PSPICE Electrical Model

.SUBCKT_RFP14N05L_213: rev 9/15/94 CA 12 8 1.464e-9 CB 15 14 1.64e-9 **DPLCAP** CIN 6 8 6.17e-10 DRAIN LDRAIN 10 DBODY 7 5 DBDMOD DBREAK 5 11 DBKMOD RSCL1 DPLCAP 10 5 DPLCAPMOD DBREAK RSCL2 **ESCL** EBREAK 11 7 17 18 65.35 EDS 14 8 5 8 1 50 EGS 13 8 6 8 1 DBODY RDRAIN **ESG** ESG 6 10 6 8 1 EBREAK (17) EVTO 20 6 18 8 1 VTO MOS₂ **EVTO** GATE IT 8 17 1 20 18 MOS₁ LGATE RGATE LDRAIN 2 5 1e-9 RIN CIN LGATE 1 9 5.68e-9 **LSOURCE RSOURCE** LSOURCE 3 7 5.35e-9 8 7 ,_ → 3 SOURCE MOS1 16 6 8 8 MOSMOD M = 0.99 MOS2 16 21 8 8 MOSMOD M = 0.01 S2A S1A RRRFAK 14 13 18 RBREAK 17 18 RBKMOD 1 13 RDRAIN 50 16 RDSMOD 33.1e-3 S₁B S2B **RVTO** RGATE 9 20 5.85 RIN 6 8 1e9 19 CA CB $^{(\!\!\!)}$ IT RSCL1 5 51 RSCLMOD 1e-6 VBAT RSCL2 5 50 1e3 EGS EDS RSOURCE 8 7 RDSMOD 14.3e-3 RVTO 18 19 RVTOMOD 1 S1A 6 12 13 8 S1AMOD S1B 13 12 13 8 S1BMOD S2A 6 15 14 13 S2AMOD S2B 13 15 14 13 S2BMOD VBAT 8 19 DC 1 VTO 21 6 0.485 ESCL 51 50 VALUE = $\{(V(5,51)/ABS(V(5,51)))^*(PWR(V(5,51)^*1e6/46,7))\}$.MODEL DBDMOD D (IS = 2.23e-13 RS = 1.15e-2 TRS1 = 1.64e-3 TRS2 = 7.89e-6 CJO = 6.83e-10 TT = 3.68e-8) .MODEL DBKMOD D (RS = 3.8e-1 TRS1 = 1.89e-3 TRS2 = 1.13e-5) .MODEL DPLCAPMOD D (CJO = 25.7e-11 IS = 1e-30 N = 10) .MODEL MOSMOD NMOS (VTO = 1.935 KP = 18.89 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL RBKMOD RES (TC1 = 7.18e-4 TC2 = 1.53e-6) .MODEL RDSMOD RES (TC1 = 4.45e-3 TC2 = 2.9e-5) .MODEL RSCLMOD RES (TC1 = 2.8e-3 TC2 = 6.0e-6) .MODEL RVTOMOD RES (TC1 = -1.7e-3 TC2 = -2.0e-6) .MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -3.55 VOFF= -1.55) .MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -1.55 VOFF= -3.55) .MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -2.55 VOFF= 2.45) .MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 2.45 VOFF= -2.55) .ENDS

NOTE: For further discussion of the PSPICE model, consult **A New PSPICE Sub-circuit for the Power MOSFET Featuring Global Temperature Options**; authored by William J. Hepp and C. Frank Wheatley.

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

$ACEx^{TM}$	FAST®	ISOPLANAR™	Power247™	Stealth™
ActiveArray™	FASTr™	LittleFET™	PowerEdge™	SuperFET™
Bottomless™	FPS™	$MICROCOUPLER^{TM}$	PowerSaver™	SuperSOT™-3
CoolFET™	FRFET™	MicroFET™	PowerTrench®	SuperSOT™-6
CROSSVOLT™	GlobalOptoisolator™	MicroPak™	QFET®	SuperSOT™-8
DOME™	GTO™ .	MICROWIRE™	QS^{TM}	SyncFET™
EcoSPARK™	HiSeC™	MSX TM	QT Optoelectronics™	TinyLogic [®]
E ² CMOS TM	I ² C TM	MSXPro™	Quiet Series™	TINYOPTO™
EnSigna™	<i>i-</i> Lo [™]	OCX^{TM}	RapidConfigure™	TruTranslation™
FACT™	ImpliedDisconnect™	OCXPro™	RapidConnect™	UHC™
FACT Quiet Seri		OPTOLOGIC®	μSerDes™	UltraFET®
The Power Franchise®		OPTOPLANAR TM PACMAN TM POP TM	SILENT SWITCHER® SMART START™ SPM™	VCX TM

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Rev. I13