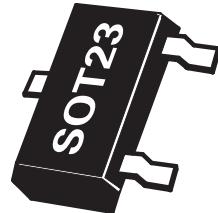


ZLLS500


40V SILICON HIGH CURRENT LOW LEAKAGE SCHOTTKY DIODE

SUMMARY

Schottky Diode $V_R = 40V$; $I_F = 0.7A$; $I_R = 10\mu A$

DESCRIPTION

This compact SOT23 packaged Schottky diode offers users an excellent performance combination comprising high current operation, extremely low leakage and low forward voltage ensuring suitability for applications requiring efficient operation at higher temperatures (above 85°C) see Operational efficiency chart on page 4.

Key benefits:

Performance capability equivalent to much larger packages

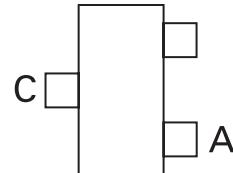
Improved circuit efficiency & power levels

PCB area savings

FEATURES

- Extremely low leakage ($10\mu A$ @30V)
- High current capability ($I_F = 0.7A$)
- Low V_F , fast switching Schottky
- SOT23 package
- ZLLS500 complements low temperature equivalent ZHCS500
- Package thermally rated to 150°C

Cathode


Anode

APPLICATIONS

- DC - DC converters
- Strobes
- Mobile phones
- Charging circuits
- Motor control

ORDERING INFORMATION

DEVICE	REEL (inches)	TAPE WIDTH (mm)	QUANTITY PER REEL
ZLLS500TA	7	8mm embossed	3000 units
ZLLS500TC	13	8mm embossed	10000 units

Top view

DEVICE MARKING

L05

ISSUE 3 - MAY 2006

ZLLS500

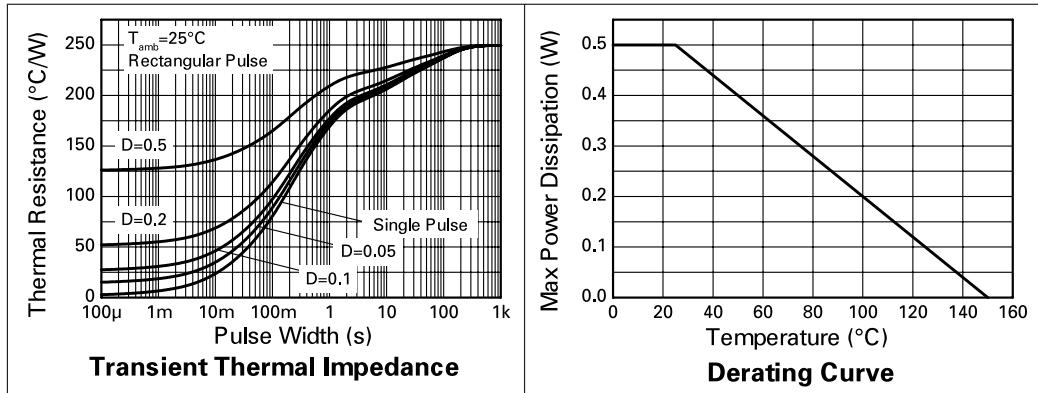
ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	VALUE	UNIT
Schottky Diode			
Continuous reverse voltage	V_R	40	V
Forward current	I_F	0.7	A
Peak repetitive forward current	I_{FPK}	1.14	A
Rectangular pulse duty cycle			
Non repetitive forward current $t \leq 100\mu s$	I_{FSM}	13	A
$t \leq 10ms$		3.2	A
Package			
Power dissipation at $T_{amb}=25^\circ C$ single die continuous	P_D	500	mW
single die measured at $t < 5$ secs		630	mW
Storage temperature range	T_{stg}	-55 to +150	°C
Junction temperature	T_j	150	°C

THERMAL RESISTANCE

PARAMETER	SYMBOL	VALUE	UNIT
Junction to ambient (a)	$R_{\theta JA}$	250	°C/W
Junction to ambient (b)	$R_{\theta JA}$	198	°C/W

Notes


- (a) For a device surface mounted on 25mm x 25mm FR4 PCB with high coverage of single sided 1oz copper, in still air conditions.
- (b) For a device surface mounted on FR4 PCB measured at $t < 5$ secs.

