
# Solid State Relays Industrial, 2-Pole ZS Type RA2A





- 2-Pole AC Solid State Relay
- Zero switching
- For resistive and inductive AC loads
- Direct copper bonding (DCB) technology
- LED indication
- Rated operational current: 25 and 40 AACrms
- Rated operational voltage: 230 600 VACrms
- Input range: 4.5 to 32 VDC
- Non-repetitive peak voltage: Up to 1200 Vp
- Opto-isolation: 4000 VACrms

# **Product Description**

This 2-pole industrial relay minimises the space requirements in a control cabinet without compromising performance. By applying an input voltage on control A, the corresponding output semicond-cutor is activated at the first zero crossing of the line volt-

age.The same applies to control B. LEDs indicate the control status of each pole. The optimised design is free of moulding mass to reduce internal mechanical stress.

The RA2A..M types have been specially customised for demanding inductive loads.

# Ordering Key Solid State Relay Number of poles Zero switching Rated operational voltage Control voltage Rated operational current Load type RA 2 A 48 D 25 M

# **Type Selection**

| Switching mode    | Rated operational voltage                                | Rated operational current | Control voltage  | Non-rep.<br>voltage                                                                                    | Load<br>type |
|-------------------|----------------------------------------------------------|---------------------------|------------------|--------------------------------------------------------------------------------------------------------|--------------|
| A: Zero switching | 23: 230 VAC<br>40: 400 VAC<br>48: 480 VAC<br>60: 600 VAC | 25: 25 A<br>40: 40 A      | D: 4.5 to 32 VAC | 23: 650 V <sub>p</sub><br>40: 850 V <sub>p</sub><br>48: 1200 V <sub>p</sub><br>60: 1200 V <sub>p</sub> | M: Inductive |

### **Selection Guide**

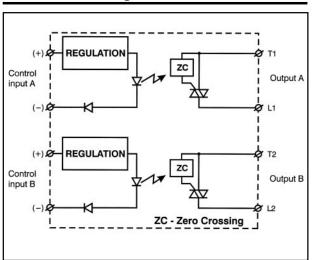
| Rated operational voltage | Non-rep. voltage    | Control voltage | Rated operationa<br>25 AACrms | l current<br>40 AACrms |
|---------------------------|---------------------|-----------------|-------------------------------|------------------------|
| 230 VACrms                | 650 V <sub>p</sub>  | 4.5 to 32 VDC   | RA2A23D25                     | RA2A23D40              |
|                           | p p                 |                 | RA2A23D25M                    | RA2A23D40M             |
| 400 VACrms                | 850 V <sub>p</sub>  | 4.5 to 32 VDC   | RA2A40D25                     | RA2A40D40              |
|                           |                     |                 | RA2A40D25M                    | RA2A40D40M             |
| 480 VACrms                | 1200 V <sub>p</sub> | 4.5 to 32 VDC   | RA2A48D25                     | RA2A48D40              |
|                           |                     |                 | RA2A48D25M                    | RA2A48D40M             |
| 600 VACrms                | 1200 V <sub>p</sub> | 4.5 to 32 VDC   | RA2A60D25                     | RA2A60D40              |
|                           |                     |                 | RA2A60D25M                    | RA2A60D40M             |

# **Input Specifications**

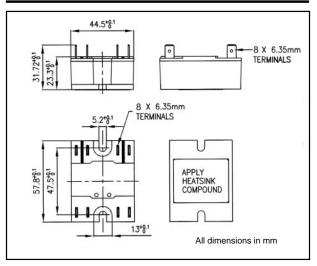
| Control voltage range             | 4.5 to 32 VDC |
|-----------------------------------|---------------|
| Pick-up voltage                   | 4.25 VDC      |
| Drop-out voltage                  | 2 VDC         |
| Input current per pole            | 10 mA         |
| Response time pick-up<br>@ 50 Hz  | 10 ms         |
| Response time drop-out<br>@ 50 Hz | 10 ms         |

