The latch can be unlocked by disconnecting the supply from the AC mains or by toggling the PSON_L input.

If the standby output leaves its regulation bandwidth for more than 2ms then the main output is disabled to protect the system.

6.3 Current Limitation

MAIN OUTPUT

The main output exhibits a substantially rectangular output characteristic controlled by a software feedback loop. If output current exceeds $I_{1\ OC\ Fast}$ it will reduce the output voltage in order to keep output current at $I_{1\ OC\ Fast}$. If the output voltage drops below ~10.0 VDC for more than 55 ms, the output will latch off (standby remains on), see also *Undervoltage Detection*.

Figure 14 - Current Limitation on V_1 at $V_i = 90 \dots 140VAC$

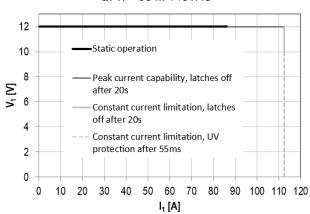
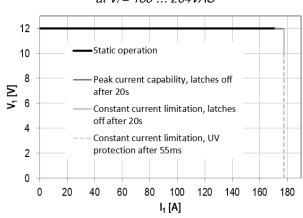



Figure 15 - Current Limitation on V₁ at V_i = 180 ... 264VAC

A second SW controlled current limit will latch off the main output if the power supply is operated for long duration in its peak current capability region. This protection trips as soon as the output current exceeds $I_{1\ OC\ Slow}$ for a duration of more than 20 seconds.

The third current limitation implemented as a fast hardware circuit will immediately switch off the main output if the output current increases beyond the peak current trip point, occurring mainly if a short circuit is applied to the output voltage. The supply will re-start 4 ms later with a soft start, if the short circuit persists ($V_7 < 10.0V$ for >55 ms) the output will latch off; otherwise it continuous to operate.

The latch can be unlocked by disconnecting the supply from the AC mains or by toggling the PSON_L input.

The main output current limitation thresholds for $I_{1 OC Slow}$ and $I_{1 OC Fast}$ depend on the actual input voltage range applied to the power supply. In addition the threshold for $I_{1 OC Slow}$ is reduced when ambient temperature exceeds 55°C, see *Figure 41*.

STANDBY OUTPUT

The standby output exhibits a substantially rectangular output characteristic down to 0V (no hiccup mode / latch off). The current limitation of the standby output is independent of the AC input voltage.

Running in current limitation causes the output voltage to fall, this will trigger under voltage protection and disables the main output, see also *Undervoltage Detection*.

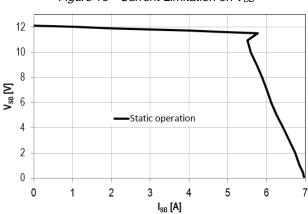


Figure 16 - Current Limitation on V_{SB}

7 MONITORING

The power supply operating parameters can be accessed through I2C interface. For more details refer to chapter I2C / PMBus COMMUNICATION and document URP.00234 (PET2000-12-074NA PMBus Communication Manual).

PARAMET	ER	DESCRIPTION / CONDITION	MIN	NOM N	MAX	UNIT
V _{i mon}	Input RMS Voltage	$V_{i min LL} \leq V_i \leq V_{i max HL}$	-3		+3	VAC
l i mon	Input RMS Current	/ _i > 6.7Arms	-4		+4	%
Ii mon	input nivio current	<i>l</i> _i ≤ 6.7Arms	-0.3	+	+0.3	Arms
$P_{i mon}$	True Input Power	$P_i > 500W$	-4		+4	%
r i mon	True input Fower	$50W < P_i \le 500W$	-20	-	+20	W
V _{1 mon}	V1 Voltage		-0.1	+	+0.1	VDC
I _{1 mon}	V1 Current	$I_{f} > 50A$	-1		+1	%
11 mon	VI Guilent	5A < I₁ ≤ 50A	-0.5	+	+0.5	ADC
P _{1 nom}	V1 Output Power	$P_i > 1000W$	-1		+1	%
F1 nom	v i Output Fower	$50W < P_i \le 1000W$	-10	-	+10	W
V _{SB mon}	VSB Voltage		-0.1	+	+0.1	VDC
I _{SB mon}	VSB Current	$0.5A < I_{f}$	-0.1	+	+0.1	ADC
T _{A mon}	Inlet Temperature	$T_{A min} \leq T_{A} \leq T_{A max}$	-2		+2	°C

8 SIGNALLING AND CONTROL

8.1 Electrical Characteristics

PARAME	TER	DESCRIPTION / CONDITION	MIN	NOM	MAX	UNIT
PSON_H / HOTSTANDBYEN_H						
V _{IL}	Input Low Level Voltage	PSON_L: Main output enabled HOTSTANDBYEN_H: Hot Standby mode not allowed	-0.2		0.8	V
V _{IH}	Input High Level Voltage	PSON_L: Main output disabled HOTSTANDBYEN_H: Hot Standby mode allowed	2		3.5	V
I _{IL,H}	Maximum Input Sink or Source Current	$V_i = -0.2 \text{V to } +3.5 \text{V}$	-1		1	mA
R _{pull up}	Internal Pull up Resistor to internal 3.3V			10		kΩ
RLOW	Maximum external Pull down Resistance to GND to obtain Low Level				1	kΩ
Rhigh	Minimum external Pull down Resistance to GND to obtain High Level		50			kΩ
	· ·	PWOK_H				
V_{OL}	Output Low Level Voltage	V_7 or V_{SB} out of regulation, $V_{Isink} < 4mA$	0		0.4	V
Vон	Output High Level Voltage	V_1 and V_{SB} in regulation, $I_{source} < 0.5 \text{mA}$	2.4		3.5	V
Rpull up	Internal Pull up Resistor to internal 3.3V			1		kΩ
I OL	Maximum Sink Current	<i>V</i> _O < 0.4V			4	mA

8.2 Sense Inputs

The main output has sense lines implemented to compensate for voltage drop on load wires in both positive and negative path. The maximum allowed voltage drop is 200 mV on the positive rail and 50 mV on the GND rail.