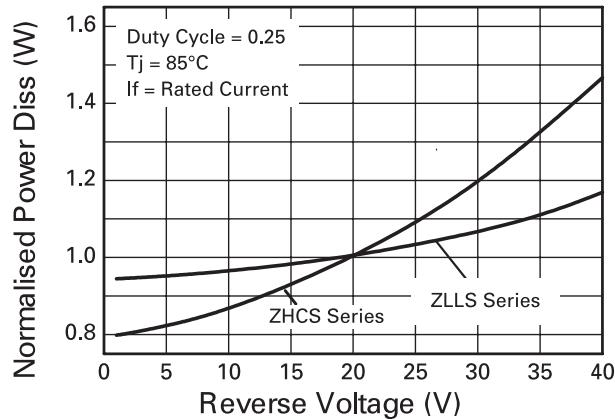
ISSUE 3 - MAY 2006

ZLLS500

TYPICAL CHARACTERISTICS

ISSUE 3 - MAY 2006

ZLLS500

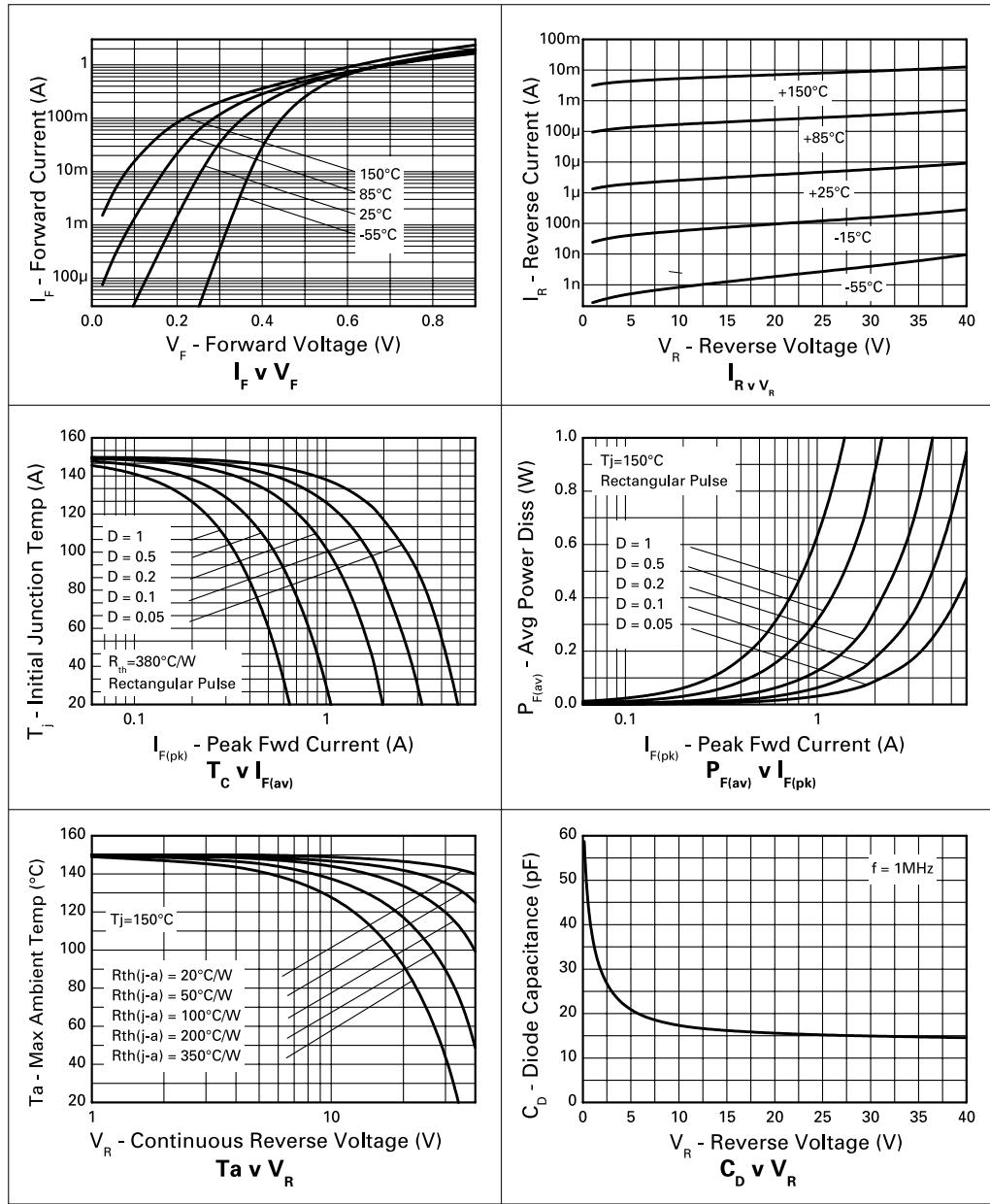

ELECTRICAL CHARACTERISTICS (at Tamb = 25°C unless otherwise stated)