# **Housing Specifications**

| Weight                                      | Approx. 85 g                                      |
|---------------------------------------------|---------------------------------------------------|
| Housing material                            | Noryl GFN 1, black                                |
| Base plate<br>25, 40 A<br>40 A (M type)     | Aluminium, nickel-plated<br>Copper, nickel-plated |
| Relay<br>Mounting screws<br>Mounting torque | M5<br>≤ 1.5 Nm                                    |
| Fast on terminals                           | 6.3 mm                                            |


# **General Specifications**

|                                                  | RA2A23                               | RA2A40                               | RA2A48                               | RA2A60                               |
|--------------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| Operational voltage range                        | 24 to 265 VAC                        | 42 to 440 VAC                        | 42 to 530 VAC                        | 42 to 660 VAC                        |
| Non-rep. peak voltage                            | 650 V <sub>p</sub>                   | 850 V <sub>p</sub>                   | 1200 V <sub>p</sub>                  | 1200 V <sub>p</sub>                  |
| Rated insulation input -output/output - heatsink | 4 kV                                 | 4 kV                                 | 4 kV                                 | 4 kV                                 |
| Operational frequency range                      | 45 to 65 Hz                          |
| LED ON indication (x2)                           | Yes (green)                          | Yes (green)                          | Yes (green)                          | Yes (green)                          |
| Power factor<br>RA2A<br>RA2AM                    | ≥ 0.95 @ 230 VAC<br>≥ 0.50 @ 230 VAC | ≥ 0.95 @ 400 VAC<br>≥ 0.50 @ 400 VAC | ≥ 0.95 @ 480 VAC<br>≥ 0.50 @ 480 VAC | ≥ 0.95 @ 600 VAC<br>≥ 0.50 @ 600 VAC |
| Zero voltage turn-on                             | < 15 V                               | < 15 V                               | < 15 V                               | < 15 V                               |
| Approvals                                        | UR, cUR                              | UR, cUR                              | UR, cUR                              | UR, cUR                              |
| CE-marking                                       | Yes                                  | Yes                                  | Yes                                  | Yes                                  |
| Conformance                                      | CSA, VDE                             | CSA, VDE                             | CSA, VDE                             | CSA, VDE                             |


# **Output Specifications**

|                                       | RA2A25               | RA2A40               | RA2AD25M             | RA2AD40M              |
|---------------------------------------|----------------------|----------------------|----------------------|-----------------------|
| Rated operational current AC 1 AC 3   | 25 A<br>-            | 40 A<br>-            | 25 A<br>5 A          | 40 A<br>15 A          |
| Minimum operational current           | 150 mA               | 150 mA               | 150 mA               | 200 mA                |
| Rep. overload current t=1 s           | 37 A                 | 60A                  | 37 A                 | 85A                   |
| Non-rep. surge current t=10 ms        | 230 A <sub>p</sub>   | 300 A <sub>p</sub>   | 230 A <sub>p</sub>   | 550 A <sub>p</sub>    |
| Off-state leakage current             | < 3 mA               | < 3 mA               | < 3 mA               | < 3 mA                |
| I <sup>2</sup> t for fusing t=1-10 ms | 265 A <sup>2</sup> s | 450 A <sup>2</sup> s | 265 A <sup>2</sup> s | 1800 A <sup>2</sup> s |
| Critical dl/dt @ 50 hz.               | ≥ 100 A/µs           | ≥ 100 A/µs           | ≥ 100 A/µs           | ≥ 100 A/µs            |
| On-state voltage drop @ rated current | ≤ 1.6 Vrms           | ≤ 1.6 Vrms           | ≤ 1.6 Vrms           | ≤ 1.6 Vrms            |
| Critical dV/dt off-state min.         | 500 V/μs             | 500 V/μs             | 500 V/μs             | 500 V/μs              |
| Zero crossing detection               | Yes                  | Yes                  | Yes                  | Yes                   |