With open sense inputs the main output voltage will rise by 270 mV. Therefore if not used, these inputs should be connected to the power output and GND at the power supply connector. The sense inputs are protected against short circuit. In this case the power supply will shut down.

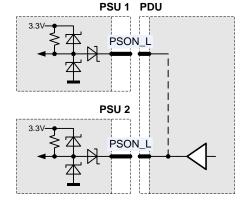
8.3 Current Share

The PET front-ends have an active current share scheme implemented for V_{7} . All the ISHARE current share pins need to be interconnected in order to activate the sharing function. If a supply has an internal fault or is not turned on, it will disconnect its ISHARE pin from the share bus. This will prevent dragging the output down (or up) in such cases.

The current share function uses an analog bus to transmit and receive current share information. The controller implements a Master/Slave current share function. The power supply providing the largest current among the group is automatically the Master. The other supplies will operate as Slaves and increase their output current to a value close to the Master by slightly increasing their output voltage. The voltage increase is limited to +250 mV.

Within the application the ISHARE pins of the PSU's simply needs to be interconnected without any additional components or circuits.

The standby output uses a passive current share method (droop output voltage characteristic).

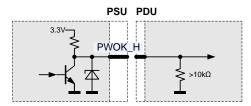

8.4 PSON_L Input

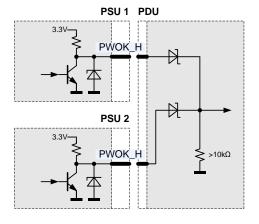
The PSON_L is an internally pulled-up (3.3 V) input signal to enable/disable the main output V_7 of the front-end. With low level input the main output is enabled. This active-low pin is also used to clear any latched fault condition. The PSON_L can be either controlled by an open collector device or by a voltage source.

PSU 1 PDU

3.3V
PSON_L
PSON_L

Figure 17 – PSON_L connection


8.5 PWOK_H Output


The PWOK_H is an open drain output with an internal pull-up to 3.3 V indicating whether both V_{SB} and V_{I} outputs are within regulation. This pin is active-high.

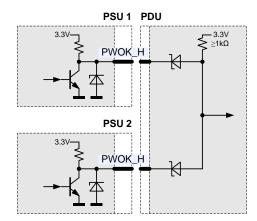

An external pull down resistor ensures low level when there is no power supply seated. When combining PWOK_H outputs of several power supplies, circuits as shown in *Figure 18* should be used.

Figure 18 - PWOK_H connection

8.6 HOT-STANDBY IN-/Output

The hot-standby operation is an operating mode allowing to further increase efficiency at light load conditions in a redundant power supply system. Under specific conditions one of the power supplies is allowed to disable its DC/DC stage. This will save the power losses associated with this power supply and at the same time the other power supply will operate in a load range having a better efficiency. In order to enable the hot standby operation, the HOTSTANDBYEN_H and the ISHARE pins need to be interconnected between the power supplies. A power supply will only be allowed to enter the hot-standby mode, when the HOTSTANDBYEN_H pin is high, the load current is low (see *Figure 19*) and the supply was allowed to enter the hot-standby mode by the system controller via the appropriate I²C command (by default disabled). The system controller needs to ensure that only one of the power supplies is allowed to enter the hot-standby mode.

If a power supply is in a fault condition, it will pull low its active-high HOTSTANDBYEN_H pin which indicates to the other power supply that it is not allowed to enter the hot-standby mode or that it needs to return to normal operation should it already have been in the hot-standby mode.

NOTE: The system controller needs to ensure that only one of the power supplies is allowed to enter the hot-standby mode. *Figure 20* shows the achievable power loss savings when using the hot-standby mode operation. A total power loss reduction of approx. 10W is achievable.

Figure 19 - Hot-standby enable/disable current thresholds

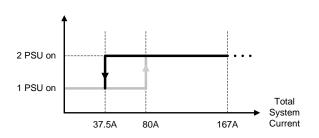
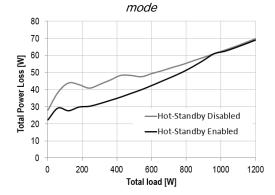
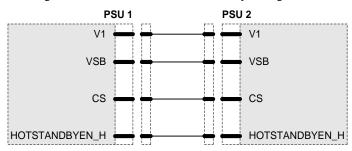
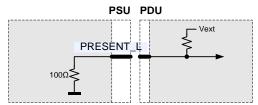


Figure 20 - PSU power losses with/without hot-standby


Figure 21 - Recommended hot-standby configuration

8.7 PRESENT_L Output

The PRESENT_L pin is wired through a 1000hms resistor to internal GND within the power supply. This pin does indicate that there is a power supply present in this system slot. An external pull-up resistor has to be added within the application. Current into PRESENT_L should not exceed 5mA to guarantee a low level voltage if power supply is seated.

