Rule-Based Constraint Programming:
Theory and Practice

Habilitationsschrift

Slim Abdennadher
Ludwig-Maximilians-Universitat Miinchen
Institut fur Informatik
Oettingenstr 67, D-80538 Miinchen

July 15, 2001

Gewidmet meiner Frau Nabila in Liebe.

Abstract

Constraint-based programming languages enjoy both elegant theoretical prop-
erties and practical success. As it runs, a constraint-based program successively
generates pieces of partial information called constraints. The constraint solver
has the task to collect, combine, and simplify the constraints, and detect their
inconsistency. Intuitively, constraints represent elementary relationships be-
tween variables and values, for example equality or some order relationships.
Clearly, the abilities and quality of the constraint solver play an essential role
in constraint-based programming.

In the beginning, constraint solving was “hard-wired” in a built-in constraint
solver written in a low-level language, termed the “black-box” approach. While
efficient, this approach makes it hard to modify a solver or build a solver over a
new domain, let alone reason about and analyze it. As the behavior of the solver
can neither be inspected by the user nor explained by the computer, debugging
of constraint-based programs is hard. Also, one lesson learned from practical
applications is that constraints are often heterogeneous and application specific.

Several proposals have been made to allow more flexibility and customiza-
tion of constraint solvers, often termed “glass-box” approaches. The most far-
reaching proposal is the rule-based formalism. In this approach, the constraint
propagation is achieved by repeated application of rules.

This work aims at covering all aspects of rule-based constraint programming.
Going from theory to practice, we will present some analysis and debugging
methods for rule-based constraint solvers. Then, we will present a new research
area, where users for whom writing constraint solvers remains a hard task have
the possibility to do it automatically. The paper then describes an implemen-
tation of a Java Constraint Kit consisting of a rule-based language for writing
constraint solvers and a generic search engine to solve combinatorial problems.
Then, we show how to extend a specific rule-based constraint language to be-
come a general purpose language without losing the extra features supporting
efficient constraint solving, e.g. committed choice and matching. Finally, we
introduce two applications that benefit from using a rule-based constraint lan-
guage for writing constraint solvers.

Acknowledgment

I would like to express my warmest gratitude to Francois Bry for his constant
encouragement, for many productive discussions, and for his general support
during all these years. I am also very grateful to Thom Frithwirth for the close
and fruitful cooperation during the last six years.

Parts of the research presented in this thesis are based on work several stu-
dents did under my supervision as part of their master’s thesis or Projektarbeit
at the Ludwig-Maximilians University: Matthias Schmauss implemented JCHR
(Constraint Handling Rules in Java). Ekkerhard Kramer provided the search
engine JASE for JCHR. Matthias Saft implemented the visualization tool for
JCHR. Michael Marte implemented the timetabling system for the department
of computer science. Without the practical work of all these people, this thesis
would never have taken its present form.

I would like to thank my collaborators: Christophe Rigotti, Henning Chris-
tiansen (visitors to LMU), Thom Frithwirth, Holger Meuss, Heribert Schiitz,
Michael Marte (colleagues at LMU). Thanks also to Norbert Eisinger for his
proofreading of various drafts of this thesis. The cooperation with Christophe
Rigotti was partially supported by the Bavarian-French Hochschulzentrum.

I am also very grateful to Francois Bry, Martin Wirsing and Francois Fages
for acting as referees of this work.

Last but not least, I thank my wife Nabila and my daughters Shirine and
Amira for their ongoing support and patience.

Contents

1 Introduction

2 Constraint Programming

2.1 Constraint (Logic) Programming
2.2 Constraint Handling Rules
221 Syntax
2.2.2 Declarative Semantics
2.2.3 Operational Semantics
2.2.4 Soundness and Completeness

Analysis of Constraint Solvers

3.1 Confluence

3.2 Operational Equivalence
3.2.1 Compatibility of Programs
3.2.2 Equivalence of Constraints
3.2.3 Equivalence of Programs.
3.24 Relationships

3.3 Visualization L.
3.3.1 Representation of the Constraint Store
3.3.2 Creation and Expansion of Graphs
3.33 HidingNodes
3.3.4 Implementation Issues

3.4 Conclusion and Future Work

Automatic Generation

4.1 Generation of Propagation Rules
4.1.1 The PROPMINER Algorithm
4.1.2 Properties of the PROPMINER Algorithm
4.1.3 Rule Simplification00
4.1.4 Implementation Issues
415 Examples L

4.2 Generation of Simplification Rules
4.2.1 The SIMPMINER Algorithm
4.2.2 Properties of the SIMPMINER Algorithm

4.3 Applicationo
4.3.1 Automatic test-pattern generation
4.3.2 Experiments

44 Related Work L L

CONTENTS

4.5 Conclusion and Future Work

Extension: CHRY

5.1 Constraint Handling Rules with Disjunction
5.1.1 Syntax
5.1.2 Operational Semantics

5.2 Experimental Platform oL,
5.2.1 Logic programming with integrity constraints in CHRY .
5.2.2 Abduction in CHRY
5.2.3 Model Generation with Constraints using CHRY
5.2.4 Top-down Evaluation with Tabulation using CHRY
5.2.5 Combining don’t-care and don’t-know Nondeterminism
5.2.6 Logic Programming and Constraint Solving

5.3 Related Work Lo Lo

54 Conclusion

JACK: A Java Constraint Kit

6.1 JCHR: Java Constraint Handling Rules
6.1.1 Syntax ofa JCHR Solver
6.1.2 The Prototyping Environment
6.1.3 Finite Domain Solver in JCHR

6.2 JASE: Java Abstract Search Engine

Applications

7.1 University Course Timetabling
7.1.1 Problem Description
7.1.2 A Constraint Model for the Timetabling Problem
7.1.3 Solving the Problem using CHR

7.2 Classroom Assignmento
7.2.1 Problem Description
7.2.2 A Constraint Model for Classroom Assignment
7.2.3 Solving the Problem using CHR

7.3 Conclusion

8 Conclusions
Bibliography

A SLD Resolution

Al Syntax
A.2 Declarative Semantics 0.,
A.3 Operational Semantics

List of Figures

103

104

113
113
113
113

115

Chapter 1

Introduction

Background

Constraint-based programming languages, be it constraint logic programming
(CLP) [55, 98, 48, 70] or concurrent constraint logic programming [68, 87, 86, 56],
enjoy both elegant theoretical properties and practical success. As it runs, a
constraint-based program successively generates pieces of partial information
called constraints. The constraint solver has the task to collect, combine, and
simplify the constraints, and detect their inconsistency. Intuitively, constraints
represent elementary relationships between variables and values, for example
equality or some order relationships. Clearly, the abilities and quality of the
constraint solver play an essential role in constraint-based programming,.

In the beginning, constraint solving was “hard-wired” in a built-in constraint
solver written in a low-level language, termed the “black-box” approach. While
efficient, this approach makes it hard to modify a solver or build a solver over a
new domain, let alone reason about and analyze it. As the behavior of the solver
can neither be inspected by the user nor explained by the computer, debugging
of constraint-based programs is hard. Also, one lesson learned from practical
applications is that constraints are often heterogeneous and application specific.

Several proposals have been made to allow more flexibility and customization
of constraint solvers, often termed “glass-box” approaches [36, 98]. The most-far
reaching proposal is the rule-based formalism. In this approach, the constraint
propagation is achieved by repeated application of rules.

Rule-based Constraint Programming

Rule-based programming began with Artificial Intelligence rule-based systems
in the seventies. It is a powerful and elegant programming technique which
often leads to very concise solutions that are very natural to write down. Rule-
based formalisms become ubiquitous in computer science, and even more so
in constraint reasoning and programming. In constraint reasoning, algorithms
are often specified using inference rules, rewrite rules, sequents, or first-order
axioms written as implications. It is no wonder that recently there has been
a revival of interest in rule-based programming in the context of constraint
programming. Advanced programming languages, like ELAN [59],CLAIRE [29],

1

2 CHAPTER 1. INTRODUCTION

and Constraint Handling Rules (CHR) [46], have shown that the concept of rules
could be of major interest as a programming tool for constraint solvers.

e ELAN is an environment for specifying and prototyping deduction sys-
tems, e.g. constraint solvers and theorem provers. It also provides a
framework for experimenting with their combination. The ELAN sys-
tem is based on labelled conditional rewrite systems and on strategies for
controlling their application.

e CLAIRE is an object oriented programming language with rule process-
ing capabilities. The goal of the rule system was to be able to express
constraint propagation strategies more easily.

e Constraint Handling Rules (CHR) is a declarative high-level language ex-
tension especially designed for writing constraint solvers. With CHR, one
can introduce user-defined constraints into a given host language, be it
Prolog, Lisp, Java, or any other language.

Contribution of the Work

This work aims at covering all aspects of rule-based constraint programming.
Going from theory to practice, we will present some analysis and debugging
methods for rule-based constraint solvers. Then, we will present a new research
area, where users for whom writing constraint solvers remains a hard task have
the possibility to do it automatically. The paper then describes an implemen-
tation of a Java Constraint Kit consisting of a rule-based language for writing
constraint solvers and a generic search engine to solve combinatorial problems.
Then, we show how to extend a specific rule-based constraint language to be-
come a general purpose language without losing the extra features supporting
efficient constraint solving, e.g. committed choice and matching. Finally, we
introduce two applications that benefit from using a rule-based constraint lan-
guage for writing constraint solvers.

Since any language has its own characteristics, we only rely in this work on
the high level language Constraint Handling Rules (CHR). One nice feature of
CHR is to have constraints as a first class concept which is neither the case
in CLAIRE nor in ELAN. With CHR, any first-order constraint theory and
consistency algorithm can be implemented at a high-level of abstraction. Con-
straint solvers written in CHR (also called CHR programs) consist of guarded
rules with multiple heads that replace constraints by simpler ones until they are
solved. CHR defines both simplification of and propagation over user-defined
constraints. Simplification rules replace constraints by simpler constraints while
preserving logical equivalence (e.g., X>Y A Y>X < false). Propagation
rules add new constraints, which are logically redundant but may cause further
simplification (e.g. X>Y A Y>Z = X>Z). Repeated application of rules in-
crementally solves constraints. For example, with the two rules above we can
transform A>B AB>CA C>A to ASBAB>CAC>AAA>C and to false.

Analysis of Rule-based Constraint Solvers (Chapter 3)

Program analysis, both static and dynamic, is the central issue of programming
environments. The declarativity of rule-based constraint languages makes it eas-

ier to analyze such solvers and to debug them. Firstly, we introduce some static
analysis methods, i.e. analysis of program source code. We present important
properties for constraint solvers, namely confluence and operational equivalence.
Confluence means that the result of a computation is independent from the or-
der in which rules are applied to the constraints. Operational equivalence of
two programs means that for each goal, the final state in one program is the
same as the final state in the other program. For confluence and operational
equivalence of terminating CHR, programs, we present decidable, sufficient and
necessary syntactic conditions. To analyze constraint solvers dynamically, we
present, a tool, called Visual CHR, to support the analysis of ezecutions as pro-
duced by CHR. The primary purpose of VisualCHR was to support developers
of constraint solvers during the debugging stages. But Visual CHR also supports
the comparison of different constraint solvers, or simply the illustration of the
derivation process for teaching or learning purposes.

Automatic Generation of Constraint Solvers (Chapter 4)

Writing constraint solvers remains a hard task even in a rule-based formalism
since the programmer has to determine the propagation algorithms. In this
work, we propose a method to generate automatically the propagation and sim-
plification process of constraints in form of rules. The rules will be implemented
in CHR. The user has only to define the constraints extensionally and to deter-
mine the admissible syntactic form of the rules.

Consider the following example, where the user wants to generate a con-
straint solver for the boolean conjunction and(X,Y,Z), where X and Y are the
input arguments and Z is the output argument. This ternary relation can be
defined extensionally by the triples {(0,0,0), (0,1,0), (1,0,0), (1,1,1)},
where 1 stands for truth and 0 for falsity.

The propagation of the boolean conjunction can be specified by the following
rules:

and(0,Y,Z)
and(X,0,Z)
and(1,Y,Z)
and(X,1,Z)
and(X,X,Z)
and(X,Y,1)

1l
~ NNNOO

toseT O
b b g NN

A Y=1.

For example, the first rule says that the constraint and (X,Y,Z), when it is known
that the first input argument X is equal to 0, can be replaced by the constraint
that the output Z must be equal to 0. Hence, the goal and(0,Y,Z) will result
in Z=0.

These rules are the well-known rules that can be found in several papers
describing the propagation of boolean constraints, e.g. in form of demons [39],
conditionals [99], CHR rules [45] or proof systems [36, 21]. Qur aim is to provide
a method to generate such rules automatically provided the user specifies the
right hand side of the rules to be a conjunction of equality constraints.

4 CHAPTER 1. INTRODUCTION

Extension (Chapter 5)

The operational semantics of CHR differs from SLD resolution in various ways.
Most of these differences are extensions, but there are also two incompatible
differences:

e While SLD resolution performs full unification between goals and rule
heads, CHR performs a one-sided unification (“matching”). That is, CHR
only allows the variables of a rule to be instantiated in order to match the
rule head with some part of the goal.

e While SLD resolution tries to apply all appropriate rules to a goal (usually
implemented by backtracking), CHR applies only one, i.e., it follows the
committed-choice approach.

These incompatibilities make CHR difficult to use as a general-purpose logic
query language, especially for search-oriented problems.

We show, however, that only a small and simple extension to CHR is needed
in order to reach an expressive power that subsumes the expressive power of
Horn clause programs with SLD resolution: We allow disjunctions on the right
hand sides of CHR rules. We call the extended language “CHR"” (to pronounce
“CHR-or”).

So while currently CHR is being used as a special-purpose language for
constraint solvers and CHR programs are typically supplements to Prolog pro-
grams, CHRY allows to write the entire application in a uniform language. But
it is not only possible to merge constraint solving and top-down query eval-
uation: CHRY allows also to write logic programs for bottom-up evaluation
as it is frequently used in disjunctive deductive databases. Together with dis-
junction, it is even possible to implement disjunctive logic databases and to
evaluate them in a bottom-up manner in the style of Satchmo [69] (formalized
as PUHR tableaux [27]) and CPUHR tableaux [13]. Furthermore, abduction
and integrity constraints can be expressed in CHRY in a straightforward way.
The contribution of CHRY is, thus, a platform to experiment with several logic
programming paradigms in a common implemented setting, rather than a new
logic programming language.

Implementation (Chapter 6)

The constraint programming technology has matured to the point where it is
possible to isolate some essential features and offer them as libraries or embed-
ded cleanly in general purpose host programming languages. At the moment,
most constraint systems are either extension of a programming language (often
Prolog), e.g. Eclipse, or libraries which are used together with conventional pro-
gramming language (often C or C++), e.g. ILOG Solver. Due to the growing
popularity of Java and the possibilities of the Internet, there is a big interest to
provide constraint handling in Java to implement application servers, e.g. for
planning or scheduling systems.

In this work, we describe the design of a Java Constraint Kit, called JACK,
consisting of a high-level language for writing constraint solvers (JCHR) and a
generic search engine (JASE) to solve combinatorial problems. JCHR is an im-
plementation of Constraint Handling Rules in Java. Because of the incomplete

constraint propagation methods used for scheduling problems, the application
programmer often has to explicitly use a labeling phase in which a backtracking
search blindly tries different values for the variables. In JACK, search can be
performed using JASE.

Applications (Chapter 7)

CHR is used by more than 40 projects worldwide and has been used to solve
a wide range of applications. In this work, we present two applications, one
solves a university timetabling problem, the other solves a room assignment
problem. In both applications, we have to distinguish two kinds of constraints.
Hard constraints are conditions that must be satisfied, soft constraints may be
violated, but should be satisfied as far as possible. The classical approach to
deal with these requirements is based on a variant of branch & bound search.
In this work, we present new approaches dealing with soft constraints. In the
first approach, we associate values with an estimate of how selecting a value
to influence solution quality, i.e. which value is known (or expected) to violate
soft constraints, or the other way round, which value is known (or expected)
to satisfy soft constraints. In the second approach, the cost function used in
branch & bound search and measuring the quality of a solution is computed
during the constraint solving process.

CHAPTER 1. INTRODUCTION

Chapter 2

Constraint Programming

2.1 Constraint (Logic) Programming

Constraint programming is based on the idea that many interesting and difficult
problems can be expressed declaratively in terms of variables and constraints.
The variables range over a (finite) set of values and typically denote alternative
decisions to be taken. The constraints are expressed as relations over sub-
sets of variables and restrict admissible value combinations for the variables.
Constraints can be given explicitly, by listing all possible tuples, or implicitly,
by describing a relation in some (say mathematical) form. A solution is an
assignment of variables to values which satisfies all constraints. Constraint pro-
gramming can be expressed over many different domains like linear terms over
rational numbers, Boolean algebra, finite/infinite sets or intervals over float-
ing point numbers. Very interesting development is possible for most of these
domains or more general domain independent constraint solvers.

Constraint logic programming (CLP) is the most developed of the constraint
programming paradigms [55, 98, 50, 56]. In the last 15 years, CLP has evolved
from a basic research idea to a powerful programming paradigm. CLP combines
the declarativity of logic programming with the efficiency of constraint solving.

Constraint solving is the mechanism which controls the interaction of the
constraints. Each constraint can deduce necessary conditions on the variable
domains of its variables. The methods used for this constraint reasoning depend
on the constraints, in the finite domain case they range from general but rather
syntactic inference rules to complex combinations of algorithms used in the
global constraints. Whenever a constraint updates a variable, the constraint
propagation will wake all relevant constraints to detect further consequences.

In the beginning, constraint solving was “hard-wired” in a built-in constraint
solver written in a low-level language, termed the “black-box” approach. While
efficient, this approach makes it hard to modify a solver or build a solver over
a new domain, let alone reason about and analyze it. As the behavior of the
solver can neither be inspected by the user nor explained by the computer,
debugging of constraint-based programs is hard. Also, one lesson learned from
practical applications is that constraints are often heterogeneous and application
specific. Several proposals have been made to allow more flexibility and cus-
tomization of constraint solvers, often termed “glass-box” approaches [36, 98].

7

8 CHAPTER 2. CONSTRAINT PROGRAMMING

The most far-reaching proposal is the “no-box” approach: Constraint Handling
Rules (CHR) [46].

2.2 Constraint Handling Rules

Constraint Handling Rules (CHR) [46] is a powerful special-purpose declarative
programming language for writing constraint solvers either from scratch or by
modifying existing solvers. CHR is essentially a committed-choice language
consisting of multi-headed guarded rules that transform constraints into simpler
ones until they are solved.

We now review the syntax and the declarative and operational semantics of
CHR. For a more complete overview of CHR see [45].

2.2.1 Syntax

First-order terms, predicates, and atoms are defined in the usual way. We use
two disjoint sorts of predicate symbols for two different classes of constraints:
built-in constraint symbols and user-defined constraint symbols (CHR symbols).
We call an atomic formula with a constraint symbol an atomic constraint or
simply a constraint. Built-in constraints are those handled by a predefined
constraint solver that already exists. User-defined constraints are those defined
by a CHR program.
A CHR program is a finite set of rules. There are three kinds of rules.