SCHOTTKY DIODE CHARACTERISTICS						
PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS
Reverse breakdown voltage	$V_{(BR)R}$	40			V	$I_R=200\mu A$
Forward voltage	V_F		305	360	mV	$I_F=50\text{ mA}^*$
			335	390	mV	$I_F=100\text{ mA}^*$
			395	450	mV	$I_F=250\text{ mA}^*$
			465	530	mV	$I_F=500\text{ mA}^*$
			550	630	mV	$I_F=750\text{ mA}^*$
			620	710	mV	$I_F=1\text{ A}^*$
			710	800	mV	$I_F=1.5\text{ A}^*$
			415		mV	$I_F=500\text{ mA}^*, Ta = 100^\circ\text{C}$
Reverse current	I_R		6	10	μA	$V_R=30\text{ V}$
			370		μA	$V_R=30\text{ V}, Ta = 85^\circ\text{C}$
Diode capacitance	C_D		16		pF	$f=1\text{ MHz}, V_R=30\text{ V}$
Reverse recovery time	t_{rr}		3		ns	Switched from $I_F = 500\text{ mA}$ to $V_R = 5.5\text{ V}$
Reverse recovery charge	Q_{rr}		210		pC	Measured @ $I_R = 50\text{ mA}$. $di/dt = 500\text{ mA}/\text{ns}$. $R_{source} = 6\Omega$; $R_{load} = 10\Omega$

*Measured under pulsed conditions. Pulse width = 300 μS . Duty cycle $\leq 2\%$.

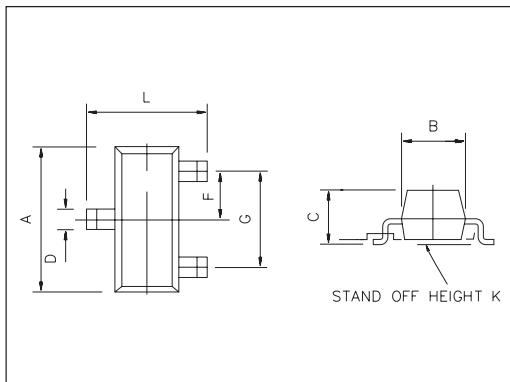
Operational efficiency chart

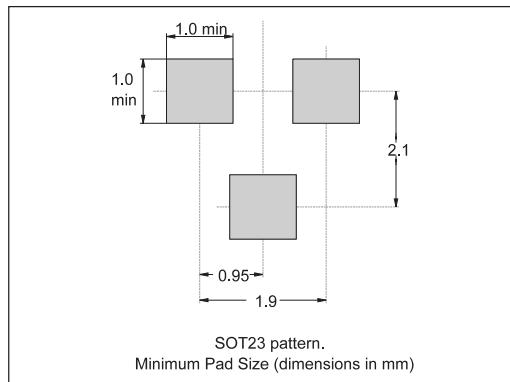
The operational efficiency chart indicates the beneficial use of the ZLLS series diodes in applications requiring higher voltage, higher temperature operation. Circuits requiring low voltage low temperature operation will benefit from using Zetex low V_F ZHCS series diodes.


Operational Efficiency Example

ISSUE 3 - MAY 2006

ZLLS500


TYPICAL CHARACTERISTICS


ISSUE 3 - MAY 2006

ZLLS500

Package Outline

Pad Layout

Package Dimensions

DIM	Millimeters		Inches	
	Min	Max	Min	Max
A	2.67	3.05	0.105	0.120
B	1.20	1.40	0.047	0.055
C	—	1.10	—	0.043
D	0.37	0.53	0.0145	0.021
F	0.085	0.15	0.0033	0.0059
G	NOM 1.9		NOM 0.075	
K	0.01	0.10	0.0004	0.004
L	2.10	2.50	0.0825	0.0985
N	NOM 0.95		NOM 0.037	

© Zetex Semiconductors plc 2006

Europe

Zetex GmbH
Streifeldstraße 19
D-81673 München
Germany

Telephone: (49) 89 45 49 49 0
Fax: (49) 89 45 49 49 49
europe.sales@zetex.com

Americas

Zetex Inc
700 Veterans Memorial Hwy
Hauppauge, NY 11788
USA

Telephone: (1) 631 360 2222
Fax: (1) 631 360 8222
usa.sales@zetex.com

Asia Pacific

Zetex (Asia) Ltd
3701-04 Metroplaza Tower 1
Hing Fong Road, Kwai Fong
Hong Kong

Telephone: (852) 26100 611
Fax: (852) 24250 494
asia.sales@zetex.com

Corporate Headquarters

Zetex Semiconductors plc
Zetex Technology Park
Chadderton, Oldham, OL9 9LL
United Kingdom

Telephone (44) 161 622 4444
Fax: (44) 161 622 4446
hq@zetex.com

These offices are supported by agents and distributors in major countries world-wide.

This publication is issued to provide outline information only which (unless agreed by the Company in writing) may not be used, applied or reproduced for any purpose or form part of any order or contract or be regarded as a representation relating to the products or services concerned. The Company reserves the right to alter without notice the specification, design, price or conditions of supply of any product or service.

For the latest product information, log on to www.zetex.com

ISSUE 3 - MAY 2006