Figure 22 - PRESENT_L connection

8.8 Signal Timing

Figure 23 - AC turn-on timing

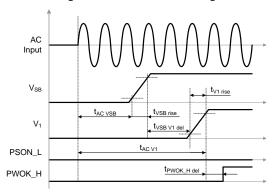


Figure 25 - AC long dips

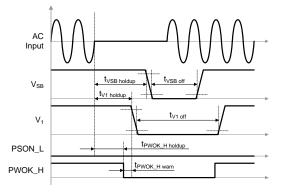


Figure 24 - AC short dips

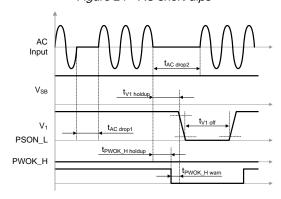
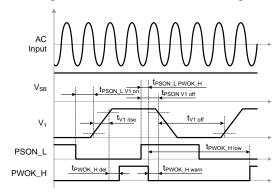



Figure 26 - PSON_L turn-on/off timing

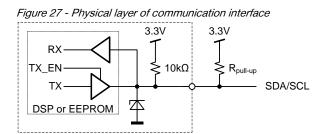
PARAMETER		DESCRIPTION / CONDITION	MIN	NOM	MAX	UNIT
t _{AC VSB}	AC Line to 90% V _{SB}				1.5	s
t _{AC V1}	AC Line to 90% V_1	PSON_L = Low			3 ⁹	s
t _{VSB V1 del}	V_{SB} to V_1 delay	PSON_L = Low	50	150	1000	ms
t _{V1 rise}	V_{t} rise time	See chapter OUTPUT				
t _{VSB rise}	V_{SB} rise time	See chapter OUTPUT				
		0.5 · I _{1 nom} , I _{SB nom}			17	ms
t _{AC drop1}	AC drop without V_7 leaving regulation	0.7 · I _{1 nom} , I _{SB nom}			13	ms
		I _{1 nom} , I _{SB nom}			5	ms
t _{AC drop2}	AC drop without V_{SB} leaving regulation	I _{1 nom} , I _{SB nom}			70	ms
t _{V1 holdup}	Loss of AC to V_1 leaving regulation	See chapter INPUT				
$t_{VSB\ holdup}$	Loss of AC to V_{SB} leaving regulation	See chapter INPUT				
t _{PWOK_H del}	Outputs in regulation to PWOK_H asserted		100	150	200	ms
tpwok_H warn	Warning time from de-assertion of PWOK_H to V_1 leaving regulation		1			ms
tpwok_H holdup	Loss of AC to PWOK_H de-asserted	Vi nom HL, I1 nom, ISB nom	10			ms
tpwok_H low	Time PWOK_H is kept low after being deasserted		100			ms
tpson_L v1 on	Delay PSON_L active to V_{7} in regulation	$C_{ext} = 0mF$	5	10	20	ms
t _{PSON_L V1 off}	Delay PSON_L de-asserted to V_7 disabled		2	3	4	ms
tpson_l pwok_h	Delay PSON_L de-asserted to PWOK_H de-asserted			1	2	ms
$t_{V1\ off}$	Time V_1 is kept off after leaving regulation			1		s

LED Indicator 8.9

The front-end has one front LED showing the status of the supply. The LED is bi-colored: green and amber, and indicates AC and DC power presence and warning or fault conditions. *Table 1* lists the different LED status.

Table 1 - LED Status

OPERATING CONDITION 10	LED SIGNALING
No AC or AC Line in UV condition, V_{SB} not present from paralleled power supplies	Off
PSON_L High Hot-Standby Mode	Blinking Green 1Hz
No AC or AC Line in UV condition, <i>VsB</i> present from paralleled power supplies	
V₁ or V _{SB} out of regulation	
Over temperature shutdown	Solid Amber
Output over voltage shutdown (V ₁ or V _{SB})	
Output over current shutdown (V_1 or V_{SB})	
Fan error (>15%)	
Over temperature warning	Diplopa Ambor 11 la
Minor fan regulation error (>5%, <15%)	Blinking Amber 1Hz
Firmware boot loading in process	Blinking Green 2Hz
Outputs V ₁ and V _{SB} in regulation	Solid Green

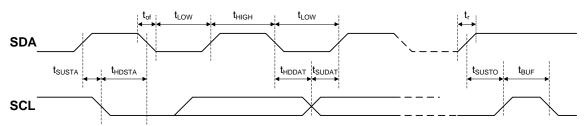

 $^{^{9}}$ At repeated ON-OFF cycles the start-up times may increase by 1s 10 The order of the criteria in the table corresponds to the testing precedence in the controller

9 I²C / PMBus COMMUNICATION

The PET front-end is a communication Slave device only; it never initiates messages on the I²C/SMBus by itself. The communication bus voltage and timing is defined in *Table 2* further characterized through:

- The SDA/SCL IOs use 3.3V logic levels
- External pull-up resistors on SDA/SCL required for correct signal edges
- Full SMBus clock speed of 100 kbps
- Clock stretching limited to 1 ms
- SCL low time-out of >25 ms with recovery within 10 ms
- Recognizes any time Start/Stop bus conditions

Communication to the DSP or the EEPROM will be possible as long as the input AC voltage is provided. If no AC is present, communication to the unit is possible as long as it is connected to a life V_{SB} output (provided e.g. by the redundant unit). If only V_T is provided, communication is not possible.