A simplification rule is of the form

Rulename @ H & C | B
a propagation rule is of the form
Rulename @ H = C | B

a simpagation rule is of the form
Rulename @ H1\Hy & C' | B,

where Rulename is a unique identifier of a rule (names of rules are optional),
the head H (or H;\H>) is a non-empty conjunction of user-defined constraints,
the guard C is a conjunction of built-in constraints and the body B is a goal. A
goal is a conjunction of built-in and user-defined constraints. A guard “true” is
usually omitted together with the the commit symbol “|”. A CHR symbol is
defined in a CHR program if it occurs in the head of a rule in the program.
Since a simpagation rule is an abbreviation for the simplification rule

Rulename @ Hy NHy, & C | H A B

there is no need to discuss them further in this section. However, we rely on

simpagation rules later when we describe implementations and applications of
CHR.

2.2. CONSTRAINT HANDLING RULES 9

2.2.2 Declarative Semantics

The logical meaning of a simplification rule is a logical equivalence provided the
guard holds Vz (C — (H < 3y B))!; the logical meaning of a propagation rule
is an implication provided the guard holds Vz (C' — (H — 3y B)), where T is
the list of variables occurring in H and C and y are the variables occurring in B
only. The logical meaning of a CHR program P is the conjunction of the logical
meanings of its rules, P, and a constraint theory CT that defines the built-in
constraints. We require C'T to define the predicate = as syntactic equality.

2.2.3 Operational Semantics

The operational semantics of CHR can be described as a state transition system
for states of the form Gy, where G (the goal) is a conjunction of user-defined
and built-in constraints and V a sequence of variables. The notation Gy and
G yser denotes the built-in constraints and user-defined constraints, respectively,
in a goal G.

We require that states are normalized so that they can be compared syntacti-
cally in a meaningful way. Basically, we require that the built-in constraints are
in a (unique) normal form, where all syntactic equalities are made explicit and
are propagated to the user-defined constraints. Furthermore, we require that
the normalization projects out strictly local variables, i.e. variables appearing
in the built-in constraints only.

Definition 2.1 [1, 7]

Let AV be a function N : S = S, where S is the set of all states and let
Gy € S and N(Gy) = GY,. Assume that there is a fixed order on variables
appearing in a state such that the variables of V precede all other variables.
Then N is a normalization function, if it fulfills the following conditions:

e FEquality propagation: G, is obtained from G'y by replacing each variable =
that is uniquely determined in Gy, i-e. for which CT =V (Gpyir = x=t)
holds, by the corresponding term ¢, except if ¢ is a variable that comes
after x in the variable order.

o Projection: The following must hold:

CcT |= A ((Hi'Gbuilt) < Glbuilt)a

!

where z are the variables that appear in G, but not in G,

o Uniqueness: If
N(Gly) = Glg; and

N(G2y) = G2, and
CT E (32Glyuwir) < (39G2%buitt),

holds, where Z and ¢, respectively, are the strictly local variables of the
two states, then:

i o !
Glbuilt - G2built‘

1YF denotes the universal closure of a formula F

10 CHAPTER 2. CONSTRAINT PROGRAMMING

O

Given a CHR program P we define the transition relation — p by introducing
two kinds of computation steps (Figure 2.1).

In Figure 2.1, an equation c(ti,...,tn)=d(s1,-..,8n) of two constraints
stands for t1=s1 A ... A tp,=s, if ¢ and d are the same predicate symbols and
for false otherwise. An equation (py A ... A pp)=(q1 A ... A @) stands for
=@ N ...\ pr=qy, if n = m and for false otherwise. Conjuncts can be per-
muted since conjunction is associative and commutative.

Simplify

It (H & C'B) is a fresh variant of a rule with variables %
and CT IZV(Gbuilt — HE(H:HI/\C))
then (H'AG)w—p N(H=H'ABACAQG))

Propagate

If (H = C'| B) is a fresh variant of a rule with variables %
and CT IZV(Gbuilt — HE(H:HI/\C))
then (H'AG)—»p N(H=H'ABACANH'AG))

Figure 2.1: Computation Steps of CHR

To Simplify user-defined constraints H' means to remove them from the
state H' A G and to add the body B of a fresh variant of a simplification rule
(H & C'| B) and the equation H=H' and the guard C to the resulting state
G, provided H' matches the head H and the guard C is implied by the built-in
constraints appearing in G. In this case we say that the rule R is applicable to
H'. A “variant” of a formula is obtained by renaming its variables. A “fresh”
variant contains only new variables. “Matching” means that H' is an instance
of H, i.e. it is only allowed to instantiate (bind) variables of H but not variables
of H'. In the logical notation this is achieved by existentially quantifying only
over the fresh variables Z of the rule to be applied in the condition.

The Propagate transition is like the Simplify transition, except that it
keeps the constraints H' in the state. Trivial nontermination caused by apply-
ing the same propagation rule again and again is avoided by applying a propa-
gation rule at most once to the same constraints. A more complex operational
semantics that addresses this issue can be found in [1].

1 denotes the transitive closure, —% denotes the reflexive and transitive
closure of —p.

An initial state for a goal G is the state N'(Gy) where V is a sequence of all
variables appearing in G. A final state is either of the form false (such a state is
called failed) or of the form G with no computation step possible anymore and
G not false. Final states containing user-defined constraints are called blocking.
Final states of the form C, where C'is a satisfiable built-in constraint, are called
successful.

A computation of a goal G in a program P is a sequence Sy, S, ... of states
with S; —p S;11 beginning with the initial state for G and ending in a final
state or diverging. Where it is clear from the context, we will drop the reference
to the program P.

2.2. CONSTRAINT HANDLING RULES 11

Example 2.2 Let < and < be built-in constraint symbols. We define a user-
defined constraint symbol max, where max (X,Y,Z) means that Z is the maximum
of X and Y:

max(X,Y,Z) & X<Y | Z=Y.
max(X,Y,Z) & Y<X | Z=X.
max (X,Y,Z) = X<Z A Y<Z.

The first rule states that max(X,Y,Z) can be simplified into Z=Y in any goal
where it holds that X<Y. Analogously for the second rule. The third rule propa-
gates constraints. It states that max (X,Y,Z) unconditionally implies X<Z A Y<Z.
Operationally, we add these logical consequences as redundant constraints, the
max constraint is kept.

To the goal max(1,2,M) the first rule is applicable:

max(1,2,M) +— M=2.

To the goal max(A,B,M) A A<B the first rule is applicable:

max(A,B,M) A AKB +— M=B A A<B.

To the goal max (A,A,M) both simplification rules are applicable, and in both
cases:

max(A,A,M) +— M=A.

Redundancy from the propagation rule is useful, as the goal max(4,3,3)
shows: To this goal only the propagation rule is applicable, but then the first
rule:

max(A,3,3) +— max(4,3,3) AA<3 +— N(B3=3AA<3) =A<3.
Note, that the constraint 3=3 is simplified by the normalization function N .
O

2.2.4 Soundness and Completeness

We now relate the operational and declarative semantics of CHR. These results
are based on work of Jaffar and Lassez [55], Maher [68], and van Hentenryck
[98]. The proofs for the following theorems can be found in [2].

Definition 2.3 Let A be a state which appears in a computation of G. The
logical meaning of a state A is the formula

Iy A,

where 7 are the (local) variables appearing in A and not in the rest of G. The
logical meaning of a final state is called answer constraint. i

The following results are based on the fact that the computation steps of
CHR preserve the logical meaning of states. Lemma 2.4 says that all sates in a
computation are logically equivalent.

Lemma 2.4 Let P be a CHR program and G be a goal. Then for all com-
putable constraints C; and Cs of G the following holds:

P,CT IZ V(Cl s Cz)

12 CHAPTER 2. CONSTRAINT PROGRAMMING

Theorem 2.5 (Soundness) Let P be a CHR program and G be a goal. If G
has a computation with answer constraint C' then
P,CT EV (C & G).

O

Theorem 2.6 (Completeness) Let P be a CHR program and G be a goal
with at least one finite computation. If P,CT E V (C + @), then G has a
computation with answer constraint C' such that

P,CT =V (C + C").

O

Theorem?2.6 is stronger than the completeness result for CLP languages as
presented in [68]. We can reduce the disjunction in the strong completeness the-
orem presented there to a single disjunct in our theorem. This is possible, since
our declarative semantics is stronger and consequently, according to Lemma 2.4,
all computable constraints of a given goal are equivalent

Chapter 3

Analysis of Rule-based
Constraint Solvers

Program analysis, both static and dynamic, is the central issue of program-
ming environments. Static analysis consists of analyzing the program source
code. The role of dynamic analysis is to understand program execution. In this
chapter, we present both static and dynamic analysis methods for CHR.

Previous work [6, 1, 7] have shown that static analysis techniques are avail-
able for an important property of any constraint solver, namely confluence:
The result of a computation should be independent from the order in which
constraints arrive and in which rules are applied to the constraints. For conflu-
ence of terminating CHR programs we were able to give a decidable, sufficient
and necessary condition [1]. To make a non-confluent CHR program confluent
by adding new rules, we also proposed a completion method [4]. In Section 3.1,
we summarize previous confluence results. Detailed confluence results for sim-
plification rules only are published in [6, 7]. These results have been simplified
and extended to all kinds of rules in [1, 2].

A fundamental question in programming language semantics is when two
programs should be considered equivalent. In Section 3.2, we introduce a notion
of operational equivalence for CHR, programs and user-defined constraints. We
give a decidable, sufficient and necessary syntactic condition for operational
equivalence of terminating and confluent CHR programs [5].

To analyze CHR executions, we present a visualization tool, called Visu-
alCHR, which supports the development of rule-based constraint solvers. Visu-
alCHR can be used to debug and to improve the efficency of constraint solvers.
It can also be used to understand the details of constraint propagation meth-
ods and the interaction of different constraints implemented by means of CHR.
Thus, it is suitable for users at different levels of expertise.

3.1 Confluence
The confluence property of a program guarantees that any computation starting
from an arbitrary initial state, i.e. any possible order of rule applications, results

in the same final state. In the following, we just give an overview on confluence
results for CHR programs, for details see [7, 1].

13

14 CHAPTER 3. ANALYSIS OF CONSTRAINT SOLVERS

Definition 3.1 A CHR program is called confluent if for all states S,S1,Sa:
If S—* S and S —* Ss then S; and S» are joinable. Two states S; and S, are
called joinable if there exist states 11 and T5 such that S; —* T and Sy —* Th
and Ty,T> are variants of each other. O

To analyze confluence of a given CHR program we cannot check joinability
starting from any given ancestor state S, because in general there are infinitely
many such states. However one can restrict the joinability test to a finite num-
ber of “minimal” states based on the following observations: First, adding con-
straints to a state cannot inhibit the application of a rule as long as the built-in
constraints remain consistent (monotonicity property, cf. Lemma 3.17 in Sec-
tion 3.2.2). Hence we can restrict ourselves to ancestor states that consist of the
head and guards of two rules. Second, joinability can only be destroyed if one
rule inhibits the application of another rule. Only the removal of constraints
can affect the applicability of another rule, in case the removed constraint is
needed by the other rule. Hence at least one rule must be a simplification rule
and the two rules must overlap, i.e. have at least one head atom in common in
the ancestor state. This is achieved by equating head atoms in the state.

Definition 3.2 Given a simplification rule R; and an arbitrary (not necessarily
different) rule Ry, whose variables have been renamed apart. Let H; A A; be the
head and C; be the guard of rule R; (i = 1,2). Then a critical ancestor state of
R, and R is

(H1 ANA; AN Hoy A (A1:A2) ANCL A Cz)v,

provided A; and A, are non-empty conjunctions and CT |= 3((A1=42) AC1 A
Cy).
O

The application of R; and R,, respectively, to a critical ancestor state of Ry
and Ry leads to two states that form the so-called critical pair.

Definition 3.3 Let S be a critical ancestor state of B; and Ry. If S — S;
using rule Ry and S — S5 using rule R» then the tuple (51, S2) is a critical pair
of Ry and R,. A critical pair (S1,52) is joinable, if S; and S, are joinable.

O

Definition 3.4 A CHR program is called terminating, if there are no infinite
computations. O

In general, testing the termination of a CHR program is undecidable. How-
ever, for most existing CHR programs it is straightforward to prove termination
using simple well-founded orderings [47].

The following theorem from [6, 1, 7] gives a decidable, sufficient and neces-
sary condition for confluence of a terminating CHR program:

Theorem 3.5 A terminating CHR program is confluent iff all its critical pairs
are joinable.
O

3.2. OPERATIONAL EQUIVALENCE 15

Example 3.6 Consider the program for max of Example 2.2. The following
critical pair stems from the critical ancestor state! (max(X,Y,Z)AX < Y)ix,v,7 of
the first rule and the third one:

(S1,82) := (Z=Y A X<Y , max(X,Y,Z) A X<Y A X<Z A Y<Z)

(S1,52) is joinable since S; is a final state and the application of the first
rule to S results in S;.
O

3.2 Operational Equivalence

A fundamental and hard question in programming language semantics is
when two programs should be considered equivalent. For example correctness
of program transformation can be studied only with respect to a notion of
equivalence. Also, if modules or libraries with similar functionality are used
together, one may be interested in finding out if program parts in different
modules or libraries are equivalent. In the context of CHR, this case arises
frequently when constraint solvers written in CHR are combined. Typically, a
constraint is only partially defined in a constraint solver. We want to make sure
that the operational semantics of the common constraints of two programs do
not differ, and we are interested in finding out if they are equivalent.

For example, we would like to know if the following two CHR rules defining
the user-defined constraint max

max(X,Y,Z) & X<Y | z=Y.
max(X,Y,Z) & X>Y | Z=X.

are operationally equivalent with these two rules

max(X,Y,Z) & X<Y | Z=Y.
max(X,Y,Z) & X>Y | Z=X.

or if the union of the rules results in a better constraint solver for max.

The literature on equivalence of programs in logic-based languages is sparse.
In most papers that touch the subject, a suitable notion of program equivalence
serves as a correctness criterion for transformations between programs, e.g. in
partial evaluation and deduction. Our concern is the problem of program equiva-
lence in its generality, where the programs to be compared are independent from
each other.

[67] provides a systematic comparison of the relative strengths of various for-
mulations of equivalence of logic programs. These formulations arise naturally
from several formal semantics of logic programs. Maher does not study how
to test for equivalence. The results may be extensible to constraint logic pro-
grams, but committed-choice languages like CHR have different semantics that
induce different notions of equivalence. In particular, in CHR the distinction
between successful, failed or deadlocked goals is secondary, but the distinction
between a goal and its instances is vital. For similar reasons, [51] among other

1For readability, variables from different rules have been identified to have an overlap.

16 CHAPTER 3. ANALYSIS OF CONSTRAINT SOLVERS

things extends Maher’s work by considering relationships between equivalences
derived from semantics that are based e.g. on computed answer substitutions.
Gabbrielli et. al. are not concerned with tests for equivalence, either.

Like [51] we are concerned with equivalences of the observable behavior of
programs. Observables are then a suitable abstraction of execution traces. In
case of equivalence based on operational semantics expressed by a transition
system, it is common to define as observables the results of finite computations,
where one abstracts away local variables, see e.g. [41].

The following definition states that two CHR programs are operationally
equivalent if for each goal, the final state in one program is the same as the final
state in the other program.

Definition 3.7 Let P; and P, be CHR programs. A state S is P;, Py-joinable,
iff there are two computations S |—>j‘31 S1 and S »—)}‘,2 S2, where S; and S> are
final states, and S; and S, are variants of each other.

Let P and P> be CHR programs. P, and P, are operationally equivalent if
all states are P;, P»-joinable. O

It is tempting to think that a suitable modification of the concept of conflu-
ence can be used to express equivalence of programs. In Section 3.2.1, we show
that a straightforward application of our confluence test is too weak to capture
the operational equivalence of CHR programs.

In practice, one is often interested in comparing implementations of con-
straints instead of whole programs. Hence we investigate a notion of operational
equivalence for user-defined constraints that are defined in different programs.
We give a sufficient syntactic condition for constraints defined in terminating
and confluent CHR programs (Section 3.2.2). For a subclass of programs which
have only one user-defined constraint in common, we are able to give a sufficient
and necessary syntactic condition.

Based on these results, we are finally able to give a decidable, sufficient and
necessary syntactic condition for operational equivalence of terminating and
confluent CHR programs (Section 3.2.3).

3.2.1 Compatibility of Programs

We can use our confluence test to ensure that the different, confluent programs
are “compatible”: The union of the programs is confluent.

Definition 3.8 Let P, and P, be two confluent and terminating CHR programs
and let the union of the two programs, P; U P, be terminating. P; and P, are
compatible if P; U P» is confluent. O

Testing the compatibility of P, and P» means to test the joinability of the
critical pairs of P; U P, i.e. the critical pairs of P; united with the critical pairs
of P, united with critical pairs coming from one rule in P; and one rule in P;,
and to test the termination of P; U P,. Note that critical pairs from rules of
different programs can only exist, if the heads of the rules have at least one
constraint in common.

If the confluence test fails, we can locate the rules responsible for the prob-
lem. If the test succeeds, we can just take the union of the rules in the two

3.2. OPERATIONAL EQUIVALENCE 17

programs. This means that a common CHR symbol can even be partially de-
fined in the programs which are combined.

Example 3.9 P; contains the following CHR rules defining max:

max(X,Y,Z) & X<Y | Z=Y.
max(X,Y,Z) & X>Y | Z=X.

whereas P, has the following definition of max:

max(X,Y,Z) & X<Y | Z=Y.
max(X,Y,Z) & X>Y | Z=X.

We want to know whether the definitions of max are compatible. There are
three critical ancestor states coming from one rule in P; and one rule in P;:

e max(X,Y,Z) A X<Y A X<Y stems from the first rule of P; and the first rule
of PQ .

e max(X,Y,Z) A X>Y A X<Y stems from the second rule of P; and the first
rule of Ps.

e max(X,Y,Z) A X>Y A X>Y stems from the second rule of P; and the second
rule of P,.

Since the critical pairs coming from the critical ancestor states described
above are joinable, the two definitions of max are compatible. Hence we can just
take the union of the rules and define max by all four rules.

Note that the compatibility test does not ensure that the constraints are
operationally equivalent. In P; the goal max(X,Y,Z) A X>Y has the following
computation:

max(X,Y,Z) AX>Y —p Z=X A X>Y

In P, the initial state max(X,Y,Z) A X>Y is also final state, i.e. no compu-
tation step is possible. On the other hand, in P, the goal max(X,Y,Z) A X<Y
has a non-trivial computation, while the goal is a final state in P;.

The constraint max is “operationally stronger” in P; U P, than in each pro-
gram alone, in the sense that more computation steps are possible.

O

3.2.2 Equivalence of Constraints

We now introduce a test to ensure that the definitions of the same CHR symbol
in different programs are not only compatible, but indeed are operationally
equivalent. We first restrict our attention to states that consist of one CHR
symbol (only) being common to both programs.

Definition 3.10 Let ¢ be a CHR symbol. A c-state is a state where all user-
defined constraints have the same CHR symbol c. a

Definition 3.11 Let ¢ be a CHR symbol defined in two CHR, programs P; and
P,. P, and P, are operationally c-equivalent if all c-states are P;, Py-joinable. O

18 CHAPTER 3. ANALYSIS OF CONSTRAINT SOLVERS

We give now a sufficient syntactic condition for operational c-equivalence
of terminating CHR programs. As with confluence, we will try to find a finite
subset of states, such that the P;, P>-joinability of the subset implies P;, P»-
joinability of all c-states. As we will see, the similarities with confluence will not
go much beyond that, mainly because in operational c-equivalence two different
programs are involved.

The following example illustrates, that, first of all, the critical pairs known
from confluence (and compatibility) are not the right subset of states to ensure
operational equivalence.