# **Functional Diagram**



# **Dimensions**



# Heatsink Dimensions (load current versus ambient temperature)

### RA 2....25.

### Load current [A] Power dissipation [W] Thermal resistance [K/W] 1.11 0.96 0.80 0.65 0.49 0.33 64 50 1.37 1.19 1.01 0.83 0.65 0.47 56 45 1.46 1.25 1.04 0.83 0.63 48 1.67 40 1.97 1.73 1.48 1.23 0.99 0.74 41 35 2.4 2.1 1.79 1.49 1.19 0.90 33 30 3.0 2.6 2.2 1.9 1.5 1.12 27 25 1.45 3.9 3.4 2.9 2.4 1.9 21 20 15 5 5 4 3.4 15 7 10 8 6 5 4 3.2 9 9 7 18 15 13 11 5 20 30 40 50 60 70 $T_{A}$

Ambient temp. [°C]

### RA 2....40

| Load<br>curre | nt [A] |      |      |      |      |      | Power dissipation [W] |  |
|---------------|--------|------|------|------|------|------|-----------------------|--|
|               |        |      |      |      | •    |      |                       |  |
| 80            | 0.66   | 0.54 | 0.43 | 0.31 | 0.20 | 0.09 | 87                    |  |
| 72            | 0.84   | 0.71 | 0.58 | 0.45 | 0.32 | 0.19 | 76                    |  |
| 64            | 1.07   | 0.92 | 0.77 | 0.62 | 0.46 | 0.31 | 66                    |  |
| 56            | 1.37   | 1.19 | 1.01 | 0.84 | 0.66 | 0.48 | 56                    |  |
| 48            | 1.7    | 1.5  | 1.3  | 1.08 | 0.87 | 0.65 | 46                    |  |
| 40            | 2.2    | 1.9  | 1.6  | 1.3  | 1.1  | 0.81 | 37                    |  |
| 32            | 2.8    | 2.4  | 2.1  | 1.7  | 1.4  | 1.04 | 29                    |  |
| 24            | 4      | 3    | 3    | 2.4  | 1.9  | 1.4  | 21                    |  |
| 16            | 6      | 5    | 5    | 4    | 3    | 2.3  | 13                    |  |
| 8             | 13     | 11   | 9    | 8    | 6    | 5    | 6                     |  |
|               | 20     | 30   | 40   | 50   | 60   | 70   | TA                    |  |

Ambient temp. [°C]

### RA 2....40M

| Load<br>currer | nt [A] |      | Thermal resistance<br>[K/W] |      |      |            |           |
|----------------|--------|------|-----------------------------|------|------|------------|-----------|
|                |        |      |                             |      |      |            |           |
| 110            | 0.19   | 0.12 | 0.05                        | -    | -    | -          | 145       |
| 100            | 0.29   | 0.21 | 0.13                        | 0.05 | -    | -          | 128       |
| 90             | 0.42   | 0.32 | 0.23                        | 0.14 | 0.04 | -          | 112       |
| 85             | 0.57   | 0.46 | 0.36                        | 0.25 | 0.14 | 0.03       | 97        |
| 70             | 0.77   | 0.65 | 0.52                        | 0.39 | 0.27 | 0.14       | 82        |
| 65             | 1      | 0.9  | 0.74                        | 0.59 | 0.43 | 0.28       | 68        |
| 50             | 1.4    | 1.2  | 1.1                         | 0.9  | 0.7  | 0.48       | 55        |
| 45             | 2      | 1.7  | 1.5                         | 1.2  | 1    | 0.74       | 43        |
| 30             | 3      | 2    | 2                           | 1.7  | 1.4  | 1          | 31        |
| 20             | 4      | 4    | 3                           | 3    | 2    | 1.6        | 20        |
| 10             | 9      | 8    | 7                           | 5    | 4    | 3          | 10        |
|                | 20     | 30   | 40                          | 50   | 60   | 70         | TA        |
|                |        |      |                             |      | ,    | Ambient to | emp. [°C] |