Table 2 - PC / SMBus Specification

PARAMETER	DESCRIPTION	CONDITION	MIN	MAX	UNIT
SCL / SDA					
V_{iL}	Input low voltage		-0.5	1.0	V
V_{iH}	Input high voltage		2.3	3.5	V
V_{hys}	Input hysteresis		0.15		V
$V_{ m oL}$	Output low voltage	3 mA sink current	0	0.4	V
t_{r}	Rise time for SDA and SCL		20+0.1C _b ¹	300	ns
$t_{ m of}$	Output fall time ViHmin → ViLmax	$10 \ pF < C_b{}^1 < 400 \ pF$	20+0.1C _b ¹	250	ns
<i>I</i> ,	Input current SCL/SDA	0.1~VDD < Vi < 0.9~VDD	-10	10	μΑ
G	Internal Capacitance for each SCL/SDA			50	pF
f scl	SCL clock frequency		0	100	kHz
$R_{ m pull-up}$	External pull-up resistor	f _{SCL} ≤ 100 kHz		$1000~ns/C_b{}^1$	Ω
<i>t</i> hdsta	Hold time (repeated) START	f _{SCL} ≤ 100 kHz	4.0		μS
t_{LOW}	Low period of the SCL clock	f _{SCL} ≤ 100 kHz	4.7		μS
<i>t</i> _{HIGH}	High period of the SCL clock	f _{SCL} ≤ 100 kHz	4.0		μs
<i>t</i> susta	Setup time for a repeated START	f _{SCL} ≤ 100 kHz	4.7		μS
<i>t</i> HDDAT	Data hold time	f _{SCL} ≤ 100 kHz	0	3.45	μS
<i>t</i> sudat	Data setup time	f _{SCL} ≤ 100 kHz	250		ns
<i>t</i> susto	Setup time for STOP condition	f _{SCL} ≤ 100 kHz	4.0		μS
<i>t</i> _{BUF}	Bus free time between STOP and START	f _{SCL} ≤ 100 kHz	5		ms

¹ Cb = Capacitance of bus line in pF, typically in the range of 10...400pF

Figure 28 - PC / SMBus Timing

ADDRESS SELECTION

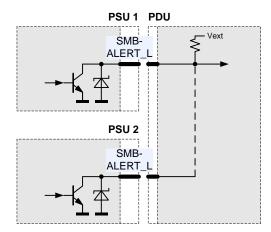
The address for I²C communication can be configured by pulling address input pins A2, A1 and A0 either to GND (Logic Low) or leave them open (Logic High). An internal pull up resistor will cause the A2 / A1 / A0 pin to be in High Level if left open. A fixed addressing offset exists between the Controller and the EEPROM.

I2C Address¹¹ **A2 A1 A0** Controller **EEPROM** 0 0 0 0xB0 0xA0 0 0 1 0xB2 0xA2 0 0 0xB4 0xA4 0 1 1 0xB6 0xA6 0 0 0xB8 0xA8 0 1 0xBA 0xAA 0 0xBC 1 0xAC 0xBE 0xAE

Table 3 - Address and protocol encoding

9.1 SMBALERT_L Output

The SMBALERT_L signal indicates that the power supply is experiencing a problem that the system agent should investigate. This is a logical OR of the Shutdown and Warning events. It is asserted (pulled Low) at Shutdown or Warning events such as reaching temperature warning/shutdown threshold of critical component, general failure, over-current, over-voltage, under-voltage or low-speed of failed fan. This signal may also indicate the power supply is operating in an environment exceeding the specified limits.


The SMBAlert signal is asserted simultaneously with the LED turning to solid amber or blinking amber.

PARAMETER		DESCRIPTION / CONDITION	MIN	NOM	MAX	UNIT
SMB_AL	ERT_L					
V _{ext}	Maximum External Pull up Voltage				12	V
I OH	Maximum High Level Leakage Current	No Failure or Warning condition, $V_O = 12V$			10	μΑ
VOL	Output Low Level Voltage	Failure or Warning condition, Isink < 4mA	0		0.4	V
Rpull up	Internal Pull up Resistor to internal 3.3V			None		
lol	Maximum Sink Current	<i>Vo</i> < 0.4V			4	mA

¹¹ The LSB of the address byte is the R/W bit

Figure 29 - SMBALERT_L connection

9.2 Controller and EEPROM Access

The controller and the EEPROM in the power supply share the same I²C bus physical layer (see *Figure 30*) and can be accessed under different addresses, see ADDRESS SELECTION.

The SDA/SCL lines are connected directly to the controller and EEPROM which are supplied by internal 3.3V.

The EEPROM provides 256 bytes of user memory. None of the bytes are used for the operation of the power supply.

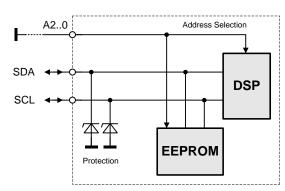


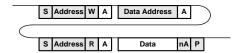
Figure 30 - PC Bus to DSP and EEPROM

9.3 EEPROM Protocol

The EEPROM follows the industry communication protocols used for this type of device. Even though page write / read commands are defined, it is recommended to use the single byte write / read commands.

WRITE

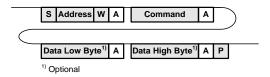
The write command follows the SMBus 1.1 Write Byte protocol. After the device address with the write bit cleared a first byte with the data address to write to is sent followed by the data byte and the STOP condition. A new START condition on the bus should only occur after 5ms of the last STOP condition to allow the EEPROM to write the data into its memory.



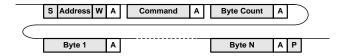
READ

The read command follows the SMBus 1.1 Read Byte protocol. After the device address with the write bit cleared the data address byte is sent followed by a repeated start, the device address and the read bit set. The EEPROM will respond with the data byte at the specified location.

9.4 PMBus™ Protocol

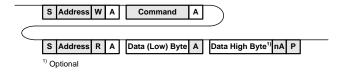

The Power Management Bus (PMBusTM) is an open standard protocol that defines means of communicating with power conversion and other devices. For more information, please see the System Management Interface Forum web site at: www.powerSIG.org.

PMBus[™] command codes are not register addresses. They describe a specific command to be executed. The PET2000-12-074NA supply supports the following basic command structures:

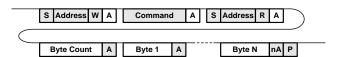

- Clock stretching limited to 1 ms
- SCL low time-out of >25 ms with recovery within 10 ms
- · Recognized any time Start/Stop bus conditions

WRITE

The write protocol is the SMBus 1.1 Write Byte/Word protocol. Note that the write protocol may end after the command byte or after the first data byte (Byte command) or then after sending 2 data bytes (Word command).