Example 3.12 Let P; be the following CHR program:

p(a) & s.
p(b) &r.
sAr & true.

and let P, consist only of the first two rules.

It is not sufficient for operational equivalence to consider the critical pairs
coming from the critical ancestor states p(a) and p(b): In P; the conjunction
p(a) A p(b) leads to true, but in P» the goal sAr is a final state. O

The example indicates that we not only have to consider c-states, but also
those states that can be reached from c-states. Because even if these states can
be reached in different programs due to confluence and even if they are final
states, there may be contexts (extensions of the states by more constraints) in
which the computation can be continued, and it can be continued in different
ways in the different programs. The idea is to avoid this by making sure that
also the user-defined constraints that occur in these states are operationally
equivalent.

For a given CHR symbol ¢ one can safely approximate the set of all CHR
symbols that appear in successor states to a c-state by looking at the bodies
of rules with ¢ in the head. Based on this idea we introduce the notion of
dependency between CHR symbols.

Definition 3.13 A CHR symbol ¢ depends directly on a CHR symbol ¢/, if
there is a rule in whose head ¢ appears and in whose body ¢’ appears. A CHR
symbol ¢ depends on a CHR symbol ¢/, if ¢ depends directly on ¢/, or if ¢ depends
directly on a CHR symbol d and d depends on ¢'.

The dependency set of a CHR symbol ¢ is the the set of all CHR symbols
that ¢ depends on. Let Cp,,Cp, be the dependency sets of ¢ with respect to
Py, and P, respectively. Each CHR symbol from (Cp, N Cp,) U {c} is called a
c-dependent CHR symbol. O

Definition 3.14 Let P, and P, be CHR programs. The set of c-critical states
is defined as follows:

{HAC | (H ©® C!B)e PLUP,, where ® € { &, = } and
H contains only c-dependent CHR, symbols}

3.2. OPERATIONAL EQUIVALENCE 19

The set of c-critical states is formed by taking the head and guards of all
rules in whose heads c-dependent CHR symbols appear.

In the following we will show that P;, Py-joinability of these minimal states
is sufficient for P;, P>-joinability of arbitrary c-states. Before we can state and
prove the theorem, we need several lemmata.

The first lemma states that normalization has no influence on applicability
of rules. We therefore can assume in the following that states are normalized
except where otherwise noted.

Lemma 3.15 Let S and S’ be states.
S+~ S’ holds iff N(S) — 5"
Proof: Can be found in [7]. O

The following lemma shows that a computation can be repeated in any
context, i.e. with states in which constraints have been added.

Definition 3.16 The pair of constraints (G1,G3) is called connected via V iff
all variables that appear both in G; and in G also appear in V. m|

Lemma 3.17 [Monotonicity] If (G, H) is connected via V' and Gy —* G,
and V C V', then

(GANH)p —* N((GI A H)yi).
Proof: Can be found in [7]. O

Next we show that a computation can be repeated in a state where variables
have been instantiated according to some equations.

Definition 3.18 Let C be a conjunction of built-in constraints. Let H and H'
be conjunctions of user-defined constraints with disjoint variables. C[H=H'] is
obtained from C' by replacing all variables z by the corresponding term ¢, where
CT |E H=H' — (z=t) and z appears in H and ¢ appears in H'. |

Lemma 3.19 Let P be a CHR program and let R be a rule from P with
head H and guard C. Let H' be a conjunction of user-defined constraints. Let
(HANH=H'AC)y and (H' A\C[H=H'])y be initial states, where H and H' have
disjoint variables. If CT = 3z(H = H'AC), where Z are the variables appearing
in H,and (HAH = H' AC)y =% Gy, then (H' A C[H=H'])y =5 Gyr.

Proof: The claim holds due to the equality propagation property of the nor-
malization function A and according to Lemma 3.15. A detailed proof can be
found in [5]. O

Next we show that a computation can be repeated in a state where redundant
built-in constraints have been removed.

Lemma 3.20 Let C be a conjunction of built-in constraints. If HACAG —* S
and CT =V (Gpyir = C) then HAG —* S.

Proof: This is a consequence of the following claim: If HAC A G — S and
CT EV (Gpyir — C) then H AG — S. This claim can be proven by analyzing
each kind of computation step [5]. O

20 CHAPTER 3. ANALYSIS OF CONSTRAINT SOLVERS

Finally, the last Lemma refers to joinability of c-critical states.

n
Definition 3.21 Let C = A C; be a conjunction of constraints, 7 a permu-
i=1

m

tation on [1,...,n], where 0 < m < n, then A Cr, is a subconjunction of C.
i=1

O

Lemma 3.22 Let P, and P> be terminating CHR programs defining a CHR
symbol ¢ and let G be a goal. If all c-critical states are P;, Py-joinable and
there is a rule in P, that is applicable to G e then there is a rule in P, that is
applicable to a subconjunction of G yser-
Proof:

We prove the claim by contradiction. We assume that there is a rule R; in
P; that is applicable to Gyser but there is no rule Ry in P, that is applicable to
a subconjunction of Gyser. Let Hy be the head of Ry and let Cy be its guard.

Since all c-critical states are Pi, Py-joinable, Hy; A C; is Py, P>-joinable, i.e.
H, ANCy =p, S and H; ACy =5, S, where S is a final state. Since the
program is terminating, S is different from H; A Cy. Then there is a rule R,
in P, with head Hy and guard C, that is applicable to a subconjunction Hg
of Hy, i.e. CT = C1 — 3zZ(H2 = Hs A C2). Since R; is applicable to Gyser,
CT = Gpyit = Fg(H1 = Gyser A C1). Then the following holds CT = Gpyir —
dz(H, = Hg A C5), where Hg is a subconjunction of Gyser. This contradicts
the assumption.

O

We are now ready to state and prove the main theorem that gives a sufficient
condition for operational c-equivalence.

For the proof of Theorem 3.24 to go through, CHR programs have to satisfy
a range-restriction condition: In every rule, every variable in the body appears
also in the head, i.e. there are no local variables. Nevertheless, our theorem holds
for general CHR programs using the same proof technique, but the proof would
be longish and cluttered with technicalities taking into account local variables.
The proof can be found in [5].

The proof is by induction on the number of so-called macro-steps in a com-
putation. These are conveniently chosen non-empty, finite sub-computations,
as the following definition shows:

Definition 3.23 Let R be a CHR rule with head H and guard C and let
(H A C)y =t By be a computation, where By is a final state. Let H' A G
be a goal and let R be applicable to H'. A macro step of a goal H' A G is a
computation of the form (H' A G)y =T N((BAH = H' AG)yr). O

Theorem 3.24 Let ¢ be a CHR symbol defined in two confluent and termi-
nating CHR programs P; and P,. Then the following holds: P, and P, are
operationally c-equivalent if all c-critical states are P;, P>-joinable.

Proof:

Using Lemma 3.22 we can show that the number of macro steps in a com-
putation of a goal G in P; and P, are equal. Since P; and P, are terminating,
the number of macro steps in these computations is finite.

In order to prove that P; and P, are operationally c-equivalent, we prove by
induction over the number of macro steps that the final states of a goal G in P,

3.2. OPERATIONAL EQUIVALENCE 21

and Ps, respectively, are equal. Since P, and P; are confluent, any computation
for the goal G will lead to the same final state.

Base case: n = 0. (G is a final state for P, and P, i.e. no rule is applicable.

Induction step: We assume that the induction hypothesis holds for m < n.
We prove the assertion for 7.

Let G be of the form H' A G’ and there is a rule R in P; that is applicable
to H', then according to Lemma 3.22 there is a rule in P, which is applicable
to a subconjunction of H'.

Let R have head H and guard C. Then there is a computation of the
form (H A C)y =3, By, where B is a final state. In the following we use
the assumption that all c-critical states are Pj, Py-joinable: There is also a
computation (H A C)y —}, B, where B is a final state.

Let G’ be of the form G, ,,, AG,,.,, where G}, .., and G',,.,. are conjunctions

use user
of built-in and user-defined constraints, respectively. Then the following holds:

e According to Lemma 3.17:
(HANC ANH=H'")y, »p N((BAH=H'")y,)

e According to Lemma 3.19:
(H' NC[H=H"))y, =»p, N((BAH=H'")y,)

e According to Lemma 3.17:
(H' A CH=H"] A Glyyyp)vs = N((BAH=H'AG}1)vs)

e Since R is applicable to H', the applicability condition CT =V (G},.x —
Az(H=H'AC)) holds. CT =V (3z(H=H'AC) — C[H=H"]) holds, hence
CT =V (G — C[H=H']) holds. Therefore, according to Lemma 3.20,
the built-in constraint C[H=H'] can be removed from the state and the
same rules remain applicable:

(HI A Glbuilt)V:B '_)}(31 N((‘B ANH=H'A Glbuilt)vz)

e According to Lemma 3.17 we can add the constraints G',,,,:

(HI A Glbuilt A G{user)\h H}(?l N((B ANH=H'"NA Glbuilt NG,)V4)

user

e Since G' = G i N G'yser the following holds:

user

(H' NGy, =5 N(BAH=H'AG')y,)
Py

By the same argumentation as above the following holds:

(H'AG")y, =»p, N(BANH=H'AG")y,).

The number of macro steps in a computation for the goal BA H=H' AG' is
n — 1. By the induction hypothesis and according to Lemma 3.15 the following
holds:

N({(BANH=H'AG")y,) —p, Sk and N({(BAH=H'ANG")y,) —p, Sk

The final states of G in P, and P», respectively, are equal, i.e. Sg.

O

We now give an example of two operationally equivalent user-defined con-
straints.

Example 3.25 The constraint sum(List,Sum) holds if Sum is the sum of el-
ements of a given list List. The CHR symbol sum can be implemented in
different ways.

Let P; be the following CHR program:

22 CHAPTER 3. ANALYSIS OF CONSTRAINT SOLVERS

sum([],Sum) < Sum=0.
sum([X|Xs],Sum) & sum(Xs,Suml) A Sum = Suml + X.

Let P, be a CHR program that implements sum using an auxiliary CHR
symbol sumi:

sum([],Sum) < Sum = 0.

sum([X|Xs],Sum) & suml(X,Xs,Sum).

suml (X, [],Sum) < Sum = X.

suml (X,Xs,Sum) & sum(Xs,Suml) A Sum = Suml + X.

There are two sum-critical states coming from P; and P;: sum([],Sum) and
sum([X|Xs],Sum). These sum-critical states are P;, P»-joinable:

For the sum-critical state sum([],Sum) the final state is Sum = 0 in both P;
and P2.

A computation of the sum-critical state sum([X|Xs],Sum) in P; proceeds as
follows:

sum([X|Xs], Sum) +—p, sum(Xs,Suml) A Sum = Suml + X
A computation of the same initial state in P, results in the same final state:
sum([X|Xs], Sum) — p, sum1(X,Xs, Sum) — p, sum(Xs, Suml) A Sum = Suml + X

Since all sum-critical states are P;, P>-joinable, P and P» are operationally
sum-equivalent. O

The next example shows why our joinability test for critical states is a suf-
ficient, but not necessary condition for operational equivalence.

Example 3.26 Let P; be the following CHR program

p(X) & 0! q®X).
q(X) & X<0 | true.

and let P; be the following one

p(X) & X>01 qX).
q(X) & X<0 | false.

P, and P, are operationally p-equivalent, but the p-critical state q(X) A X<0
is not Py, P»-joinable.
O

The reason that we can only give a sufficient, but not necessary condition
for operational c-equivalence in the general class of CHR programs is that the
dependency relation between user-defined constraints only approximates the
actual set of user-defined constraints that occur in states that can be reached
from a c-state.

3.2. OPERATIONAL EQUIVALENCE 23

A sufficient and necessary condition: In practice, one is often interested
to compare constraint solvers which have only one CHR symbol in common. In
this case we can give a decidable, sufficient and necessary condition.

Theorem 3.27 Let ¢ be the only CHR symbol defined in two confluent and
terminating CHR programs P; and P,. P; and P,. Then the following holds: P;
and P, are operationally c-equivalent iff all c-critical states are Py, P>-joinable.
Proof:

“—" direction: Let P, and P» be operationally c-equivalent. We prove by
contradiction that all c-critical states are Py, Py-joinable: Assume that H A C is
a c-critical state that is not P;, P>-joinable, where H is the head of a rule from
P, U P, and C its guard.

Since P, and P, have only ¢ in common, the constraint symbol ¢ is the only
c-dependent CHR symbol, i.e. (Cp, N Cp,) U {c} = {c}. Therefore H A C is
a c-state. This contradicts the prerequisite that P; and P, are operationally
c-equivalent.

“«<=" direction: This is a special case of Theorem 3.24.

O

Theorem 3.27 gives a decidable characterization of the c-equivalent subset of
terminating and confluent CHR programs: P;, P»-joinability of a given c¢-critical
state is decidable for a terminating CHR program and there are only finitely
many c-critical states.

Example 3.28 The user-defined constraint range(X,Min,Max) holds if X is
between Min and Max.

Let P; be a CHR program that implements range using the CHR symbol
max:

max(X,Y,Z) & X<Y | Z=Y.
max(X,Y,Z) & X>Y | Z=X.

range(X,Min,Max) < max(X,Min,X) A max(X,Max,Max).

Let P, be a program defining range using the built-in constraint symbols <
and <:

range (X,Min,Max) < Max<Min | false.
range(X,Min,Max) < Min<Max | Min<X A X<Max.

P, and P, are not operationally range-equivalent, since the range-critical
state range(X, Min, Max) coming from P; is not P, P»-joinable: range(X, Min, Max)
can be reduced to max(X,Min,X) A max(X,Max,Max) in P;. In P, the answer
for the state range(X,Min,Max) is the state itself, because no rule is applicable.

P, is “operationally stronger” than P», since the computation step in P; does
not require that the values of Max and Min are known. This can be exemplified
by the goal range (5,6,Max). The inconsistency of the goal can be detected in
P,. In P, range(5,6,Max) is a final state.

O

24 CHAPTER 3. ANALYSIS OF CONSTRAINT SOLVERS

3.2.3 Equivalence of Programs

Based on the condition presented above for the operational equivalence of con-
straints we can also give a decidable, sufficient and necessary condition for
operational equivalence of terminating and confluent programs.

However, it is not enough to consider the union of all c¢-critical states for all
common CHR symbols ¢, as the following example illustrates.

Example 3.29 Let P; be

p<s.
sAq & true.

and let P, be

pP<s.
sAq < false.

P, and P, have three common CHR symbols, p, s and q. s and p are the p-
dependent constraint symbols. There are no s-dependent CHR, symbols except
s itself. Analogously for q.

p is the only p-critical state. It is P, P»-joinable. There is no s-critical state,
since q is not a s-dependent CHR symbol. Analogously for g.

Hence all p-, s and g-critical states are P;, P,-joinable, but the programs are
not operationally equivalent. sAq leads in P; to true and with P, to false. O

Still we can prove the operational equivalence of two programs by adapting
the definition of c-critical states:

Definition 3.30 Let P; and P, be CHR programs. The set of critical states
of Py and P, is defined as follows:

{HAC | (H ©®© CI/B)e PLUP,, where 0 e { &, = }}

O

Theorem 3.31 Let P; and P; be terminating and confluent programs. P; and
P, are operationally equivalent iff all critical states of P, and P, are Py, P»-
joinable.

Proof: Follows the proof of Theorem 3.27. O

3.2.4 Relationships

Operational equivalence of two confluent and terminating CHR programs im-
plies their compatibility, since operational equivalence of P; and P> implies the
confluence of P; U P». The converse does not hold, as the programs of Exam-
ple 3.9 show.

Furthermore, operational equivalence of two CHR, programs implies the op-
erational c-equivalence of all common constraints, since the set of critical states
is a superset of the union of all sets of the c-critical states. The converse does
not hold, as the programs of Example 3.29 show.

3.3. VISUALIZATION 25

3.3 Visualization

CLP presents in many cases advantages over imperative programming or
other declarative paradigms. Nevertheless, CLP is not as widely used as it
should by industrials. One of the factors that can presumably make the use of
CLP more pervasive by industry is the availability of advanced programming
environments which facilitate the development, debugging and exploitation of
systems based on this paradigm.

In particular, the development of applications using early CLP systems has
pointed out the need for studying CLP specific debugging and visualization
techniques [16]. Current constraint visualization tools focus on representing
and analyzing the search tree of a constraint program [90, 72, 91]. There is
a lack of intuitive interactive tools for debugging the behavior of constraint
solvers.

The contribution of this work is the development of a tool, called VisualCHR,
to support the development of constraint solvers written in CHR. Visual CHR
can be used to debug and to improve the efficency of constraint solvers. It can
also be used to understand the details of constraint propagation methods and
the interaction of different constraints implemented by means of CHR. Thus, it
is suitable for users at different levels of expertise.

We will illustrate the visualization tool of CHR by the following example.

Example 3.32 We define a user-defined constraint for a (partial) order leq
that can handle variable arguments.

Reflexivity @ leq(X,X) & true.
Antisymmetry @ leq(X,Y) A leq(Y,X) & X=Y.
Transitivity @ leq(X,Y) A leq(Y,Z) = leq(X,Z).

The CHR program implements reflexivity, antisymmetry and transitivity in
a straightforward way. The reflexivity rule states that 1eq(X,X) is logically true.
The antisymmetry rule means that if we find 1leq(X,Y) as well as 1eq(Y,X) in
the current store, we can replace them by the logically equivalent X=Y. The tran-
sitivity rule propagates constraints. It states that the conjunction of leq(X,Y)
and leq(Y,Z) implies 1leq(X,Z). Operationally, we add the logical consequence
leq(X,Z) as a redundant constraint.
O

3.3.1 Representation of the Constraint Store

In constraint programming, the constraint store stores information about vari-
ables expressed by constraints and the constraint solver tries to simplify the
store by constraint propagation and simplification. The constraint propagation
and simplification in CHR is defined by rules.

The visualization of the constraint propagation depends on the representa-
tion of the store. A constraint store can be represented graphically by a box
consisting of all its constraints. We call such representation boz view. In Fig-
ure 3.1, the goal 1leq(X,Y) A leq(Z,X) A leq(Y,Z) is represented in a box
view.

26 CHAPTER 3. ANALYSIS OF CONSTRAINT SOLVERS

Eonstrairt Store

leq(d, v}

leqiZ, ¥)
pr——————]

leqly, I}

!*li:_

Figure 3.1: Box View of a Constraint Store

Additionally, a constraint store can be represented by a set of sub-boxes,
where each sub-box consists of only one constraint. We call such representation
sub-box view. In Figure 3.2, the goal 1eq(X,Y) A leq(Z,X) A leq(Y,Z) is

represented in a sub-box view.
A

Figure 3.2: Sub-Box View of a Constraint Store

Constraint Store

‘ leqid, ¥} | leqi2, A}

B

3.3.2 Creation and Expansion of Graphs

Using a box view, the constraint propagation will be visualized by a linear
sequence. However, the visualization of constraints represented in a sub-box
view leads to a graph.

Initially, in a sub-box view of a constraint store the graph consists of the
nodes representing the goal, i.e. each node corresponds to a constraint. Visu-
alCHR provides an operation “next”, which uses the built-in inference engine
to expand the graph by applying rules applicable to nodes in the graph. For the
leq example, the transitivity rule is applicable on 1leq(X,Y) A leq(Y,Z) and
its body results in a node 1leq(X,Z) of the graph (Figure 3.3). The constraints
leq(X,Y) and leq(Y,Z) remain in the constraint store since the transitivity rule
is a propagation rule. To distinguish between constraints which are removed by
simplification rules and constraints remaining in the constraint store, we use dif-
ferent colors, i.e. orange for removed constraints and blue for constraints which
remain in the constraint store. Since in general more than one constraint may

3.3. VISUALIZATION 27

cause a rule to fire and more than one constraint can be added to the constraint
store in one rule application, we decided to represent the rule names as a node
of a graph. These nodes are clickable, i.e. by clicking these nodes the whole rule
as it appears in the constraint solver is displayed (Figure 3.4).