# **Heatsink Selection**

| Carlo Gavazzi Heatsink<br>(see Accessories) | Thermal resistance | for power dissipation |
|---------------------------------------------|--------------------|-----------------------|
| No heatsink required                        |                    | N/A                   |
| RHS 300                                     | 5.00 K/W           | > 0 W                 |
| RHS 100                                     | 3.00 K/W           | > 25 W                |
| RHS 45A                                     | 2.70 K/W           | > 60 W                |
| RHS 45B                                     | 2.00 K/W           | > 60 W                |
| RHS 90                                      | 1.35 K/W           | > 60 W                |
| RHS 45A plus fan                            | 1.25 K/W           | > 0 W                 |
| RHS 45B plus fan                            | 1.20 K/W           | > 0 W                 |
| RHS 112                                     | 1.10 K/W           | > 100 W               |
| RHS 301                                     | 0.80 K/W           | > 70 W                |
| RHS 90 plus fan                             | 0.45 K/W           | > 0 W                 |
| RHS 112 plus fan                            | 0.40 K/W           | > 0 W                 |
| RHS 301 plus fan                            | 0.25 K/W           | > 0 W                 |
| Consult your distribution                   | > 0.25 K/W         | N/A                   |
| Infinite heatsink - No solution             |                    | N/A                   |

Note: Add the currents of both poles and compare with datasheets for proper heatsink.

Each pole can handle up to the maximum current specified. Example: Each pole of the RA2A23D25 can handle a maximum of 25 A.

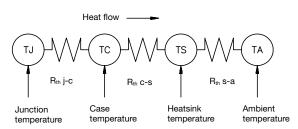
### Insulation

| Rated insulation voltage<br>Input to output | ≥ 4000 VACrms |
|---------------------------------------------|---------------|
| Rated insulation voltage Output to case     | ≥ 4000 VACrms |

## **Accessories**

Heatsinks DIN rail adapter Varistors Fuses For further information refer to "General Accessories".

# **Applications**


This relay is designed for use in applications in which it is exposed to high surge conditions. Care must be taken to ensure proper heatsinking when the relay is to be used at high sustained currents. Adequate electrical connection between relay terminals and cable must be ensured.

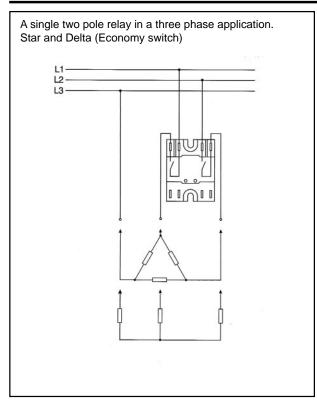
### Thermal characteristics

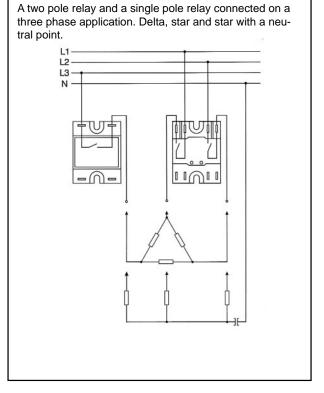
The thermal design of Solid State Relays is very important.

It is essential that the user makes sure that cooling is adequate and that the maximum junction temperature of the relay is not exceeded.

If the heatsink is placed in a small closed room, control panel or the like, the power dissipation can cause the ambient temperature to rise. The heatsink is to be calculated on the basis of the ambient temperature and the increase in temperature.




Thermal resistance:  $R_{th} j$ -c = junction to case


 $R_{th}$  c-s = case to heatsink  $R_{th}$  s-a = heatsink to ambient

# **Thermal Specifications**

|                                                      | RA2A25.          | RA2A40           | RA2A40M              |
|------------------------------------------------------|------------------|------------------|----------------------|
| Operating temperature                                | -20° to 70°C     | -20° to 70°C     | -20° to 70°C         |
| Storage temperature                                  | -20° to 80°C     | -20° to 80°C     | -20° to 80°C         |
| Junction temperature                                 | ≤ 125°C          | ≤ 125°C          | ≤ 125°C              |
| R <sub>th</sub> junction to case<br>1 pole<br>2 pole | 1 K/W<br>0.5 K/W | 1 K/W<br>0.5 K/W | 0.92 K/W<br>0.46 K/W |
| R <sub>th</sub> junction to ambient                  | ≤ 20 K/W         | ≤ 20 K/W         | ≤ 20 K/W             |

# **Applications**