In addition, Block write commands are supported with a total maximum length of 255 bytes. See PET2000-12-074NA PMBus Communication Manual URP.00234 for further information.

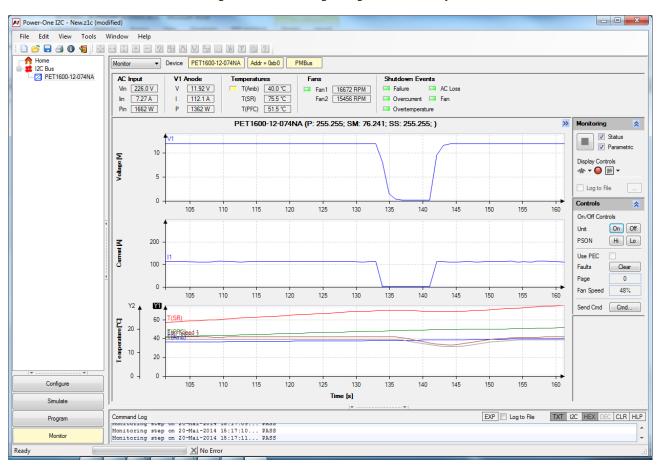


READ

The read protocol is the SMBus 1.1 Read Byte/Word protocol. Note that the read protocol may request a single byte or word.

In addition, Block read commands are supported with a total maximum length of 255 bytes. See PET2000-12-074NA PMBus Communication Manual URP.00234 for further information.

9.5 Graphical User Interface

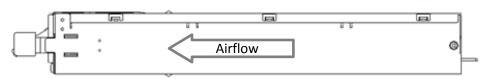

Bel Power Solutions provides with its "I²C Utility" a Windows® XP/Vista/Win7 compatible graphical user interface allowing the programming and monitoring of the PET2000-12-074NA Front-End. The utility can be downloaded on: www.belpowersolutions.com.

The GUI allows automatic discovery of the units connected to the communication bus and will show them in the navigation tree. In the monitoring view the power supply can be controlled and monitored.

If the GUI is used in conjunction with the YTM.00046 Evaluation Board it is also possible to control the PSON_L pin of the power supply.

Refer to BCG.00809 for YTM.00046 connection and GUI configuration.

Figure 31 - Monitoring dialog of the PC Utility



10 TEMPERATURE AND FAN CONTROL

10.1 Fan control

To achieve best cooling results sufficient airflow through the supply must be ensured. Do not block or obstruct the airflow at the rear of the supply by placing large objects directly at the output connector. The PET2000-12-074NA is provided with a rear to front airflow, which means the air enters through the DC-output of the supply and leaves at the AC-inlet as shown in *Figure 32*. The PET2000-12-074NA supply has been designed for horizontal operation.

Figure 32 - Airflow direction

The fan inside the supply is controlled by a microprocessor. The rpm of the fan is adjusted to ensure optimal supply cooling and is a function of output power. Three different curves are selected based on input voltage and inlet temperature. With standby output loaded the fan speed minimum is limited to ensure enough cooling of circuits providing standby power. *Figure 33* illustrates the programmed fan curves.

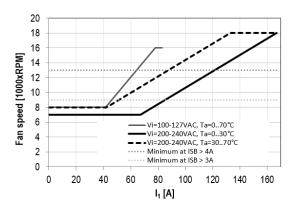


Figure 33 - Fan speed vs. main output load

10.2 Temperature monitor and over temperature protection

The PET2000-12-074NA provides access via I^2C to the measured temperatures of in total 6 sensors within the power supply, see *Table 4*. The microprocessor is monitoring these temperatures and if warning threshold of one of these sensors is reached it will set fan to maximum speed. If temperatures continue to rise above shut down threshold the main output V_I (or V_{SB} if auxiliary converter is affected) will be disabled. At the same time the warning or fault condition is signalized accordingly through LED, PWOK_H and SMBALERT_L.

TEMPERATURE SENSOR	DESCRIPTION / CONDITION	PMBUS REGISTER	WARNING THRESHOLD	SHUT DOWN THRESHOLD
Inlet air temperature	Sensor located on control board close to DC end of power supply	8Dh	73°C	78°C
Synchronous rectifier	Sensor located on secondary side of DC/DC stage	8Eh	95°C	100°C
Primary heat sink	Sensor located on primary heat sink	8Fh	87°C	92°C
Output oring element	Sensor located close to output	D2h	100°C	105°C
Auxiliary converter	Sensor located on secondary side on auxiliary rectifier	D3h	80°C	85°C
Bridge rectifier	Sensor located on heat sink for AC rectifier	D4h	86°C	91°C

Table 4 - Temperature sensor location and thresholds

10.3 Maximum output power versus inlet temperature for Safety Compliancy

For safety compliant operation the power supply must not exceed specified operating conditions specified herein. These operating conditions ensure the input AC connector is operated within its ratings.

Between 0°C and 55°C power supply inlet temperature the maximum allowed output power is only depending on AC input connector type chosen, regional usage and the applied nominal input AC voltage. Above 55°C the maximum output power is further reduced with rising temperature. *Figure 34* to *Figure 39* illustrate these maximum current and power levels.

The mentioned power levels are related to main output power only, in addition the standby output can be operated up to 5A with derating to 3A as shown in *Figure 40*.

Above 55°C the power supply is adjusting the current limit level It DO Slow depending on input voltage range (100-127VAC or 200-240VAC) and inlet temperature, as shown in *Figure 41* to protect the power supply from excessive component temperatures.

The different input AC connectors and regional usage is not considered in this implementation of current limitation. Therefore it is under the responsibility of the user to ensure safety compliant operation.