— = Graph Frame | =/
Erame Puild MHodify Help
H » ® ‘ |1_.q;>:__\'_z_w_\'_z v
Hext | Hip Call Goal |
Constraint Store
| =
[transitivity]
-
4 [+]
Legend
i) — =) G
&]Unsigned Java Applet Window

Figure 3.3: Step-by-Step Expansion

Expansion of the graph need not proceed in a step-by-step fashion. The
operation “skip” creates the whole graph. Figure 3.4 shows the graph resulting
from “skip” activated for the root. To distinguish between user-defined and
built-in constraints, we use different colors for them.

In a box view, the sequence initially consists of a root node associated with
the initial constraint store, i.e. the goal (Figure 3.1). Application of rules in-
duces a dependency relationship between the constraints in the constraint store.
This relationship can be displayed by marking one or more constraints which
cause a rule to fire with a different color. Figure 3.5 shows that first 1leq(X,Y)
and leq(Y,Z) are used to apply the transitivity rule and then leq(X,Y) and
leq(Y,Z) cause the transitivity rule to fire again.

3.3.3 Hiding Nodes

Typical graphs and sequences are too complex to be handled conveniently by
the techniques described so far. They require means to change (temporarily)
their structure, such that the user sees a compactified version abstracting from
details that are currently irrelevant. VisualCHR offers the concept of hiding
nodes representing either the constraints or the rules.

The user has a wide range of possibilities to hide and “unhide” nodes ex-
plicitly and to specify conditions to hide and unhide nodes automatically. For
example, one mouse click is sufficient to transform the sequence representing the
execution of the goal 1leq(X,Y), leq(Z,X), leq(Y,Z) such that only a small

28 CHAPTER 3. ANALYSIS OF CONSTRAINT SOLVERS

Figure 3.4: Expansion

part of the sequence is displayed, i.e. only the first derivation step and the (four)
remaining steps are hidden.

3.3.4 Implementation Issues

VisualCHR is implemented in Java. The implementation is divided into two
parts:

¢ Laying out and drawing the graph. That includes support for scaling the
graph, as well as support for hiding and unhiding of nodes.

e The user interface which provides for menus, cursor control, status bar,

The user interface is implemented using Swing [40].

The method for computing the layout is still primitive. However, the user has
the possibility to interact and to change the layout manually. We first considered
to use existing tools for drawing layouts for graphs, e.g. the graph visualization
system da Vinci [76]. Unfortunately, it is hard to design a powerful user interface

3.4. CONCLUSION AND FUTURE WORK 29

— =4 Graph Frame 24
Erame Build fedify Help
H » @ |Jea K v z... -
Call Gosl —————
Constraint Store
f =
::
[iransitivity @ leg{®, Y1, legiv, 20 ==> legit, 20]

Un-Hide Last
Legend -

Hide Fecursive Backuard
-m -m [Baill ide Recursive Eorward

&]Unsigned Java Applel Window | Mide Erevicus

Figure 3.5: Hiding Nodes

since the tools have a user interface of their own which can be customized in a
limited fashion only. Nevertheless, the method for computing and drawing the
graphs has to be improved by using more sophisticated approaches, e.g. [84].

3.4 Conclusion and Future Work

In Section 3.2, we introduced the notion of operational equivalence of CHR
programs. We gave a decidable, sufficient and necessary syntactic condition
for operational equivalence of terminating and confluent CHR programs. A
decidable, sufficient and necessary condition for confluence of a terminating
CHR programs was given in earlier work [6, 1, 7]. We have also shown that an
extension of the confluence notion to two programs, called compatibility, is not
sufficient to capture the operational semantics of CHR programs.

For practical reasons, we also investigated a notion of operational equivalence
for user-defined constraints that are defined in different programs. We gave a
sufficient syntactic condition for constraints defined in terminating and confluent
CHR programs. For a subclass of programs which have only one user-defined
constraint in common, we were able to give a sufficient and necessary syntactic
condition.

Future work aims to enlarge the class of CHR programs for which we can give
a sufficient and necessary syntactic condition for operational equivalence. We
also plan to investigate the relationship between operational equivalence and
logical equivalence of CHR programs. Furthermore, operational equivalence
together with completion [4] provide a good starting point for investigating

30 CHAPTER 3. ANALYSIS OF CONSTRAINT SOLVERS

partial evaluation, and program transformation in general, of constraint solvers.

In Section 3.3, we have presented an interactive tool, called Visual CHR, to
visualize the propagation and simplification of constraints. VisualCHR is used
to debug and to improve the efficency of constraint solvers written in the high-
level language Constraint Handling Rules. It can also be used to understand
the details of constraint propagation methods and the interaction of different
constraints.

Currently, we are trying to provide a plug-in mechanism for changing the
representation of the constraints. For example, cumulative constraints [15] in
a scheduling application could be represented as Gantt-charts, reflecting their
role in concrete application. VisualCHR is a part of the Java constraint li-
brary JACK (Chapter 6). A direction for future work will be the design of an
interaction between Visual CHR and a visualization tool for search trees.

Chapter 4

Automatic Generation of
Constraint Solvers

A general approach to implement propagation and simplification of constraints
consists of applying rules over these constraints. However, a difficulty that arises
frequently when writing a constraint solver is to determine the constraint propa-
gation algorithm. In this work, we propose a method to generate automatically
the propagation and simplification process of constraints in form of rules. The
generated rules are implemented in the language Constraint Handling Rules.

The approach we have taken is to develop an automatic method to generate
general rules defining some properties of constraints given their extensional def-
inition. Using our method, the user has the possibility to specify the form of the
rules she/he wants to generate. The method allows any kind of constraints in
the left hand side of rules and in their right hand side as well. The generation of
rules is performed in two steps. In a first step, only propagation rules are gener-
ated (Section 4.1) [10]. This method is inspired by techniques used in the field
of knowledge discovery. Since a propagation rule does not rewrite constraints
but adds new ones, the constraint store may contain superfluous information.
Constraints can be removed from the constraint store using simplification rules.
In general, removing constraints improves both the time and space behavior of
constraint solving. Thus, in a further step we propose a syntactical method to
decide when and how to transform propagation rules into simplification rules
(Section 4.2) [11]. The method is based on the confluence notion presented in
Section 3.1.

Consider the following example, where the user wants to generate a con-
straint solver for the boolean conjunction and(X,Y, Z), where X and Y are the
input arguments and Z is the output argument. This ternary relation can be
defined extensionally by the triples {(0,0,0),(0,1,0),(1,0,0),(1,1,1)}, where 1
stands for truth and 0 for falsity. First, the following propagation rules are gen-
erated provided the user specifies their left hand side to be the and constraint

31

32 CHAPTER 4. AUTOMATIC GENERATION

and their right hand side to be a conjunction of equality constraints:

and(0,Y,Z) = Z=0.
and(X,0,7Z) = Z=0.
and(1,Y,Z2) = Y=Z
and(X,1,7) = X=Z.
and(X,X,Z) = X=Z
and(X,Y,1) = X=1AY=L.

For example, the first rule says that the constraint and(X,Y,Z), when it is
known that the first input argument X is equal to 0, can propagate the con-
straint that the output Z must be equal to 0. Hence the goal and(0,Y, Z) will
result in and(0,Y, Z) A Z=0.

In a second step, all propagation rules are transformed into the following
simplification rules:

and(0,Y,72) & Z=0.
and(X,0,7) < Z=0.
and(1,Y,2) & Y=Z
and(X,1,7) & X=Z.
and(X,X,Z) & X=Z
and(X,Y,1) & X=1AY=L

Now, the first rule says that the constraint and(0,Y, Z) can be replaced by the
equality constraint Z=0. These rules are the well-known rules that can be found
in several papers describing the propagation of boolean constraints, e.g. in form
of demons [39], conditionals [99], CHR rules [46] or proof systems [36, 21].

This chapter is organized as follows: In section 4.1, we present the algorithm
for the generation of propagation rules and give some soundness, correctness and
termination results. Then, we give more examples for the use of this algorithm.
In section 4.2, we present a syntactical method to transform propagation rules
into simplification rules and give some properties of the transformation. In Sec-
tion 4.3, we present an example to show the practical usefulness of the automatic
generation of constraint solvers. In Section 4.4, we compare our approach with
already existing work. Finally, we conclude with a summary and directions for
future work.

4.1 Generation of Propagation Rules

4.1.1 The PrROPMINER Algorithm

In this section, we describe the algorithm, PROPMINER, for generating prop-
agation rules. This method has been developed based on previous work done in
the field of knowledge discovery. More precisely, we combine several techniques
stemming from two domains: association rule mining [17] and Inductive Logic

4.1. GENERATION OF PROPAGATION RULES 33

Programming (ILP) [75]. Note that in the presentation of our algorithm we
use an abstract representation of propagation rules. Built-in constraints may
appear in the left hand side of these rules in contrast to propagation rules of
CHR. We later present how these abstract rules are implemented in CHR.

Class of Generated Rules

A constraint over a set of atomic constraints A is a finite subset of A. A
constraint C' C A is interpreted as the conjunction of the atomic constraints in
C. The set of all constraints over A, i.e. the set of all non-empty finite subsets
of A, is noted L£(.A). The set of variables appearing in A is denoted by Var(.A).

Let C'T be a constraint theory defining a constraint C' and let ¢ be a ground
substitution. o is a solution of C if and only if CT | o(C).

A propagation rule is a rule of the form Cy — Cs, where C; and Cy are
constraints. Cj is called the left hand side (lhs) and Cy the right hand side
(rhs) of the rule.

Definition 4.1 Let A;,s and A.ps be two sets of atomic constraints not con-
taining false'. The set of propagation rules over {Ains, Arps) is the set of all
rules of the form Cy — Cy, where Cy € L(A;ps) and Cy € L(Aqps) U {{false}}
and C1NCy = 0. A failure rule is a propagation rule of the form C; — {false}.

O

Definition 4.2 A propagation rule Cy — Cs is walid if and only if for any
ground substitution o, if ¢ is a solution of C; then ¢ is a solution of C. The
rule Cy — {false} is valid if and only if C has no solution. O

Since the number of valid rules may become quite large, we considered that
the rules that are in some sense the most general will be the most interesting
to build a solver. We consider only a syntactical notion of rule generality which
is inspired by the notion of structural covering used in association rule mining

[95].

Definition 4.3 Let R and R’ be two sets of propagation rules. R' is a cover
of R if and only if for all (C; — C3) € R there exists (C7 — C4) € R/, such
that C] C Cy and Cy C C3. m]

Note that this is a form of subsumption in the ground case and that if R’
is a cover of R, then every rule in R is logically entailed in CT by some rule in
R'.

Example 4.4 Let and be a ternary constraint defining the Boolean conjunc-
tion. {{and(X,Y, Z), X=0} — {Z=0}} is a cover of {{and(X,Y, Z), X=0} —
{Z=0},{and(X,Y, Z), X=0, Y=0} — {Z=0}}. O

The algorithm PROPMINER generates a cover of the set of propagation rules
over {Ains, Arns). However, many lhs are of little interest to build solvers based
on propagation rules. Then as in ILP [75] we used a syntactic bias to restrict
the generation to a particular set of rules called relevant propagation rules.

1false will be used as a particular rhs for the rules.

34 CHAPTER 4. AUTOMATIC GENERATION

Definition 4.5 Let Basej,s be a set of atomic constraints. A set of atomic
constraints A is an interesting pattern wrt. Baseys if and only if the following
conditions are satisfied:

1. Baseyps C A.

2. if |A] > 1 then any atomic constraint in 4 shares at least one variable
with another atomic constraint in A.

O

Definition 4.6 The set of relevant propagation rules over (Basejps, Ains, Arhs)
is the set of propagation rules over (A;ps, Arps) without the rules with a left
hand side that is not an interesting pattern wrt. Baseps. O

Example 4.7 Assume we want to generate interaction rules between the Boolean
operations conjunction (and) and negation (neg), then Basejs has the follow-
ing form {and(X,Y, Z), neg(A, B)}.

{and(X,Y, Z), neg(A,B), A=X, B=Y} — {Z=0} is then a relevant prop-
agation rule, while the rule {and(X,Y,Z), Y=1} - {Z=X} and the rule
{and(X,Y, Z), neg(A,B), X=0} — {Z=0} are not. However, it should be
noticed that the first one will be relevant for the constraint and alone (i.e.,
when Basens = {and(X,Y, Z)}). |

The generation algorithm will discard any rule which is not a relevant prop-
agation rule over a given (Baseps, Ains, Arns). We present in Section 4.1.3
additional simplifications of the set of rules generated to remove some redun-
dancies.

The Algorithm

Using PROPMINER the user has the possibility to specify the admissible syntac-
tic forms of the rules. The user determines the constraint for which rules have
to be generated (i.e. Basejns) and chooses the candidate constraints to form
conjunctions together with Baseps in the left hand side (noted Candps). Usu-
ally, these candidate constraints are simply equality constraints. For the right
hand side of the rules the user specifies also the form of candidate constraints
she/he wants to see there (noted Cand,ps). Finally, the user determines the se-
mantics of the constraint Base;,s by means of its extensional definition (noted
SolBaseyy,s) which must be finite, and provides the semantics of the candidate
constraints Cand;,s and Cand,.,s by two constraint theories CTj,s and CTyps,
respectively. Furthermore, we assume that the constraints defined by CTj,s and
CT,s are handled by an appropriate constraint solver.

To compute the propagation rules the algorithm generates each possible lhs
constraint (noted Cjps) and for each determines the corresponding rhs constraint
(noted Crps)-

For each lhs Cjps the corresponding rhs Cps is computed in the following
way:

1. if Cjps has no solution then Cyps = {false} and we have the failure rule
Cins — {false}.

4.1. GENERATION OF PROPAGATION RULES 35

2. if Cjps has at least one solution then C.p, is the set of all atomic constraints
that are candidates for the rhs part and are true for all solutions of Cjs.
If Crps is not empty we have the rule Cijps = Crps-

During the exploration of the search space, the algorithm uses two main
pruning strategies:

1. (Pruningl) if a rule Cjps — {false} is generated then there is no need to
consider any superset of Cjps to form other rule lhs.

2. (Pruning?2) if a rule Cjps — Cyps is generated then there is no need to
consider any C such that Cjn, C C and C N Crps # 0 to form other rule
lhs.

The condition CNCrps # 0 in the strategy Pruning2 is needed to reduce the
number of the propagation rules generated, as shown in the following example.

Example 4.8 After generating the relevant propagation rule of example 4.7:

{and(X,Y, Z), neg(A, B), A=X, B=Y} — {Z=0}, the possible lhs

{and(X,Y, Z), neg(A,B), A=X, B=Y, B=1, Z=0} is not considered using

Pruning2, while {and(X,Y, Z), neg(4A, B), A=X, B=Y, B=1} remains a lhs

candidate and may lead to the following rule

{and(X,Y, Z), neg(A,B), A=X, B=Y, B=1} - {Z=0, A=0, X=0, Y=1}.
O

These pruning strategies are much more efficient if during the enumeration
of all possible rule lhs, a given lhs is considered before any of its supersets. So
a specific ordering for this enumeration is imposed in the algorithm. Moreover,
this ordering allows to discover early covering rules avoiding then the generation
of many uninteresting covered rules.

To simplify the presentation of the algorithm we consider that all possible
lhs are stored in a list L and that unnecessary lhs candidates are simply removed
from this list. For efficiency reasons the concrete implementation is not based
on a list but on a tree containing lhs candidates on its nodes. More details are
given in Section 4.1.4.

We now give an abstract description of the PROPMINER algorithm. It takes
as input:

e Basej,s: a constraint that must be included in any lhs of the rules.

e SolBaseyns: the finite set of ground substitutions that are solutions of
Baseyps. Note that this defines the constraint Base;,s extensionally.

o Candj,: a finite set of atomic constraints that are candidates to form lhs
of the rules such that Var(Cand;ns) C Var(Baseps)-

o Cand,ps: a finite set of atomic constraints that are candidates to form rhs
of the rules such that Var(Cand,s) C Var(Bases)-

e CTips: a constraint theory defining Candyp,s.
o (CT,ps: a constraint theory defining Cand,ps.

And it produces the following output:

36 CHAPTER 4. AUTOMATIC GENERATION

e a cover of the valid relevant propagation rules over {Bases, Candyps, Candyps)

PROPMINER Algorithm

begin

Let R be an empty set of rules.
Let L be a list containing the elements of £(Base;ns U Candps) in any order.

Remove from L any element which is not an interesting pattern wrt. Baseps.
Order L with any total ordering compatible with the subset partial ordering
(i.e., for all Cy in L if Cy is after Cy in L then Cy ¢ Ch).

while L is not empty do
Let Cjs be the first element of L.
Remove from L its first element.
if for all o € SolBase;,, we have
CTips |= =0 (Cips \Baselhs) then
add the failure rule (Cips — {false}) to R
and remove from L each element C such that Cj,s C C.
else
compute Cpps the rule rhs, defined by
Crhs = {c|c € (Cand,ps \ Candyps) and for all o € SolBasejps
when CTlhs '= U(Clhs \Baselhs) we have CTrhs |= J(C)}.
if Cyps is not empty then
add the rule (Cjps = Crps) to R
and remove from L each element C such that
Cips CC and CNCrps # 0.
endif
endif
endwhile

output R

end

We require the constraint theories CTj,s and CTyps to be ground complete
for (Cand;s, Sol Bases) and (Cand,ps, Sol Basey,s), respectively?.

Definition 4.9 Let CT be a constraint theory, let I" be a set of ground substi-
tutions and A be a set of atomic constraints. CT' is ground complete for (A, T")
if and only if for every ¢ € A and for any substitution ¢ € I' we have either
CT k= o(c) or CT = —o(c).

O

2Note that this restriction is very weak, since the property holds for almost all useful classes
of constraint theories.

4.1. GENERATION OF PROPAGATION RULES 37

4.1.2 Properties of the PROPMINER Algorithm

In PROPMINER the list L of possible lhs is initialized to be a finite list. Each
iteration of the while loop removes at least one element in L. This ensures the
following property.

Theorem 4.10 (Termination) The algorithm PROPMINER terminates and
yields a finite set of propagation rules. a

The following results establish soundness and correctness of the algorithm.

Theorem 4.11 (Soundness) PROPMINER computes valid relevant propaga-
tion rules over (Baseys, Candyys, Candrps). Proof: All Cjs considered are
interesting pattern wrt. Basejs, thus only relevant rules can be generated. Let
Cls = Cins \ Basejps. A rule of the form Cjns — {false} can be generated only
if all solutions of Base;ps are not solutions of Cj,,. So any rule Ci,s — { false}
generated is valid. A rule of the form Cjps = Crps, where Crps # {false} can
be generated only if all solutions of Base;;s that are solutions of Cj,,, are also
solutions of all atomic constraints in C,.,s. Hence all generated rules of the form
Cins — Crps are valid.

O

Theorem 4.12 (Correctness) PROPMINER computes a cover of the valid rele-
vant propagation rules over {Basejps, Candjps, Cand,ps) when Var(Candyps) C
Var(Basens) and Var(Cand,ps) C Var(Baseps)-

Proof: First, we do not consider the two pruning strategies Pruning! and Prun-
ing2. Then the algorithm enumerates all possible rule lhs that are interesting
pattern wrt. Baseps. So it generates all valid relevant failure rules. Moreover
for any valid relevant rule of the form C; — Ca, where Cy # {false} the al-
gorithm considers C; as a candidate lhs. Then it computes Cjps containing
all atomic constraints ¢ such that all solutions of C; are solutions of ¢. Thus
Cs C Crps- So if we do not consider the two pruning strategies Pruningl and
Pruning?2 the algorithm outputs a cover of the valid relevant propagation rules.

Now we show that the two pruning criteria are safe.

(Pruningl) When a rule of the form C; — {false} is generated all candidate
lhs Cips D C are discarded. However since C1; — {false} is valid, C; has no
solution, and thus any Cj,s D C1 have no solution too, and can only lead to a
rule of the form Cjps — {false} which will be covered by C; — {false}.

(Pruning2) When a rule of the form C; — C,, where Cy # {false} is
generated all candidates lhs Cjps such that C; C Cyps and Cips N Co # () are
discarded.

The key idea of the safety of this pruning criterion is the following;:

Consider a Cys discarded and any valid relevant rule of the form Cjy,s — Cs,
where Var(Cs) C Var(Cips). There is another lhs candidate Cj,, = Cips \ Co
that has not been discarded, such that C; C C},,. Any ground substitution o
solution of Cl’hs is a solution of C7 and thus of Cy because C; — Cy is valid.
Then o is a solution of Cj,s and also of C3 since Cyps — Cs is valid. Hence the
candidate Cj,, will generate a rule Cj,, — C4 with C3 C Cy4 that covers rule
Cins — Cs. O

38 CHAPTER 4. AUTOMATIC GENERATION

4.1.3 Rule Simplification

Even though PROPMINER computes a cover of the valid relevant propagation
rules over (Basejs, Candyps, Cand,ps), this cover may contain some kind of
redundancies.

Example 4.13 PROPMINER as presented above can produce the following rule
{and(X,Y, Z), Z=1} - {X=Y, X=Z, Y=Z, X=1, Y=1}. If we have already
a solver to handle equality constraints, then this rule can be simplified into
{and(X,Y,1)} —» {X=1, Y=1}.

On another input PROPMINER can produce the following rules for the logical
operation exclusive-or (zor): {zor(X,Y,Z), X=Y} — {Z=0} and the rule
{zor(X,Y,Z), X=0, Y=0} — {Z=0}. The second rule cannot propagate new
atomic constraints wrt. the first rule, and thus can be discarded. O

We use an ad-hoc technique to simplify the rule lhs and rhs, and to suppress
some redundant rules. This process does not lead to a precisely defined canon-
ical representation of the rules generated, but in practice (see Section 4.1.5) it
produces small and readable sets of rules.

This simplification technique is incorporated in PROPMINER and performed
during the generation of the rules. For clarity reasons it is presented apart from
the algorithm given above. The simplification principle is as follows:

e For each rule generated by the PROPMINER algorithm the equality con-
straints appearing in the lhs are transformed into substitutions that are
applied to the lhs and the rhs, and then the completely ground atomic
constraints are removed from lhs and rhs (e.g., {and(X,Y, Z), Z=1} —
{X=Y, X=Z, Y=Z, X=1, Y=1} will be simplified to the propagation
rule {and(X,Y, Z), Z=1} —» {X=Y, X=1, Y=1}).

e The new rules are then ordered in a list L' using any total ordering on
the rule lhs compatible with the #-subsumption ordering [79] (i.e., a rule
having a more general lhs is placed before a rule with a more specialized
lhs).

e Let S be a set of rules initialized to the empty set. For each rule C; — C5
in L' (taken according to the list ordering) the constraint Cs will be sim-
plified to an equivalent constraint Cj;m, by the already known solver for
Cand,ps and by the rules in S. If Cy;p,p is empty then the rule can be dis-
carded, else add the rule C; — Cyimp to S. (e.g., {and(X,Y, Z), Z=1} —
{X=Y, X=1, Y=1} will be simplified to the rule {and(X,Y, Z), Z=1} -
{X:]-a Y:]-})

e QOutput the set S containing the simplified set of rules.

In contrast to the propagation rules of CHR built-in constraints may ap-
pear in the left hand side of the rules generated by the PROPMINER algo-
rithm. Therefore, after the simplification process presented above, the result-
ing rules are transformed into propagation rules of CHR. Usually, the candi-
date constraints Cand;,s are simply equality constraints. Thus, equality con-
straints appearing in the lhs of a rule are propagated all over the constraints
Baseyns (e.g., {and(X,Y,Z), Z=1} — {X=1, Y=1} will be transformed into

4.1. GENERATION OF PROPAGATION RULES 39

and(X,Y,1) = X=1AY=1. For other built-in constraints the transforma-
tion leads to CHR rules consisting of a guard [46] (e.g. {and(X,Y, Z), Z#0} —
{X=1, Y=1} will be transformed to the CHR propagation rule and(X,Y, Z) =
Z#0 | X=1AY=1).

4.1.4 Implementation Issues

As described in Section 4.1.1, the PROPMINER algorithm needs to enumerate
lhs constraints. Our implementation follows the idea of direct extraction of
association rules by exploring a tree corresponding to the lhs search space as
described in [23]. This tree is expanded and explored using a depth first strategy,
in a way that constructs only necessary lhs candidates and allows to remove
uninteresting candidates by cutting whole branches of the tree. The branches
of the tree are developed using a partial ordering on the lhs candidates such
that the more general lhs are examined before more specialized ones. The
partial ordering used in our implementation is the §-subsumption [79] ordering
commonly used in ILP to structure the search space [75]. To prune branches
in the tree, one of the two main strategies (Pruning2) has been inspired by the
CLOSE algorithm [77] devoted to the extraction of frequent itemsets in dense®
data sets.

The running prototype is implemented in SICStus Prolog 3.7.1 and takes
advantage of the support of CHR in this environment in the following way.
During the execution of the PROPMINER algorithm we build incrementally a
CHR solver with the propagation rules generated and this solver is used to
perform the rule simplification according to Section 4.1.3.

Example 4.14 Let and(X,Y,1) = X=1 A Y =1 be a rule in the current CHR
solver. Then the rule and(0,Y,1) = false will be discarded since and(0,Y,1)
leads already to a failure using the current solver. O

4.1.5 Examples

This section shows with examples that a practical application of our method
lies in software development. The rules generated by the PROPMINER algorithm
will be implemented as propagation rules of the language Constraint Handling
Rules. While we cannot — within the space limitations — introduce the whole
generated constraint solver, we still give a fragment of it. The complete solvers
are available in [33] and can be executed online.

In the following, we assume that the constraint theories define among other
constraints equality (“=") and disequality (“#”) as syntactic equality and dis-
equality. Furthermore, we assume that these constraints are handled by an
appropriate constraint solver.

For convenience, we introduce the following notation. Let ¢ be a con-
straint symbol of arity 2 and Dy, and Dy be two sets of terms. We define
atomic(c, D1, D2) as the set of all atomic constraints built from ¢ over Dy x Ds.
More precisely, atomic(c, D1, D2) = {c(a,3) | @« € D1 and § € D5}.

Other automatically generated propagation rules are described in [20, 83].
We will compare our results only to the ones presented in [20] (See Section 4.4

3e.g., data sets containing many strong correlations.

40 CHAPTER 4. AUTOMATIC GENERATION

for more details), since experiments with practical applications are still missing
in [83]. One can remark that the times for the generation of rules are in the
same order of magnitude. We have used the following software and hardware:
SICStus Prolog 3.7.1, PC Pentium 3 with 256 MBytes of memory and a 500
MHZ processor.

Boolean Constraints

Boolean primitive constraints consist of Boolean variables which may take the
value 0 for falsity or 1 for truth, and Boolean operations such as conjunction
(and), disjunction (or), negation (neg) and exclusive-or (xor), modeled here as
relations.

For the conjunction constraint and(X,Y, Z) the algorithm PROPMINER with
the following input

Baseyns = {and(X,Y,Z)}
Candyps = Candpps = atomic(=,{X,Y,Z},{X,Y,Z,0,1})

generates the following rules in 0.05 seconds:

and(0,Y,Z) = Z=0.
and(X,0,7Z) = Z=0.
and(1,Y,Z2) = Y=Z
and(X,1,72) = X=Z
and(X,X,Z) = X=Z
and(X,Y,1) = X=1AY=1

Goals of the form and(X, X, Z) cannot be handled using the rules generated
by the algorithm presented in [20], since the second last rule is not present there.
One can easily see that the propagation rules generated by the PROPMINER
algorithm correspond to the implementation of and using CHR [46].

For the negation constraint neg(X,Y’), the PROPMINER algorithm generates
among other rules the following failure rule:

neg(X, X) = false.

The algorithm PROPMINER can generate propagation rules defining interactions
between constraints. With the following input

Baseyns = {and(X,Y,Z),neg(A, B)}
Candyps = Cand.ps = atomic(=,{X,Y,Z, A, B},{X,Y,Z,A,B,0,1})

the following rules defining interaction between neg and and are generated:

and(X,Y,Z) Aneg(X,Y) = Z=0.
and(X,Y,Z) Aneg(Y,X) = Z=0.
and(X,Y,Z) Aneg(X,Z) = X=1AY=0AZ=0.
and(X,Y,Z) Aneg(Z,X) = X=1AY=0AZ=0.
and(X,Y,Z)Aneg(Y,Z) = X=0AY=1AZ=0.
and(X,Y,Z) Aneg(Z,Y) = X=0AY=1AZ=0.

4.1. GENERATION OF PROPAGATION RULES 41

With our algorithm, propagation rules with a right hand side consisting of more
complex constraints than equality constraints can also be generated. The user
can specify the form of the right hand side of the rules. Using the PROPMINER
algorithm with the following input

Baseys = {zor(X,Y,Z2)}
Candpps = atomic(=,{X,Y,Z},{X,Y,Z,0,1})
Cand,rs = Candjps Uatomic(neg, {X,Y,Z},{X,Y,Z,0,1})

6 rules, analogous to the ones for and, and the following 3 rules for the constraint
zor are generated in 0.1 seconds:

zor(X,Y,1) = neg(X,Y).
zor(X,1,Z) = mneg(X,2Z).
zor(1,Y,Z) = neg(Y,Z2).

~—

Full-adder

One important application of Boolean constraints is for modeling logic circuits.
A full-adder can be built using the following logical gates (see, e.g. [98, 46]):
fulladder(X,Y, Z,5,C) &

and(X,Y,C1) A

zor(X,Y,S51) A

and(Z,S1,C2) A

zor(Z,S1,8) A

or(C1,C2,0C).

Using the PROPMINER algorithm 28 rules within 0.68 seconds are generated
for the fulladder constraint. These rules enforce the same local consistency
notion as the 52 rules generated by the algorithm presented in [20] within 0.27
seconds. Typical rules are:

fulladder(X,Y,CI,S,5) = X=SAY=SACI=S.
fulladder(X,Y,CI,CI,C) = X=CAY=C.
fulladder(0,Y,CI,S,1) = S=0.

The first rule says that the constraint fulladder(X,Y,CI,S,C), whenever the
output bit S is equal to the output carry bit C, can propagate the information
that the bits to be added X and Y and the input carry bit C'I are equal to the
output bit S. This kind of propagation cannot be performed using the rules
generated by the algorithm presented in [20].

Three Valued Logics

We consider the equivalence relation defined by the truth table given in [61],
where the value ¢ stands for true, f for false and u for unknown.

42 CHAPTER 4. AUTOMATIC GENERATION

X

!

cle|a | || e nd
elele|e|a|mm| e

The PROPMINER algorithm generates for the ternary equivalence constraint
eq3val 16 rules within 0.3 seconds, e.g.

eqdval (X, X, X) = X#f.
eqdval(X,Y,t) = XA#uAX=Y.
eqdval(X, f,X) = X=u.

The first rule says that the constraint eq3val(X,Y, Z), when it is known that
the input arguments X and Y and the output Z are equal, can propagate that
X is different from f.

Temporal Reasoning

In [18] an interval-based approach to temporal reasoning is presented. Allen’s
approach to reasoning about time is based on the notion of time intervals and
binary relations on them. Given two time intervals, their relative positions can
be described by exactly one of thirteen primitive interval relations, where each
primitive relation can be defined in terms of its endpoint relations, i.e. equality
and 6 other relations (before, during, overlaps, meets, starts and finishes) with
their converses.

In [18] different ordering relations between intervals are introduced. There
is a 13 x 13 table defining a “composition” constraint between a triple of events
X, Y and Z, e.g. if the temporal relations between the events X and Y and the
events Y and Z are known, what is the temporal relation between X and Z.
The composition constraint, denoted by allenComp, can be defined as follows:

allenComp(Ry, Ry, Rs) ¢ (R (X,Y) A R (Y, Z) = Rs(X, Z)),

where R;, Rz, R3 are primitive interval relations.

Our algorithm generates for allenComp 489 rules within 83.12 seconds, pro-
vided the user specifies that the right hand side of the rules may consist of a con-
junction of equality and disequality constraints. Analogous to [20] we denote the
6 relations respectively by b,d,o0,m, s, f, their converses by bi, di, oi, mi, si, fi
and the equality relation by e. Typical rules are:

allenComp(X, X, X) = X#mA X#mi.
allenComp(X,X,e) = X=e.
allenComp(0,b,Z) = Z=b.

The algorithm presented in [20] generates 498 rules within 31.16 seconds. The
right hand side of rules consists only of disequality constraints. Furthermore,

4.2. GENERATION OF SIMPLIFICATION RULES 43

rules with multiple occurrences of variables cannot be generated. Thus, no infor-
mation can be propagated from a constraint of the form allenComp(X, X, X).

Spatial Reasoning

The Region Connection Calculus (RCC) is a topological approach to qualitative
spatial representation and reasoning where spatial regions are subsets of topo-
logical space [81]. Relationships between spatial regions are defined in terms of
the relation C(X,Y") which is true iff the topological closures of regions X and
Y share at least one point.

In [81] a composition table for the set of eight basic relations is presented.
The relations are dc (disconnected),ec (externally connected), po (partial over-
lap), eq (equal), tpp (tangential proper part) and ntpp (nontangential proper
part). The relations tpp and ntpp have inverses (here symbolized by tppi and
ntppi).

For the composition constraint rccComp, our algorithm generates 178 rules
in 24 seconds. Examples of rules are:

recComp(X,X,eq) = X#ntppi A XF#tppi AN XF#ntpp, X #tpp.
recComp(X,eq,Z) = X=Z.
recCom(de,Y,ntppi) = Y=dc.

4.2 Generation of Simplification Rules

Since a propagation rule does not rewrite constraints but adds new ones, the
constraint store may contain superfluous information. Constraints can be re-
moved from the constraint store using simplification rules. In general, removing
constraints improves both the time and space behavior of constraint solving.

Often generated propagation rules can be rewritten as simplification rules.
For the boolean conjunction all propagation rules could be transformed into the
following simplification rules:

and(0,Y,Z) & Z=0.
and(X,0,7) < Z=0.

and(1,Y,Z) & Y=Z.
and(X,1,7) & X=Z
and(X,X,Z) o X=Z
and(X,Y,1) & X=1AY=L

Thus, our aim is to find some criteria to perform such a transformation. One
simple criterion could be the following: whenever a right hand side of a rule
propagates information making its left hand side ground, then this rule can be
implemented by means of a simplification rule. This criterion is not sufficient
since it can only be applied to the last rule of the example presented above.
Finding a general criterion is even more difficult, when we consider multi-
headed propagation rules defining interaction between constraints, i.e. rules with
left hand sides consisting of a conjunction of constraints. For example, for the
negation constraint neg(X,Y’) defined by {(0,1),(1,0)} and the conjunction

44 CHAPTER 4. AUTOMATIC GENERATION

constraint and(X,Y, Z) our algorithm generates among other rules the following
propagation rules:

and(X,Y,Z)Aneg(X,Z) = X=1AY=0A Z=0.
and(X,Y,Z) Aneg(Y,Z) = X=0AY=1AZ=0.
and(X,Y,Z) Aneg(X,Y) = Z=0.

It is obvious that the first two rules can be transformed into simplification
rules. However, transforming the third rule to a simplification rule by simply
replacing = by < leads to losing information about X and Y. One has to keep
the negation neg(X,Y) in the constraint store, but remove the and(X,Y, Z):

and(X,Y,Z) Aneg(X,Y) < neg(X,Y)AZ=0.

In the following, we propose a syntactical method to decide when to transform
propagation rules into simplification rules. The method is based on the conflu-
ence notion. The idea of the transformation method is to test the confluence
of the resulting constraint solver after transforming a propagation rule into a
simplification rule. If the resulting solver remains confluent, we can conclude
that the transformation leads to an operationally equivalent constraint solver
with respect to the built-in constraints.

4.2.1 The SIMPMINER Algorithm

We now introduce the algorithm SIMPMINER that given a set of propaga-
tion rules P generates a set of both propagation and simplification rules. We
assume that the CHR program consisting of these propagation rules is termi-
nating. We can easily show that this program is confluent, since propagation
rules do not rewrite constraints and adding constraints to a state cannot inhibit
the application of a rule as long as the built-in constraints remain consistent.
The algorithm works by repeatedly selecting a rule R from P. Then, we try to
transform R to a simplification rule. Note that for a propagation rule with mul-
tiple heads, there are several possibilities to transform it to a simplification rule.
If the resulting program remains confluent then the transformation is accepted
and the next rule will be considered. Otherwise, the next transformation of R
is tried.

Before giving an abstract description of the SIMPMINER algorithm, we illus-
trate it by the following example:

Example 4.15 Let P be the set of propagation rules defining the negation
and the conjunction constraints and the interaction between them.

All single-headed propagation rules can be transformed to simplification
rules and the resulting program remains confluent. Now, let R be the prop-
agation rule and(X,Y, Z) Aneg(X,Y) = Z=0.

There are three possibilities to transform R into a simplification rule. If we
transform R into the simplification rule and(X,Y, Z) A neg(X,Y) & Z=0,
then the resulting program becomes non-confluent since the critical pair

(Sla 52) = (ZIO, X:Z/\neg(XaX))

4.2. GENERATION OF SIMPLIFICATION RULES 45

stemming from the critical ancestor state neg(X, X) A and(X, X, Z)* of the
rules and(X,Y,Z) Aneg(X,Y) < Z=0 and and(X,X,Z) & X=Z is not
joinable, i.e. S; is a final state and S» leads to false.

If we transform the propagation rule R into a simplification rule of the form
and(X,Y,Z) Aneg(X,Y) & and(X,Y,Z) A Z=0, then the resulting program
becomes also non-confluent.

However, transforming the propagation rule R into a simplification rule of
the form and(X,Y,Z) Aneg(X,Y) & neg(X,Y) A Z=0 leads to a confluent
program. Thus, this transformation is accepted and we proceed with the next
propagation rule. Finally, the transformed program consists of the single-headed
simplification rules defining the conjunction and negation constraints and of the
following rules defining their interaction:

and(X,Y,Z) Aneg(X,Y) < neg(X,Y)A Z=0.
and(X,Y,Z) Aneg(Y,X) < neg(Y,X)AZ=0.
and(X,Y,Z)Aneg(X,Z) & X=1AY=0AZ=0.
and(X,Y,Z)Aneg(Z,X) & X=1AY=0AZ=0.
and(X,Y,Z)Aneg(Y,Z) < X=0AY=1AZ=0.
and(X,Y,Z)Aneg(Z,Y) & X=0AY=1AZ=0.