Figure 34 – Maximum I₁ PET2000-12-074NA (IEC 60320-C14)

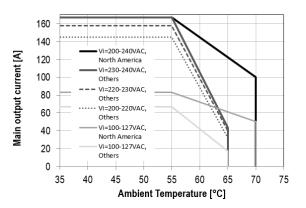


Figure 36 – Maximum I₁ PET2000-12-074NAC (IEC 60320-C16)

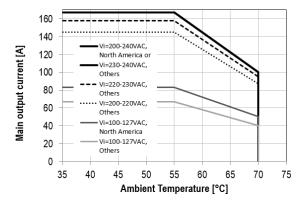


Figure 35 – Maximum P₁ PET2000-12-074NA (IEC 60320-C14)

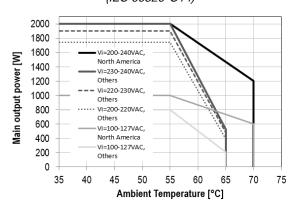


Figure 37 – Maximum P₁ PET2000-12-074NAC (IEC 60320-C16)

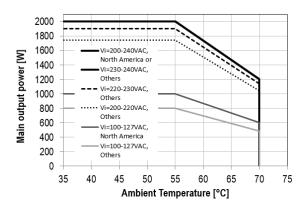


Figure 38 – Maximum I₁ PET2000-12-074NAA (Anderson Saf-D-Grid®)

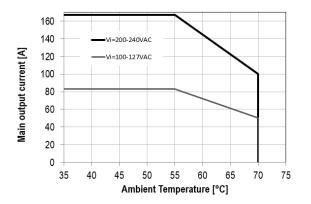


Figure 39 – Maximum P₁ PET2000-12-074NAA (Anderson Saf-D-Grid®)

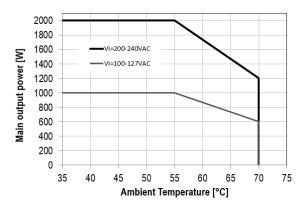


Figure 40 - Maximum ISB

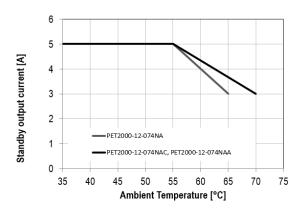
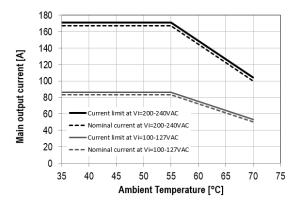



Figure 41 – Current limitation vs temperature

11 ELECTROMAGNETIC COMPATIBILITY

11.1 Immunity

PARAMETER	DESCRIPTION / CONDITION	CRITERION
ESD Contact Discharge	IEC / EN 61000-4-2, ±8 kV, 25+25 discharges per test point (metallic case, LED, connector body)	А
ESD Air Discharge	IEC / EN 61000-4-2, ±15 kV, 25+25 discharges per test point (non-metallic user accessible surfaces)	Α
Radiated Electromagnetics Filed	IEC / EN 61000-4-3, 10 V/m, 1 kHz/80% Amplitude Modulation, 1µs Pulse Modulation, 10 kHz 2 GHz	Α
Burst	IEC / EN 61000-4-4, Level 3 AC port ±2 kV, 1 minute	Α
Surge	IEC / EN 61000-4-5, Level 3 Line to Earth: ±2 kV Line to Line: ±1 kV	А
RF Conducted Immunity	IEC / EN 61000-4-6, Level 3, 10 Vrms, CW, 0.1 80 MHz	Α
Voltage Dips and Interruptions	IEC / EN 61000-4-11 1. Vi 230VAC, 70% load, Phase 0°, Dip 100%, duration 5 ms 2. Vi 230VAC, 70% load, Phase 0°, Dip 100%, duration 70 ms 3. Vi 230VAC, 70% load, Phase 0°, Dip 100%, duration100 ms	<i>V₁</i> : A, <i>V_{SB}</i> : A <i>V₁</i> : B, <i>V_{SB}</i> : A <i>V₁</i> : B, <i>V_{SB}</i> : B

11.2 Emission

PARAMETER	DESCRIPTION / CONDITION	CRITERION
Conducted Emission	EN 55022 / CISPR 22: 0.15 30 MHz, QP and AVG, single power supply EN 55022 / CISPR 22: 0.15 30 MHz, QP and AVG, 2 power supplies in a system	Class B
Radiated Emission	EN 55022 / CISPR 22: 30 MHz 1 GHz, QP, single power supply EN 55022 / CISPR 22: 30 MHz 1 GHz, QP, 2 power supplies in a system	Class A 6 dB margin Class A
Harmonic Emissions	IEC 61000-3-2, Vi = 115 VAC / 60 Hz & 230 VAC / 50 Hz, 100% Load	Class A
AC Flicker	IEC 61000-3-3, Vi = 230 VAC / 50Hz, 100% Load	Pass
Acoustical Noise	Distance at bystander position, 25°C, 25% Load	50 dBA

12 SAFETY / APPROVALS

Maximum electric strength testing is performed in the factory according to IEC/EN 60950, and UL 60950. Input-to-output electric strength tests should not be repeated in the field. Bel Power Solutions will not honor any warranty claims resulting from electric strength field tests.