These rules are slightly different from the ones implemented manually [33]. How-
ever, one can easily show that the two programs are operationally equivalent
(Section 3.2).

O

We now give an abstract description of the SIMPMINER algorithm.
SIMPMINER Algorithm

INPUT: A set of propagation rules P.
OUTPUT: A built-in operationally equivalent guard-free CHR program P’ con-
sisting of propagation and simplification rules.
ALGORITHM:
P =P
for each rule R of the form H = B in P do
Find R' := H & B A C, where C is a subconjunction of H such that
(P'"\{R}) U{R'} is terminating and all its critical pairs are joinable.
If R’ exists
then P’ := (P'\{R})U{R'}
endif
endfor
return P’

In the SIMPMINER algorithm, there are two degrees of nondeterminism: the
choice of a rule R from P and the choice of the subconjunction C' of H. In
our implementation, the input CHR program is given in a text file and we
take the rules according to the order in this file. To handle the second source
of nondeterminism and to achieve a form of minimality based on the number

4With variables from different rules already identified to have an overlap; for readability.

46 CHAPTER 4. AUTOMATIC GENERATION

of constraints, we generate simplification rules that will remove the greatest
number of constraints. So, when we try to transform a propagation rule R
into a simplification rule R’ of the form H < B A C we choose the smallest
conjunction of constraints C' (wrt. the number of constraints in C') for which
the resulting program remains confluent, i.e. terminating and all its critical pairs
are joinable. If such a C is not unique, we choose any one among the smallest
conjunctions. Note that transforming a propagation rule into a simplification
rule just by shifting the whole head of the propagation rule into the body of
the simplification rule is not allowed since the resulting program becomes non-
terminating.

4.2.2 Properties of the SiIMPMINER Algorithm

In the following, we prove that the transformed set of rules is built-in-operationally
equivalent to the initial set of propagation rules. Two programs are built-in-
operationally equivalent if for each goal, the built-in constraints in the final
state in one program are the same as in the final state in the other program. In
the following, we will denote the built-in constraints appearing in a state S by
builtIn(S).

Theorem 4.16 Let P be a set of propagation rules and P’ be the transformed
program using the SIMPMINER algorithm. If PU P’ is terminating then for any
state S, we have if S =%, S; and S —} S», where S; and S, are final states,
then builtIn(S1) and builtIn(S2) are variants.

Proof: A direct consequence of Lemma 4.18 and Lemma 4.19. O

To prove the theorem above, we first show that we can just take the union
of the set of propagation rules and the transformed program and the resulting
program will be built-in operationally equivalent to the set of propagation rules
(cf. Lemma 4.18). Then, we prove that the union of the two programs and the
transformed program have the same behavior (cf. Lemma 4.19). Therefore, we
can conclude that the transformed program and the initial set of propagation
rules are built-in operationally equivalent. To prove Lemma 4.18, we have to
show that the union of a set of propagation rules and its transformed program
is confluent.

Lemma 4.17 Let P be a set of propagation rules and P’ be the transformed
program using the SIMPMINER algorithm. If PU P’ is terminating, then PU P’
is confluent.

Proof: To show that PU P’ is confluent, we have to show that all critical pairs
of PU P’ are joinable, since P U P’ is terminating. The set of critical pairs of
P U P’ consists of all critical pairs stemming from two rules appearing in P,
all critical pairs stemming from two rules appearing in P’ and all critical pairs
stemming from one rule appearing in P and one rule appearing in P'.

1) P consists of a set of propagation rules. We can easily show that P is
confluent, since any critical pair (S1, S2) stemming from two propagation
rules R; and Ry is joinable: Let S; be a state resulting from the application
of R; on the critical ancestor state of Ry and Ry (i = 1,2), then applying
Ry on S; and Ry on S; leads to a common state. A more detailed proof
can be found in [1].

4.2. GENERATION OF SIMPLIFICATION RULES 47

2) P'is the transformed program using the SIMPMINER algorithm. Thus, all
critical pairs stemming from two rules appearing in P’ are joinable.

3) Let (S1,S2) be a critical pair stemming from one rule Ry € P and one
rule Ry € P'. We distinguish three cases:

a) R; and R, are propagation rules. This situation is analogous to
case 1.

b) R» is obtained by transforming the propagation rule R; into a sim-
plification rule. The heads of R; and R» are the same. Let S; be
the state resulting from the application of R; to the critical ancestor
state of R; and Ry (1 = 1,2), then applying R» to S; leads to a
variant of Ss. Therefore, the critical pair is joinable.

¢) Ry is a simplification rule but it is not obtained by transforming the
propagation rule R; and R; is in P’. This situation is analogous to
case 2.

d) R, is a simplification rule but it is not obtained by transforming the
propagation rule R; and R; is not in P’, i.e. Ry is transformed into
a simplification rule Rj.
Let R; be of the form H1AA; = By and R» of the form HoAAs & Bs.
Then R is of the form HiAA; < BiAC, where C' is a subconjunction
of Hi A A;. The critical ancestor state of Ry and Ry and of R} and
Ry is (H1 ANALANHy A (A1:A2))
Since P’ is confluent, the critical pair

(S1, S2):=(Hy AN(A1=A3) AB ANC, Hy A (A1=A3) A By)

stemming from the critical ancestor state of R] and Rs is joinable in
P'. Therefore, this critical pair is also joinable in P U P’.

The critical state stemming from the critical ancestor state of Ry and
R2 is

(53, SQ) = (H1 A A1 A H2 A (A1=A2) A Bl, H1 A (A1=A2) A Bg)

R} can be applied to S3 and leads to S;. Thus, (S3,S52) is joinable
in PUP'.

Lemma 4.18

Let P be a set of propagation rules and P’ be the transformed program
using the SIMPMINER algorithm. If P U P’ is terminating then for any state S
if S =% S1 and S = pr S2, where S; and S are final states, then builtIn(S:)
and builtIn(S,) are variants.
Proof:

Since S —3 S1 and P C PU P, we have S —p_ p S1 where S; is not
necessarily a final state.

P U P’ is terminating then P U P’ is confluent by Lemma 4.17. We have
S =pup S2 and S —p pr Si, then S; and S, are joinable, i.e. there is a
computation of the form Sy —% p S5, where Sy and Sj are variants.

48 CHAPTER 4. AUTOMATIC GENERATION

Moreover, we can easily see that the rules in P U P’ can only remove user-
defined constraints from S; and the added built-in constraints are constraints
that have been already added using the propagation rules appearing in P. Thus,
we have that builtIn(S;) and builtIn(Sh) are variants. Therefore, builtIn(S;)
and builtIn(Sy) are also variants.

O

Lemma 4.19

Let P be a set of propagation rules and P’ be the transformed program using
the SIMPMINER algorithm. If P U P’ is terminating then for any state S, we
have if S =% pr S1 and S =5, Sa, where S; and S» are final states, then S
and S, are variants.

Proof:

Since S —p Sz and P C PU P, we have S —}% pr Sa.

We prove the claim by contradiction. We assume that Ss is not a final state
for PU P'. Since S, is a final state for P’, there exists a propagation rule R
in P that can be used to perform a computation step on Ss. If we consider the
rule R’ in P’ obtained from R using the SIMPMINER algorithm, since R’ and R
have the same head, then R’ can also be used to perform a computation step on
S, and thus S» cannot be a final state for P’, which contradicts the hypothesis.

So, Sy must be a final state for PUP’. Moreover, since PU P’ is terminating
then PUP' is confluent by Lemma 4.17, and thus we have S; and S» are variants.

O

4.3 Application

In this section, we show first that when we use the propagation rules gener-
ated by the PROPMINER algorithm in a CLP approach we benefit of a significant
search space reduction but also pay a significant overhead due to the rule trig-
gering process. In many cases this overhead leads to an important increase of
the execution time even though the search space is greatly reduced.

Then, we show that the transformation method can be used to obtain the
same search space reduction but with less overhead. Thus, the experiments
show a significant reduction of the execution time.

The application we consider is in the field of digital circuit design: automatic
test-pattern generation. Test generation is the process of defining the tests to
apply to a circuit in order to detect faults. Among the possible faults in a circuit
composed of boolean gates, a very important type of faults is the stuck-at faults.
A stuck-at fault occurs when the output value of a gate remains constant, i.e.
the output value does not change while the input values are modified.

If we consider a gate in a circuit, we can not access directly the input and
the output of the gate to test it. So we must find a way to perform the test
using only the input and output pins of the whole circuit. The problem is first
to find what signal should be applied on the input of the circuit so that the
output of the gate of interest will change (if there is no fault). This is called the
control problem. Secondly, we must determine how to observe the effect of that
change on the output pins of the whole circuit. This is called the observation
problem.

4.3. APPLICATION 49

Several proposals have shown that constraint logic programming allows a
simple and declarative formulation of the test generation and leads to an effi-
cient solving process. In the following, we use the constraint logic programming
approach for automatic test-pattern generation proposed by Van Hentenryck et
al [99]. We shortly present this approach below and then describe our experi-
ments.

4.3.1 Automatic test-pattern generation

In this section, we briefly recall the approach of [99] and refer the reader to
the original paper for a detailed description. Van Hentenryck et al defined a
specific six-valued logic and provided some rules expressed in the form of so-
called demons to carry out the constraint propagation.

Each line in the circuit is associated with a variable constrained to take one
of the six possible values. The primary inputs are constrained to be 0 or 1.
The four other values, d,d,e and €, are needed to materialize the propagation
paths from the output of the gate of interest to the output of the whole circuit
(the observation problem). For example, the boolean value 1 at the output of
the gate of interest will not be propagated through the circuit as a 1 but as a
symbolic value denoted by d to materialize the path from the gate of interest
towards the output pins of the whole circuit.

Van Hentenryck et al used rules generated by hand to propagate input and
output values of the gates within the circuit. Such a rule is for example: if the
input arguments of an and gate are d and 1 then the output argument is d.
The intuitive meaning of this rule is the following: if the output value of the
gate of interest (materialized by d) reaches the input of an and gate having a
1 as second input, then the output value of the gate of interest is propagated
through this and gate.

The triggering of the rules is combined with a systematic labeling in a general
constraint and generate search, commonly used in constraint logic programming.

4.3.2 Experiments

We consider the problem of finding all possible ways to test each gate in a 4-bit
adder. This adder is composed of 21 boolean gates and can be defined using
four full adders:

ABitAdder(Xs, Xo, X1, Xo, Y3, Y3, Y1, Yo, 0, Z3, 22, Z1, Z0) &
fulladder(Xo, Yy, 0, Z0,C0) A
fulladder(X,,Y1,C0,Z1,C1) A
fulladder(X»,Y>,C1,Z22,C2) A
fulladder(Xs,Ys,C2,73,C3) A
zor(Ca, Cs, 0).

Where 4BltAdd€7‘(X3, X2, X]_, Xo, }/3, Y2, Yi, Yb, O, Zg, ZQ, Zl; Zo) means that
the result of adding the 4-bit binary number (X3, X5, X1, Xo) to the 4-bit bi-
nary number (Y3,Y3,Y1,Yy) is (O, Z3, Za, Z1, Zy) and fulladder(X,Y, Z, S, C)
simply defines a full adder, i.e. addition of two bits X and Y is performed, where
Z is the input carry bit, S is the output bit, and C is the output carry bit.

We present the results of three experiments. Each experiment is performed
with a different set of rules. In each experiment, we consider in turn each of

50 CHAPTER 4. AUTOMATIC GENERATION

the 21 gates in the circuit. For each gate, we find all possible ways to test
the gate for stuck-at faults and record two different measures: the size of the
search space that has been explored and the execution time. The size of the
search space is measured using the number of backtracks made by the labeling
predicate (i.e. the number of variable assignments that the program made to
find all solutions). The execution time is the CPU time used on a Pentium 3
with 256 MBytes of memory and a 500 MHz processor.

The set of rules used for the first experiment contains only single-headed
propagation rules generated by the PROPMINER algorithm. This generation
has been realized using the truth tables of the operators and, or and xor in the
six-valued logic of Van Hentenryck et al, and allowing equalities and disequalities
in the body of the rules. Examples of rules are:

and(X,1,7Z) = X=Z.

and(X,0,Z) = X#AANX#INZ=0.
or(X,Y,Y) = X#AIANX#Ad.
or(X,X,Z) = X#AAANX#IANX =Z.
zor(X,Y)Y) = X=0.

ror(d,1,Z) = Z=d.

It should be noticed that this set of rules leads to the same propagations as
the rules used by Van Hentenryck et al. Exploiting the symmetry of the
ternary operators with respect to the the first and second argument (e.g.,
and(X,Y,Z) & and(Y, X, Z)), the number of rules can be reduced to 77 rules.
So, it is a hard work to produce this set manually, but such a generation by
hand remains possible (as it has been done by Van Hentenryck et al).

In the second experiment, we used also automatically generated propagation
rules, but in this experiment we take rules with one or two atoms in the head.
Example of rules are

and(X,Y,0) Aor(Z,Y,X) = X #dANX #dANX=ZAY=0.
and(X,Y,Z)Nzor(Z,1,Y) = X=0AY=1AZ=0,.

Even when exploiting the symmetry of the ternary operators this set consists of
619 rules, and cannot reasonably be generated by hand.

Finally, the third experiment has been made using the rules of the second ex-
periment transformed into simplification rules using SIMPMINER. For example,
the previous rule has been transformed into

and(X,Y,0) Aor(Z,Y,X) & X#dAX#dANX=ZAY=0.
and(X,Y,Z) Nzor(Z,1,Y) & X=0AY=1AZ=0.

The comparison between experiment 1 and experiment 2 is given in Ta-
ble 4.1. For each gate the table gives the following information: size of search
space (number of backtracks) and CPU execution time (in seconds) for the
first experiment, size of search space and CPU execution time for the second
experiment, variation of the size of the search space from the first to the sec-
ond experiment (absolute variation, A abs., and relative variation in percent,
A %), and finally variation of the CPU execution time from the first to the
second experiment (absolute and relative variations). This table shows that in

4.4. RELATED WORK 51
gate experiment 1 experiment 2 search space CPU time
number || search | CPU || search | CPU || Aabs. | A% | A abs. A%
space time space | time

1 680 1.76 673 | 6.55 -7 -1.03 +4.79 | +272.16
2 5088 | 44.86 1728 | 17.01 -3360 | -66.04 -27.85 -62.08
3 620 2.45 417 | 3.34 -203 | -32.74 +0.89 | +36.33
4 5088 | 44.93 1728 | 14.52 -3360 | -66.04 -30.41 -67.68
5 680 1.90 517 | 2.94 -163 | -23.97 +1.04 | +54.74
6 1780 8.73 1258 | 21.12 -522 | -29.33 || +12.39 | +141.92
7 5854 | 48.40 1909 | 18.85 -3945 | -67.39 -29.55 -61.05
8 1780 | 10.67 909 | 11.27 -871 | -48.93 +0.60 +5.62
9 12778 | 133.34 1904 | 19.56 || -10874 | -85.10 || -113.78 -85.33
10 2740 | 17.00 1263 | 17.15 -1477 | -53.91 +0.15 +0.88
11 4960 | 40.00 2670 | 75.66 -2290 | -46.17 || +35.66 | +89.15
12 7268 | 48.74 3086 | 62.09 -4182 | -57.54 || +13.35 | +27.39
13 5900 | 53.32 1997 | 39.06 -3903 | -66.15 -14.26 -26.74
14 13122 | 132.43 1944 | 22.16 || -11178 | -85.19 || -110.27 -83.27
15 8340 | 77.35 2827 | 60.44 -5513 | -66.10 -16.91 -21.86
16 2926 | 81.21 514 | 33.85 -2412 | -82.43 -47.36 -58.32
17 7692 | 63.86 2681 | 44.99 -5011 | -65.15 -18.87 -29.55
18 2822 | 91.08 687 | 31.02 -2135 | -75.66 -60.06 -65.94
19 7884 | 124.49 1994 | 38.58 -5890 | -74.71 -85.91 -69.01
20 4988 | 126.93 965 | 37.32 -4023 | -80.65 -89.61 -70.60
21 11712 | 172.25 2059 | 43.25 -9653 | -82.42 || -129.00 -74.89

Table 4.1: Search space reduction with overhead.

this application, the propagation rules with multiple heads generated automat-
ically (experiment 2) can be used to greatly reduce the size of the search space
compared to the search space explored using single-headed propagation rules
(experiment 1). Unfortunately, the table shows also that in several cases, we
should pay for a very important overhead in terms of execution time to handle
these more complex rules.

The comparison between experiment 1 and experiment 3 given in Table 4.2
shows that this overhead can be suppressed if we transform the set of propa-
gation rules to a set of propagation and simplification rules using SIMPMINER.
Moreover, in nearly all cases, the execution time is reduced by more than 50%.
Only a very few overhead remains for gate 1. But, it should be noticed that
in this particular case the search space reduction is very low and the execution
very brief. So, for this gate, we could not expect to observe a real reduction of
the execution time because of the fixed-cost we must pay to handle the set of
rules.

4.4 Related Work

e In the pioneering paper [20], K. Apt and E. Monfroy proposed an algo-

52 CHAPTER 4. AUTOMATIC GENERATION
gate experiment 1 experiment 3 search space CPU time
number |[search | CPU || search | CPU || A abs. | A % Aabs. | A%
space time space | time
1 680 1.76 673 | 1.86 -7 | -1.03 +0.10 | +5.68
2 5088 | 44.86 1728 | 5.90 -3360 | -66.04 -38.96 | -86.85
3 620 2.45 417 | 0.96 -203 | -32.74 -1.49 | -60.82
4 5088 | 44.93 1728 | 5.18 -3360 | -66.04 -39.75 | -88.47
5 680 1.90 517 | 0.86 -163 | -23.97 -1.04 | -54.74
6 1780 8.73 1258 | 5.46 -522 | -29.33 -3.27 | -37.46
7 5854 | 48.40 1909 | 4.71 -3945 | -67.39 -43.69 | -90.27
8 1780 | 10.67 909 | 3.11 -871 | -48.93 -7.56 | -70.85
9 12778 | 133.34 1904 | 7.59 || -10874 | -85.10 || -125.75 | -94.31
10 2740 | 17.00 1263 | 4.62 -1477 | -53.91 -12.38 | -72.82
11 4960 | 40.00 2670 | 20.80 -2290 | -46.17 -19.20 | -48.00
12 7268 | 48.74 3086 | 17.45 -4182 | -57.54 -31.29 | -64.20
13 5900 | 53.32 1997 | 10.89 -3903 | -66.15 -42.43 | -79.58
14 13122 | 132.43 1944 | 9.03 || -11178 | -85.19 || -123.40 | -93.18
15 8340 | 77.35 2827 | 17.67 -5513 | -66.10 -59.68 | -77.16
16 2926 | 81.21 514 | 12.66 -2412 | -82.43 -68.55 | -84.41
17 7692 | 63.86 2681 | 14.49 -5011 | -65.15 -49.37 | -77.31
18 2822 | 91.08 687 | 14.21 -2135 | -75.66 -76.87 | -84.40
19 7884 | 124.49 1994 | 16.06 -5890 | -74.71 || -108.43 | -87.10
20 4988 | 126.93 965 | 15.36 -4023 | -80.65 || -111.57 | -87.90
21 11712 | 172.25 2059 | 17.78 -9653 | -82.42 || -154.47 | -89.68

Table 4.2: Search space and execution time reduction.

rithm for generating rules ensuring a weak notion of local consistency,
namely rule consistency. In contrast to our approach, the user has no
possibility to affect the form of the generated rules. Furthermore, only
propagation rules can be generated.