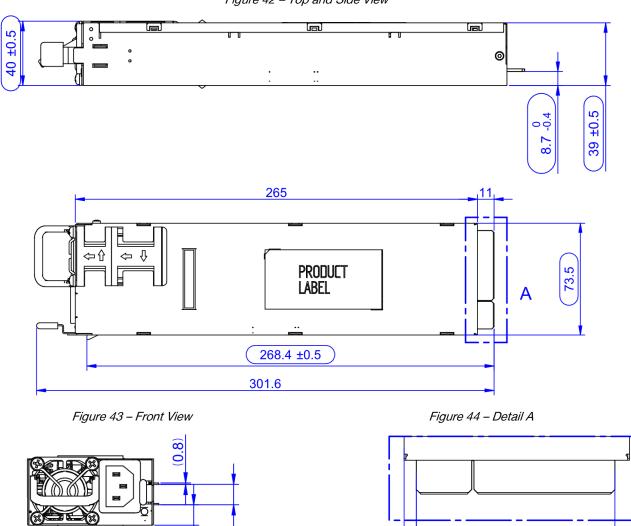
PARAMETER	DESCRIPTION / CONDITION	NOTE
Agency Approvals	Approved to latest edition of the following standards: UL/CSA60950-1, IEC60950-1 and EN60950-1.	
	Input (L/N) to chassis (PE)	Basic
Grade of Insulation	Input (L/N) to output	Reinforced
	Output to chassis	None (Direct connection)
Creanage / Clearence	Primary (L/N) to chassis (PE)	
Creepage / Clearance	Primary to secondary	
Electrical Strength Test	Input to chassis Input to output (tested by manufacturer only)	Min. 2121 VDC 4242 VDC

13 ENVIRONMENTAL

PARAM	ETER	DESCRIPTION / CONDITION	MIN	NOM	MAX	UNIT
T_A	Ambient Temperature	Up to 1'000m ASL	0		+55	°C
1 _A	Ambient Temperature	Linear derating from 1'000 to 3'048m ASL			+45	°C
$T_{A ext}$	Extended Temp. Range	Reduced output power ¹² , up to 1'000m ASL			+70	°C
		Linear derating from 1'000 to 3'048m ASL			+60	
$\mathcal{T}_{\mathcal{S}}$	Storage Temperature	Non-operational	-20		+70	°C
	Altitude	Operational, above Sea Level	-		3'048	m
	Aillidde	Non-operational, above Sea Level	-		10'600	m
	Shock, operational	Half sine, 11ms, 10 shocks per direction,			1	g peak
	Shock, non-operational	6 directions			30	g peak
	Vibration, sinusoidal, operational	IEC/EN 60068-2-6, sweep 5 to 500 to 5			1	g peak
	Vibration, sinusoidal, non-operational	Hz, 1 octave/min, 5 sweep per axis			4	g peak
	Vibration, random, non-operational	IEC/EN 60068-2-64, 5 to 500 Hz, 1 hour per axis			0.025	g²/Hz

¹² See chapter 10.3 Maximum output power versus inlet temperature for Safety Compliancy

14 RELIABILITY


PARAME	ETER	DESCRIPTION / CONDITION	MIN	NOM	MAX	UNIT
MTBF	Mean time to failure	T_A = 25°C, according Telcordia SR-332, issue 3, GB, confidence level = 90%	860			kh

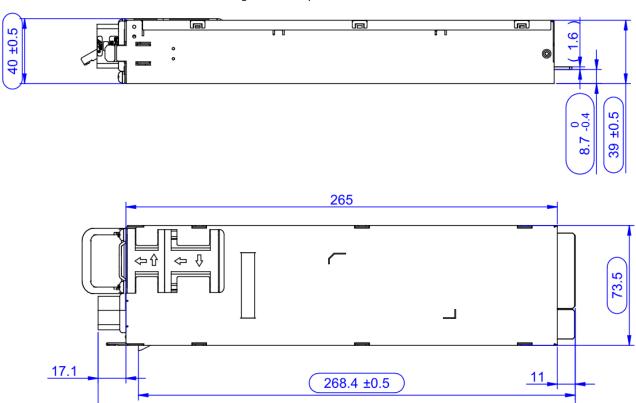
15 MECHANICAL

PARAMI	ETER	DESCRIPTION / CONDITION	MIN	NOM	MAX	UNIT
		Width		73.5		mm
	Dimensions	Heigth		40.0		mm
		Depth		265.0		mm
m	Weight			1.1		kg

15.1 Outline PET2000-12-074NA, PET2000-12-074NAC

Figure 42 - Top and Side View

4



866.513.2839 tech.support@psbel.com belpowersolutions.com

64.8

15.2 Outline PET2000-12-074NAA

Figure 45 – Top and side view

(293.14)

4

Figure 46 – Front view

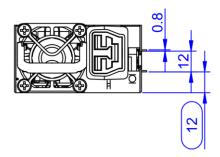


Figure 47 – Detail A

15.3 Option of Adding Keying Screw

A thread added to the side of the PET2000-12-074NA allows the user to add a screw to prevent the PET2000-12-074NA from being inserted into systems using other card edge connector types with the same power supply width and height. In such a case systems using PET2000-12-074NA must have a slot of ø6mm x 14mm implemented to allow the PET2000-12-074NA to be inserted. The maximum size of the screw head is ø6mm and height 2.12mm.

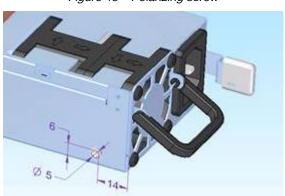


Figure 48 – Polarizing screw

15.4 Output Connector Pin Locations

Figure 49 - Rear view

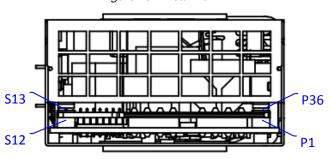
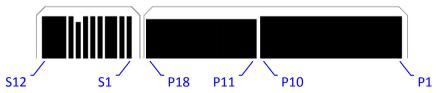



Figure 50 - Card edge PCB top view

Figure 51 – Card edge PCB bottom view

16 CONNECTORS

PARAMETER	DESCRIPTION / CONDITION	MIN	NOM	MAX	UNIT
	PET2000-12-074NA: IEC 60320-C14				
AC Inlet	PET2000-12-074NAC : IEC 60320-C16				
	PET2000-12-074NAA : Anderson Saf-D-Grid®, P/N 2006G1				
AC Cord Requirement	Wire size	16			AWG
Output Connector	36Power- + 24Signal-Pins PCB card edge				
	Manufacturer: FCI Electronics				
Mating Output Connector	Manufacturer P/N: 10130248-005LF (see <i>Figure 54</i> for option x)				
	Bel Power Solutions P/N : ZES.00678				

16.1 Mating Output Connector Specification

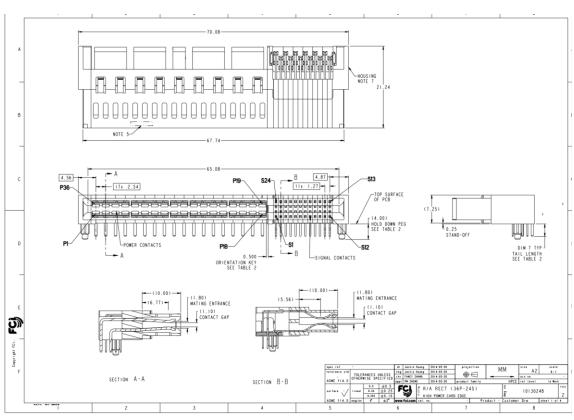


Figure 52 - Mating connector drawing page 1

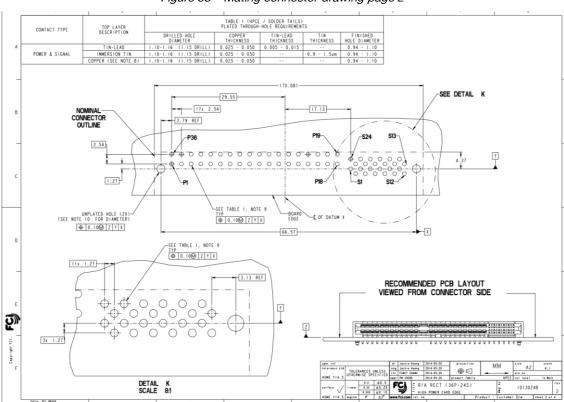
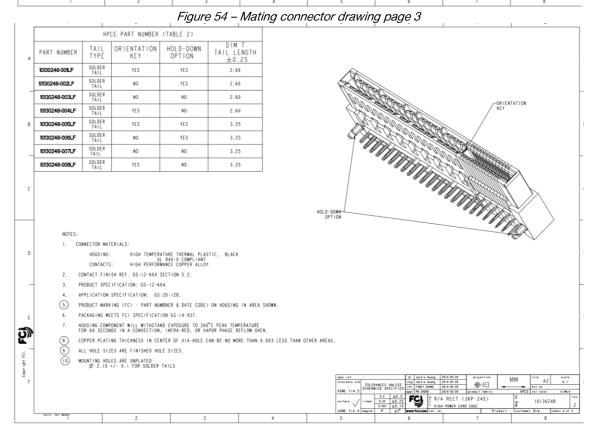



Figure 53 – Mating connector drawing page 2

16.2 Output Connector Pin Assignment

Figure 55 – Output connector pin assignment

PIN	SIGNAL NAME	DESCRIPTION	Mating Sequence ¹³
P1 ~ P10 P29 ~ P36	GND GND	Power and signal ground (return)	1
P11 ~ P18 P19 ~ P28	V1 V1	+12VDC main output	2
S1 S2	A0 A1	I ² C address selection input	3 3
S3, S4	VSB	+12V Standby positive output (as pins S3, S4)	3
S 5	HOTSTANDBYEN_H	Hot standby enable signal, active-high	3
S6	ISHARE	Analog current share bus	3
S7	Reserved	For future use, do not connect	3
S8	PRESENT_L	Power supply seated, active-low	4
S9	A2	I ² C address selection input	3
S10 ~ S15	GND	Power and signal ground (return)	3
S16	PWOK_H	Power OK signal output, active-high	3
S17	V1_SENSE	Main output positive sense	3
S18	V1_SENSE_R	Main output negative sense	3
S19	SMB_ALERT_L	SMB Alert signal output, active-low	3
S20	PSON_L	Power supply on input, active-low	4
S21, S22	VSB	+12V Standby positive output (as pins S3, S4)	3
S23	SCL	I ² C clock signal line	3
S24	SDA	I ² C data signal line	3

¹³ 1=First, 4=Last, given by different card edge finger pin lengths and mating connector pin arrangement

17 ACCESSORIES

ITEM	DESCRIPTION	ORDERING PART NUMBER	SOURCE
	I ² C Utility Windows XP/Vista/7 compatible GUI to program, control and monitor Front-End power supplies (and other I ² C units)	ZS-00130	www.belpowersolutions.com
	Evaluation Board Connector board to operate PET2000-12-074NA. Includes an on- board USB to I ² C converter (use I ² C Utility as desktop software).	YTM.00046	www.belpowersolutions.com
Saf-D-Grid Plug	AC cable for PET2000-12-074NAA Anderson Saf-D-Grid® receptacle to IEC 60320-C20 plug, 14AWG, 2m, Anderson P/N 2052KH2	TBD	

For more information on these products consult: tech.support@psbel.com

NUCLEAR AND MEDICAL APPLICATIONS - Products are not designed or intended for use as critical components in life support systems, equipment used in hazardous environments, or nuclear control systems.

TECHNICAL REVISIONS - The appearance of products, including safety agency certifications pictured on labels, may change depending on the date manufactured. Specifications are subject to change without notice.