Let C be an atomic constraint. The algorithm presented in [20] generates
propagation rules of the following form

C(Xl,...,Xk) AN Xi=v1 A ... AN Xgp=v, — YH#u,

where X3,..., X} are some variables occurring in C, and vy, ...vg,v are
elements of the domain associated to variables of C, and Y is a variable
occurring in C but not in Xy, ..., X.

The algorithm presented in [83] is a combination of the one described
in [20] and unification in finite algebra [82]. Similar to [20] the user has
here no possibility to specify the form of the rules. The rules generated
by this algorithm have the following form:

C(Xl,...,Xk) AN Xi=vy A ... N Xp=v; — B,

where now vy, ...v; are either elements of the domain or free constants
to represent symbolically any element of the domain as used in unifica-

4.4. RELATED WORK 93

tion in finite algebra [60]. B is a conjunction of equality constraints and
membership constraints (e.g. X € D). With the notion of free constants,
equality between variables in the right-hand side of rules can be deduced.

For a constraint c1® defined by the tuples {(0,0,1),(1,1,1)} the following
propagation rules are generated by the algorithm presented in [20]:

o(X1,X2,X3) — X3#£0
e(1,X2,X3) — Xo#0
c(0,X2,X5) = Xo#l
o(X1,1,X3) = X;#£0
o(X1,0,X5) = Xi#1

The algorithm presented in [83] generates the following rules for the con-
straint cl:

C(Xl,XQ,X3) — X1€{0,1} A XQG{O,].} A X3=1
C(.Z'l,XQ,X3) - Xo=z1 N X3=1
C(Xl,Xg,Xg) — Xi=29 N X3=1

In contrast to the algorithms presented in [20] and [83] our approach leads
to a more compact and more expressive set of rules. For the constraint
cl, our algorithm PROPMINER generates the single propagation rule, if
the user specifies that the right hand side of the rules may consist of a
conjunction of equality constraints:

C].(Xl,X2,X3) = X=Xy AN X3=1

With the rules generated by the algorithm presented in [20], one propa-
gates from ¢1(X1, X2, X3) that X3=1. With our generated rule we also
propagate that X1=X5. This can also be deduced from the rules generated
by the algorithm presented in [83]. However, for a constraint ¢2 defined by
its tuples {(0,1,0),(0,1,1),(1,0,0),(1,1,0)}, our algorithm PROPMINER
can also generate the following rule

CQ(Xl,Xl,Xg) = Xi1=1 A X3=0

Using this rule, one can deduce from ¢2(X7, X1, X3) that X;=1 A X3=0.
This cannot be deduced neither by the algorithm presented in [20] nor by
the one presented in [83).°

5The following two examples are taken from [83].
6Personal communication with E. Monfroy, Email, March 2000.

54 CHAPTER 4. AUTOMATIC GENERATION

Furthermore, in contrast to the algorithms presented in [20] and [83] our
algorithm is able to generate rules with a conjunction of constraints in
the left hand side of the rules which is an essential feature for non-trivial
constraint handling.

o Generalized Constraint Propagation [80] extends the propagation mech-
anism from finite domains to arbitrary domains. The idea is to find a
simple approxzimation constraint that is a kind of least upper bound of a
set of computed answers to a goal. In contrast our approach where the
generation of rules is done once at compile time, generalized propagation
is performed at runtime. Furthermore, [80] does not say much about how
to compute the approximations and when to perform propagation steps.

e Inductive Logic Programming (ILP) is a machine learning technique that
has emerged in the beginning of the 90’s [75]. In ILP, the user is interested
to find out logic programs from examples. In our case, we generate con-
straint solvers in the form of propagation and simplification rules, using
the definition of the constraint predicates. We used techniques also used
in ILP (e.g., [79]), and it is important to consider which of the works done
in these fields may be used for the generation of constraint solvers.

4.5 Conclusion and Future Work

We have presented a method for generating rule-based constraint solvers for
finite constraints given their extensional representation. The generation is per-
formed in two steps. In a first step, propagation rules are generated. This
method has been developed based on several techniques used in association
rule mining [17] and ILP [75]. In a further step, propagation rules are trans-
formed into simplification rules. The method has been developed based on the
confluence notion of Constraint Handling Rules. Compared to the algorithms
described in [20] and [83] our approach is able to generate more general and
more expressive rules. On one hand, we allow multiple occurrences of variables
and conjunction of constraints with shared variables in the left hand side of
rules. On the other hand the user has the possibility to specify the form of
the right hand side of rules which can consist of more complex constraints than
(dis-)equality constraints.

We also gave various examples to show that our approach can be used as a
method to derive new constraint solvers.

Up to now, our method is only able to generate rule-based solvers for finite
constraints. Currently, we are extending our method to generate solvers for any
kind of constraints, e.g. constraints defined intensionally by a constraint logic
program. For the maximum predicate defined by the following clauses

maz(A,B,C) < A<BAC=B.
maz(A,B,C) + B<AAC=A.

4.5. CONCLUSION AND FUTURE WORK 55

we would like to generate the following rules

maz(A,B,C) = C<BAC<A.
maz(A,A,C) & C=A.
maz(A,B,C)ANC#B = C(C=A.
maz(A,B,C)NC#£A = C=B.
maz(A,B,C)AN\B< A & C(C=A.
maz(A,B,C)NA<B & C(C=B.

The challenge will be to extend the PROPMINER algorithm in such a way that
for a given goal a conjunction of constraints has to be extracted approximating
all its answers.

96

CHAPTER 4. AUTOMATIC GENERATION

Chapter 5

Extension: CHRVY

It is obvious that there are similarities and differences between CHR compu-
tation and SLD resolution.! As we have mentioned in the introduction, while
some of the differences between CHR, and SLD resolution extend the expressive
power of CHR w.r.t. SLD resolution (+), others are incompatibilities (#) or
mere technical differences (s):

+ While variable bindings are accumulated in a substitution by SLD res-
olution, a CHR computation uses equality constraints for this purpose.
Obviously every substitution can be expressed by equality constraints,
but not every built-in constraint can be simulated by substitutions.

e Since CHR does not handle all constraints through rules, but is able to
use a built-in constraint solver, there is a distinction between user-defined
and built-in constraints.

+ Horn clauses are used by SLD resolution in a way similar to simplification
rules in CHR, since the atom A that is unified with the rule head is
removed from the goal. However, there is nothing like propagation rules
for SLD resolution.

+ CHR allows for multiple atoms in rule heads.? So a rule application
may need to match (and, in the case of a simplification rule, consume)
several atoms in the user-defined constraint store.

CHR performs committed choice, i.e., it does not generate more than
one child state from any given state. That is, only a linear computation
is performed instead of a traversal of some tree.

A rule head is matched rather than unified with some part of the user-
defined constraint store. The restriction to matching is needed in order
to retain certain completeness properties in the presence of committed
choice [68].

1A short description of Horn clause programs and SLD resolution can be found in Ap-
pendix A.

2Multi-headed rules have not only been investigated for CHR, but according to [37] also
for variants of logic programming languages, mainly for coordination languages.

57

58 CHAPTER 5. EXTENSION: CHRY

+ CHR allows adding guards to rules. This is needed also as a consequence
of committed choice: Guards must frequently be used to avoid application
of inappropriate rules, which cannot be backtracked as in SLD resolution.

In this chapter, we will show how the two incompatibilities can be eliminated
by a simple extension of CHR. We allow disjunctions in rule bodies. We call
the extended language “CHRY” (to pronounce “CHR-or”) [14]. In Section 5.1,
we give formal operational semantics for CHRY. Section 5.2 shows how the ex-
tended language can be used as an experimental platform for several declarative
paradigms.

5.1 Constraint Handling Rules with Disjunction

5.1.1 Syntax

We use two disjoint sorts of predicate symbols: One sort for predefined predicates
and one sort for free predicates. Intuitively, predefined predicates are defined
by means of a logical theory CT in such a way that statements of the form

CTEY(CIA---ANC, = 3E(Cryr A+ ACy)),
where Z is a subset of variables in Cp41,... Cpy

are decidable. The legitimate forms of predefined predicates and their meaning
is specified by a constraint domain for some CLP language and the sort of
judgments shown above abstracts the behavior of an ideal constraint solver.
Free predicates are those defined by a CHRY program.

The set of predefined predicates includes = with the usual meaning of syn-
tactic equality.

Like in CHR, we have two basic kinds of rules: Simplification rules H < C|B
and propagation rules H = C|B, where the head H is a non-empty conjunction
of free atoms, the guard is a conjunction of predefined atoms and the body
B a goal. A goal is a formula constructed from atoms by conjunctions and
disjunctions in an arbitrary way; “true’ denotes the empty conjunction and
“false” the empty disjunction. A simple goal is one without disjunctions. A
CHRY program is a finite set of simplification and propagation rules.

5.1.2 Operational Semantics

The operational semantics of CHRY is given by a transition system whose states
are goals considered as a disjunction of subgoals. A subgoal G is failed if its built-
in constraints (Gpy:) are unsatisfiable and a state is failed if all its subgoals
are failed.

The computation steps from Figure 2.1 will be used for CHRY programs to
subgoals in the same way as they have been used for CHR programs. However,
with the extended syntax disjunctions make their way into the state. In order
to handle these, we introduce the Split computation step (Figure 5.1).

A computation for a goal () in a program P is a sequence) = Sy, S1,-- -
of states with S; — S;y1, however so that no step can be applied to a failed
subgoal. A final state in a computation is either failed or a successful one to
which no computation step can be applied and which has at least one successful

5.1. CONSTRAINT HANDLING RULES WITH DISJUNCTION 59

subgoal. Notice that the Split step ensures that successful subgoals always are
simple.

Split
(G1VG2)/\GI—>G1/\G \Y Gz/\G

Figure 5.1: Computation step for disjunctions

The Split transition can always be applied to a state containing a disjunc-
tion. No other condition needs to be satisfied. This transition leads to branching
in the computation in the sense that one subgoal is made into two, each of which
needs to be processed separately. In Prolog, disjunctions are processed by means
of backtracking, one alternative is investigated and the second only if a failure
occurs. For CHRY, we need to investigate both branches in order to respect the
declarative semantics; however, in an implementation this may be done, e.g., by
backtracking (storing the results) or by producing copies of parts of the state
to be processed in parallel or interleaved.

Spliting implies that a rule with a disjunction in its body is not just syntactic
sugar for two clauses without disjunctions, i.e., H < B; V By means something
different than the combination of H < B; and H < B,. In a computation,
the use of the rule with the disjunction means that both B; and By occur in
the subsequent state, whereas using the two other rules means a commitment
to one of By and Bs, i.e. one transition is chosen nondeterministically (in the
sense of don’t-care nondeterminism, i.e., without backtracking).

Example 5.1 Let P be the following CHR" program:

p<qVr.
q < false.
r & true.

The evaluation of a goal p wrt. this program leads to the computation
P~ qVr — falseVr ~— false V true

with a successful final state. O

The declarative semantics of CHRY is the same as for CHR. We now present
some results relating the operational and declarative semantics of CHRY. These
results are similar to those for CLP [55, 68].

Theorem 5.2 (Soundness) Let P be a CHRY program and G be a goal and let
P be the logical meaning of P. If G has a computation with answer constraint
C then

P,CTEVY (C = G).
O

Theorem 5.3 (Completeness) Let P be a CHRY program and G be a goal
and let P be the logical meaning of P. If G has only finite computations and

60 CHAPTER 5. EXTENSION: CHRY

if P,CT E V (C — G), then G has computations with answer constraints
Ci,...,C, such that

P,CTEV(C—-CiV...VCy).
O
Theorem 5.3 shows that in CHRY (like in CLP) it is necessary, in gen-
eral, to combine several computations with answer constraints to establish that
P,CT =V (C = Q) holds. However, in logic programming each declarative

answer (logical consequence of the program) is covered by a more general com-
puted answer.

Example 5.4 Let CT be an appropriate constraint theory describing the pre-
defined predicates < and > as order relations and let P be the following CHRY
program

p(X,Y) & X<Y Vv X>V.

Let G be the goal p(X,Y). It is easily verified that P, CT |= V(true — p(X,Y))
but that true does not imply either of the answer constraints X<Y and X>Y alone.
O

In general, the completeness theorem does not hold, if G has an infinite
computation:

Example 5.5 Let P be the following CHRY program:
P & qVr.
qQ < q.

Let G be p. It holds that P = q — p. However, G has only one finite
computation with final state r and P £ q — r. O

5.2 CHRY' as an Experimental Platform for Declar-
ative Paradigms

5.2.1 Logic programming with integrity constraints in CHRY

In the following, we show how a program P, written in a constraint logic lan-
guage given by the predefined predicates of CHRY, can be written as an equiv-
alent CHRY program CP and how integrity constraints can be added to CP [3].
We distinguish predicates into intensional, defined by rules, and extensional
ones, defined by finite sets of ground facts.

For each intensional predicate p defined by a number of clauses in P,

p(th, .. th) < bi,...,p(th, ... th) « by,
CP has a simplification rule called the definition rule for p of the form

p(T1, .y Tn) & (T =HA Az, =tLAb) V -+ V (3 = th A Ay, =
th A by);

5.2. EXPERIMENTAL PLATFORM 61

variables z; do not occur in the original rules for p. For each extensional predi-
cate p defined by a set of facts in P,

p(th, ... th), ... p(tk, ... tk)
CP has a propagation rule, called the closing rule for p, of the form
p(T1,. ., %) = (@1 =thA- Az =tL) V- V (m1 = th A Az, = tF)

In addition, C P has one propagation rule called extensional introduction rule of
the following form, listing all facts of all extensional predicates of P.

T=fin-Afn

Integrity constraints which can be added to CP are propagation rules of the
form

etN---Nep, =D

where ey, ..., e, are extensional atoms, b an arbitrary body.

The evaluation of a goal will proceed in a top-down manner, unfolding it
via the definition rules for the predicates applied, leading to a state giving sets
of “hypotheses” about extensional predicates. The closing rules will prune this
set so that only those hypothesis sets that are consistent with the facts of the
original logic program are accepted. Notice that closing rules syntactically are
special cases of integrity constraints and that they also serve as such, ensuring
that no new extensional facts can be added.

Integrity constraints are not necessarily involved in the processing of a goal
but there are cases where the integrity constraint, as a kind of semantic optimiza-
tion, can identify failures without consulting the actual extension (as embedded
in closing and extensional introduction rules); this is shown in the example be-
low. The extensional introduction rule ensures that no successful state can be
reached without the integrity constraints being checked.

Example 5.6 The following CHR" program defines extensional father, mother,
and person predicates and intensional parent and sibling. The integrity con-
straints state natural requirements that any set of extensional facts should sat-
isfy. The predicate “#£” is predefined representing syntactic nonequality.

% Definition rules
parent(P,C) < father(P,C) V mother(P,C).
sibling(C1,C2) & C1#C2 A parent(P,C1) A parent(P,C2).

% Extensional introduction rule

T =
father (john,mary) A father(john,peter) A
mother (jane,mary) A
person(john,male) A person(peter,male) A
person(jane,female) A person(mary,female) A
person(paul ,male) .

% Closing rules
father (X,Y) = (X=john A Y=mary) V (X=john A Y=peter).

62 CHAPTER 5. EXTENSION: CHRY

mother (X,Y) = (X=jane A Y=mary).

person(X,Y) =
(X=john A Y=male) V (X=peter A Y=male) V
(X=jane A Y=female) V (X=mary A Y=female) V
(X=paul A Y=male).

% Integrity constraints

father(F1,C) A father(F2,C) = F1=F2.

mother (M1,C) A mother(M2,C) = M1=M2.
person(P,G1) A person(P,G2) = G1=G2.

father (F,C) = person(F,male) A person(C,S).
mother(M,C) = person(M,female) A person(C,G).

The goal sibling(peter,mary) will be unfolded to different subgoals involving
father and mother hypotheses, some of which fail but father (john,mary) A
father (john,peter) survive and the goal succeeds.

When a goal is processed, the representation of extensional predicates by
the extensional introduction rule introduces the facts into the state so that the
integrity constraints are processed correctly, e.g., the goal T succeeds, showing
that the integrity constraints indeed are satisfied. The goal sibling(paul,mary)
will need the acceptance of father (john,paul) or mother (jane,paul) which
are rejected by the closing rules and thus the goal fails.

The goal father(X,Y) A mother(X,Y) can be brought to failure just by
checking the integrity constraints.

father (X,Y) A mother(X,Y)

father (X,Y) A mother(X,Y) A person(X,male) A person(Y,S)

father (X,Y) A mother(X,Y) A person(X,male)A person(Y,S) A

person(X,female) A person(Y,S1)

— father(X,Y) A mother(X,Y) A person(X,male)A person(Y,S) A
person(X,female) A person(Y,S1) A male=female

— false

—
—

O

The correctness properties of the transformation described above can be char-
acterized as follows.

e For any positive Horn clause program P, the definition rules and exten-
sional introduction rule of CP coincide with the Clark completion of P,
and the closing rules are logically redundant. Thus the declarative seman-
tics is preserved under the transformation.

Example 5.7 Consider for example the well-known ternary append pred-
icate for lists, which holds if its third argument is a concatenation of the
first and the second argument. It is usually implemented by these two
Horn clauses:

append([],L,L) « true.
append([H|L1],L2,[H|L3]) ¢« append(L1,L2,L3).

The corresponding CHRY program consists of the single simplification rule

5.2. EXPERIMENTAL PLATFORM 63

append (X,Y,Z) &
(X=[0 A Y=L A Z=L
\% X=[H|L1] A Y=L2 A Z=[H|L3] A append(L1, L2, L3)).

According to the declarative semantics of CHRY the logical meaning of
this rule is

VX,Y,Z (append(X,Y,Z) &
AL, H,L1,L2,L3 (X=[|AY=LAZ=L
V X=[H|L1)ANY=L2A Z=[H|L3] A
append(L1, L2, L3))).

This is trivially equivalent to the completed definition

VX,Y,Z (append(X,Y,Z) «
(3L (X=[AY=LA Z=L)
v 3H,L1,L2,L3(X=[H|L1]ANY=L2A Z=[H|L3] A
append(L1, L2, L3)))).

of append in the original Horn clause program.
O

e A successful subgoal contains a copy of the extensional part of P together
with a satisfiable collection of predefined atoms that corresponds to a
computed answer: equations characterize a substitution to the variables
of the initial goal and if there are other atoms of predefined predicates,
they serve as further constraints on those variable.

o If the database does not satisfy its integrity constraints, any initial goal has
a failed computation and with the formulation of a suitable computation
rule we can get the result that any computation will fail.

e Completeness is obvious for nonrecursive programs, whereas for recursive
programs termination is not guaranteed. However, with a suitable com-
putation rule, we can achieve termination analogous to a traditional CLP
implementation for the language in which P is written. A completeness re-
sult can be formulated which collects the successful subgoals in a perhaps
infinite computation.

The formalism allows us also to define new predicates indirectly by means of
integrity constraints that cannot be defined in a feasible way in positive con-
straint logic programs. It is sufficient to illustrate the principle by means of an
example.

Example 5.8 We consider the task of extending the program of example 5.6
with a orphan predicate with the intended meaning that orphan(X) holds for
any X which is a person but has no father or mother. A definition is required
which is valid for any instance of the extensional predicates in the program,
which means that an extensional listing of orphan facts is unacceptable. This
can be expressed by adding the following three rules to the program.

64 CHAPTER 5. EXTENSION: CHRY

orphan(C) = person(C,G).
orphan(C) A father(F,C) = false.
orphan(C) A mother (M,C) = false.

The goal orphan(X) results in a final state
(X=john A orphan(john) A E) V (X=jane A orphan(jane) A E)

where E is the conjunction of the extensional facts in the program.

We see that the first rule defines a range for the orphan, giving rise to the
possible instantiations of X, and the two next ones removes those values for X
that has a parent.

This definition cannot be rewritten as a positive definition, and to express it
in Prolog, we need to rely on the dubious procedural semantics of Prolog’s ap-
proximation of negation-as-failure, e.g., as follows. orphan(X):- person(X,.),
\+father (X,.), \+mother(X,.). O

We return to this example in the next section.

5.2.2 Abduction in CHRY

Abductive querying goes beyond what can be formulated by traditional queries
concerning membership of the current state of a database: A goal, typically not
implied by the database, is stated to the system and the answer describes ways
how the goal could be achieved as a consequence of the database by additional
hypotheses about the database state.

Abduction is usually defined as the process of reasoning to explanations for
a given goal (or observation) according to a general theory that describes the
problem domain of the application. The problem is represented by an abductive
theory.

An abductive theory is a triple (P, A, IC), where P is a program, A is a set
of predicate symbols, called abducibles, which are not defined (or are partially
defined) in P, and IC is a set of first order closed formulae, called integrity
constraints.

An abductive explanation or solution for a ground goal G is a set M of
ground abducible formulae which when added to the program P imply the goal
G and satisfy the integrity constraints IC, i.e.

PUM = Gand PUM [IC

In general, the initial goal as well as the solution set M may also con-
tain existentially quantified abducibles together with some constraints on these
variables [58, 31, 32], and such solutions are also produced by the method we
describe below. We ignore the issue of minimality of solutions which often is
required for abductive problem, e.g., diagnosis.

We consider here abduction for positive programs of the sort introduced
in Section 5.2.1 and with integrity constraints formulated as CHRY rules as
described. Abducibles must be chosen among the extensional predicates.

For such an abductive theory (P, A,IC), we define its translation into a
CHRY program C(P, A, IC) similarly to the translation of Section 5.2.1: The
only difference is that the closing rule is left out for each abducible predicate; the
extensional introduction rule contains as before all extensional facts, including
possible initial facts for abducible predicates.

5.2. EXPERIMENTAL PLATFORM 65

Example 5.9 The indirect definition of the orphan predicate considered in
example 5.8 is a special case of this translation with orphan considered the only
abducible predicate. O

We consider a small example also used in [62].

Example 5.10 Consider an abductive framework with the following program
and integrity constraint:

bird < albatross.
bird < penguin.
penguin A flies — false.

Predicates penguin, albatross and flies are the only abducible. Obviously
the abductive solutions for bird A flies is {albatross, flies}. These so-
lutions are obtained by the following CHRY program.

bird < albatross V penguin.
penguin A flies = false.

With this program the evaluation of the goal bird A flies leads to the fol-
lowing computation:

bird A flies
— (albatross V penguin) A flies
— (albatross A flies) V (penguin A flies)
— (albatross A flies) V false

O

In the following, we show that our framework avoids problems with variables
that exist in some abduction systems.

Example 5.11 We continue Example 5.6 and let predicates father and mother
(but not person) be abducible. The translation of this abductive framework is
as shown in example 5.6 with the closing rules for father and mother removed.

The abductive goal sibling(paul, mary) succeeds with a final state which
contains two different abductive explanations (i.e., in two different subgoals)
father (john,peter) and father(jane,peter). The goal sibling(goofy,
mary) fails since person is not abducible, and thus the closing rule for person
will reject the hypothesis person(goofy,-).

We can illustrate final states including variables by changing the example so
that person becomes abducible, i.e., we remove the corresponding closing rule.

Now the goal sibling(goofy, mary) leads to the following final state where
E is the conjunction of extensional facts in the program:

(father(john,goofy) A person(goofy,G) A E)
\%
(mother (jane,goofy) A person(goofy,G) A E)

This first subgoal gives the abductive explanation for the sibling observation
that john is the common father of goofy and mary and that the individual
goofy must be a person whose gender is not necessary to specify. The second
subgoal is similar, explaining sibling alternatively by means of a mother fact.

The goal sibling(goofy,mickey) leads to a final state with two successful
subgoals, one of which is

66 CHAPTER 5. EXTENSION: CHRY

father (A,goofy) A person(A,male) A
person(goofy,B), A father(A,mickey) A
person(mickey,C) A E)

The present approach to abduction avoids the problems with variables in ab-
ducibles that exist in some abduction algorithms. Three persons are necessary
in the explanation, mickey, goofy, and their unknown father. The unknown
father must be male and the gender of the the others does not matter.

O

The correctness properties of the translation of abductive frameworks into
CHRY programs described above can be summarized as follows; we consider
an abductive framework written as a CHRY program C(P, A, IC) and an initial
goal G.

e For any successful subgoal A A C' A E in a computation for G, where A
are abducible atoms (not necessarily ground), C' predefined, and E the
extensional facts of P, and any grounding substitution ¢ which satisfies
C, we have that PU Ao |= Go and PU Ao = IC.

o If no successful subgoals exists in a computation for G, there are no ab-
ductive explanation for (any instance of) G.

e Completeness is obvious for nonrecursive programs; for recursive programs
the situation is similar to what we discussed for the translation of nonab-
ductive programs into CHR".

Finally, we notice that this implementation in CHRY of abductive frameworks
with integrity constraints is suited for implementing so-called explicit nega-
tion [78] so we can claim also to support negation in our framework. The tech-
nique is to introduce, for each predicate p, another abducible predicate not-p
characterized by the integrity constraint p(Z) A not-p(Z) = false.

5.2.3 Model Generation with Constraints using CHR"

With propagation rules one has a similar behavior as in deductive databases:
A fact is not consumed by applying a rule. We can easily show that there
is a transformation from deductive databases in which all derivable atoms are
ground to propagation rules that compute the same set of atoms. A bottom-up
rule of the form H <+ B, where the body is non-empty, has to be converted to
the propagation rule B = H. Since CHR is query-driven, a rule of the form
H « T (usually called a fact) has to be converted to start = H. With the goal
7-start the evaluation of the corresponding CHR program begins, computing
its least Herbrand model.

Example 5.12 The following standard ancestor program

anc(X,Y) « par(X,Y).

anc(X,Y) « anc(X,Z) A par(Z,Y).
par(a,b) « T.
par(b,c) « T.
par(c,d) « T.

5.2. EXPERIMENTAL PLATFORM 67

can be converted to an operationally equivalent CHR program

par (X,Y) = anc(X,Y).

anc(X,Z) A par(Z,Y) = anc(X,Y).
start = par(a,b).

start = par(b,c).

start = par(c,d).

O

With (disjunctive) propagation rules, it is now also possible to write disjunc-
tive logic programs and to evaluate them in a bottom-up manner in the style of
Satchmo [69]. Satchmo expects its input to be given in clausal form. In a way
similar to the CPUHR-~calculus [13], CHRY can handle even disjunctive logic
programs with existentially quantified variables and constraints as shown in the
following example.

Example 5.13 Consider the following informations that we have about a uni-
versity and a student: If a student S is enrolled in a course C at some time T and
C has another course C’ as a prerequisite, then S must also be enrolled in C’ at
some time T’ before T. john has only taken courses before 1994 and from 1996
onward. These informations can be formalized by the following propagation
rules:

enrolled(S, C, T) A prereq(C, C’) = enrolled(S, C’, T’) A T’<T.
enrolled(john, C, T) = T<1994 V T >1996.

The following rules define a part of the constraint solver for “<”, and “>”,
that is able to handle constraints even with variable arguments. “<p” is a
simple predefined predicate that compares two numbers and cannot deal with
uninstantiated variables.

<Y A X<Z & Y<p Z | X<V.
X<Y A X>Y & false.
X>X & true.

The first rule means that the constraint X<Z (with a given number Z) can be
omitted if there is another constraint X<Y (with a given number Y) provided
that Y is smaller than Z. The second rule means that some value X cannot be
smaller and greater-or-equal to a value Y at the same time. The last rule means
that a constraint of the form X>X is trivially valid and can be omitted.

Facts are brought into the computation by a CHR" goal. The facts that
john has taken course cs100 in 1996 and cs100 has prerequisite cs50 lead to
the initial state enrolled(john, cs100, 1996) A prereq(cs100, cs50).

The computation is given in Figure 5.2 in a simplified form. The atom
enrolled(john, cs100, 1996) activates an instance of the second propagation
rule and CHRV distinguishes two cases corresponding to the disjuncts on the
right hand side of the rule. In the left case, we get a contradiction (1996<1994).
In the only successful leaf we see that john must have taken cs50 some time
before 1994.

O

enr

68 CHAPTER 5. EXTENSION: CHRY

enrolled(john, cs100, 1996)
prereq(cs100, cs50)

o0lled(john, cs100,1996) enrolled(john, cs100, 1996)
prereq(cs100, cs50) prereq(cs100, cs50)
1996 < 1994 1996 > 1996

enrolled(john, cs100,1996)

false prereq(cs100, cs50)

enrolled(john, cs100,1996)
prereq(cs100, cs50)
enrolled(john, cs50,T)
T' < 1996

enrolled(john, cs100, 1/996) enro\lled(j ohn, cs100, 1996)
prereq(cs100, cs50) prereq(cs100, cs50)
enrolled(john,cs50,T') enrolled(john, cs50,T’)

T < 1996 T < 1996
T < 1994 T > 1996
enrolled(j ohln, cs100, 1996)
prereq(cs100, cs50)
enrolled(john,cs50,T')

T < 1994

false

Figure 5.2: Evaluation of Example 5.13

5.2.4 Top-down Evaluation with Tabulation using CHR"

In this section, we show how to combine top-down evaluation with Tabulation
using CHRV.

Consider the following Horn clause program that computes the Nth Fibonacci
number (starting from 0): £ib(N,M) is true if M is the Nth Fibonacci number.

£ib(0,M) « M = 1.
fib(1,M) <« M = 1.
fib(N,M) + N>2 A fib(N-1,M1) A fib(N-2,M2) A M = M1 + M2.

The program is extremely inefficient, since Fibonacci numbers are computed
several times. The corresponding transformed CHRY program behaves exactly
the same as the Horn clause program.

However, with propagation rules one has a similar behavior as in deductive
databases: A fact is not consumed by applying a rule. Consider the following
CHRY program

fib(0,M) = M = 1.
fib(1,M) = M = 1.
£fib(N,M) = N>2 | fib(N-1,M1) A fib(N-2,M2) A M = M1 + M2.

5.2. EXPERIMENTAL PLATFORM 69

and the goal £ib(4,Y). The evaluation of £ib(4,Y) leads to the following final
stateY = 5 A fib(4,5) A fib(3,3) A fib(2,2) A fib(1,1) A £ib(0,1)
A £ib(1,1) A £ib(2,2) A £ib(1,1) A £ib(0,1). Toimprove the efficiency
of the program, one has to take into account the computed Fibonacci numbers
to avoid that a Fibonacci number will be computed several times.

With the following simplification rule

fib(N,M1) A fib(N,M2) <& M1 = M2 A fib(N,M1).

one can reduce the work of the computation by reusing a subgoal which has
been evaluated: To compute the 4th Fibonacci number £ib(4,Y), the second
Fibonacci number £ib(2,Y) has to be computed twice. This can be avoided
with the simplification rule above: The constraints £ib(2,2) A £ib(2,Z) will
be reduced to Z = 2 A £ib(2,2). In order to achieve the efficiency advantage,
the inference engine for CHRY should of course prefer the simplification rule
whenever possible.

5.2.5 Combining don’t-care and don’t-know Nondetermin-
ism

CHRY combines don’t-know and don’t-care nondeterminism in a declarative
way. This can be used for implementing efficient programs as in the following
example.

The CHRY program for append defined above

append (X,Y,2) &
(Xx=[] A Y=L A Z=L
\% X=[H|L1] A Y=L2 A Z=[H|L3] A append(L1, L2, L3)).

can be improved by adding the following rule
append(X,[]1,2) & X = Z.

With this rule the recursion over the list X in the initial definition of append is
replaced by a simple unification X=2Z2 if Y is the empty list. In order to achieve
the efficiency advantage, we can add a guard of the form Y # [] to the first
rule to have non-overlapping rules. This means that in a computation, at most
one rule can be chosen for a goal. The second simplification rule corresponds to
the admissible guarded rule introduced by Smolka in [94].

5.2.6 Logic Programming and Constraint Solving

In general, writing a constraint application consists of modeling the problem
using constraints and then solving them. With CHRY both phases can be done
in a uniform language.

We will illustrate the use of our framework for implementing constraint ap-
plications by means of the N-queens problem. The problem is to place N queens
on a chess board of size NV x N in such a way that no queen can capture another
queen. Note that this problem is not hard, in fact one can construct generic
solutions for different board sizes, but the program generates all solutions, not
just one. Furthermore, the N-queens problem is considered a classical demo for

70 CHAPTER 5. EXTENSION: CHRY

artificial-intelligence programming and it is often used as a benchmark problem
to compare different implementations of constraint systems.

There are many different possible models for the N-queens problem. One
way of modeling is to recognize that in any solution there is exactly one queen in
every column. We associate with the i** column the variable X; which represents
the row number of the queen in that column. In constraint terms, we use N
variables with a domain of 1 to N each. Solution are specified as a permutation
of the list of the numbers 1 to N. The first element of the list is the row number
to place the queen in the first column, the second element indicates the row
number to place the queen in the second column, etc. The following program
models the N-queens problem using this representation. In the following, we
assume that number and = are predefined predicates. The CHRY programs
for make domains, member and remove values are omitted for clarity reasons,
they can be implemented straightforward.

solve(N,Qs) <
make_domains(N,Qs) A queens(Qs) A labeling(Qs).

queens (L) &
(L=1]
Vv L = [X|Xs] A safe(X,Xs,1) A queens(Xs)).

safe(X,L,N) <
(L=1[]
\Y; L = [Y|Rest] A noattack(X,Y,N) A safe(X,Rest,N+1)).

labeling([]1) < true.
labeling([X|Xs]) A X::L & member(X,L) A labeling(Xs).

The program works as follow:

e The predicate make domains declares each of the row variables from Qs
to range over the values 1 to N. These correspond to the row variables
X1,...,XN. To set the variable X to have initial domain L we use the
notation X: :L.

e The predicate queens ensures that no queen falls on the same row or
diagonal as any other queen. It iterates through the list of queens calling
safe to ensure that each queen X does not fall on the same row or diagonal
as the remaining queens in the list.

e The predicate safe iterates through the queens in Xs adding noattack
constraints to enforce that each queen in the list is not on the same row
or diagonal as X. The implementation of the noattack constraint is given
below.

o Finally the predicate labeling is called, to ensure that a valid solution
is found. The predicate labeling iterates through each variable X in the
list of variables to be labeled, calling member (X,D), where D is the domain
of X, to set X to each of the remaining values in its domain. The variables
are tried in the order of their appearance in the list®.

3For large N more sophisticated labeling strategies can be implemented.

5.3. RELATED WORK 71

The CHRY program above implements the application-specific part. Now,
we want to implement the constraint-solving part. To solve the N-queens
problem, our constraint solver only needs to handle the noattack constraints.
noattack(X,Y,N) is trueif YAX A Y#X+N A Y#X-Nholds, i.e. noattack(X,Y,N)
ensures that a queen Y is not on the same row or diagonal as a queen X.

X::[1 & false.
noattack(X,Y,N) A Y::D <=> number (X) |
remove_values([X,X+N,X-N],D,D1) A Y::D1.
noattack(Y,X,N) A Y::D <=> number (X) |
remove_values ([X,X+N,X-N],D,D1) A Y::D1.

The first rule ensures that the domain for X cannot be empty. The second
and third rule remove the values X, X+N and X-N from the domain of Y provided
X is a number.

The CHRY program gives two solutions to the goal solve(4,Qs), namely
Qs = [2,4,1,3] and Qs = [3,1,4,2].

1 34 1234
[]

[NIUN U
ENIGUN R
[

The program executes the goal solve(4,[X1,X2,X3,X4]) as follows. Af-
ter the domain declarations the domain is X1::[1,2,3,4] A X2::[1,2,3,4]
A X3::[1,2,3,4] A X4::[1,2,3,4]. The safe predicate adds the following
noattack constraints: noattack(X1,X2,1) A noattack(X1,X3,2) A ... A
noattack(X3,X4,1). As each of these constraints involves variables with no
fixed value, no propagation occurs. In order to guarantee that a valid solution
is found labeling is called. The first variable to be assigned is X1. Trying
the first value in the initial domain, 1, propagation using the rules from the
constraint solving part reduces the domains of X2,X3 and X4, i.e. X2::[3,4] A
X3::[2,4] A X4::[2,3]. Execution of labeling continues until a solution is
found.

5.3 Related Work

We briefly compare CHRY to some other (constraint) logic programming lan-
guages:

Prolog: We have seen that it is possible to rephrase any pure Prolog program
as a CHRY program in such a way that the evaluation of the two programs
is equivalent.

CHRY provides a clear distinction between don’t-care nondeterminism
(committed choice) and don’t-know nondeterminism (disjunction), whereas
Prolog only supports don’t-know nondeterminism in a declarative way.
Don’t-care nondeterminism is typically implemented in Prolog in a non-
declarative way, e.g., using cuts.

MixLog [92] generalizes Prolog in several simple ways:

72 CHAPTER 5. EXTENSION: CHRY

e Among other things, MixLog provides multiple heads and rules not
consuming atoms. This way it supports bottom-up logic program-
ming in a way similar to CHR.

e Furthermore, MixLog can be configured to use committed choice in-
stead of backtracking, but not both in the same program.

In general, it appears that the design of MixLog is mainly driven by the
question which features can be supported by simple modifications of the
implementation. Thus it looses the close correspondence between the oper-
ational semantics and a logic-based declarative semantics, which we think
is an important property of logic programming and which is preserved in
CHR and CHRV.

Sisyphos [102] also adds support for bottom-up logic programming to Prolog.
Sisyphos uses separate engines for bottom-up and top-down evaluation. It
therefore requires that it is explicitly specified in which direction a rule is
to be evaluated. In contrast to this, CHR, CHRY and MixLog allow more
gradual transition between rules for the two evaluation directions. The
Sisyphos approach, however, has the advantage that it supports calling
predicates defined by top-down rules from the antecedents of bottom-up
rules.

PROCALOG : There are strong similarities between the work described here
and the work of Kowalski et al [62]. Both approaches originated from
different starting points but the final result is very similar. Comparing
with [62], their proof procedure may involve rewriting of complex for-
mulae that likely can be optimized by methods similar to our use of an
underlying CHR environment. Although not investigated in detail, we
notice also a similarity between some of our examples and the semantic
goal optimizations described in [62, 101].

Oz [93] is a concurrent constraint language for multi-paradigm programming.
The user can write customized search strategies, but new constraints can
only be defined with a great effort, since multiple heads and propagation
rules are missing.

ELAN [59] is an enviroment for specifying and prototyping constraint solvers,
theorem provers and deduction systems in general. It also provides a
framework for experimenting with their combination. Compared to CHR
where one has constraints as a first class concept, the ELAN system is
based on labelled conditional rewrite systems and on strategies for con-
trolling their application.

5.4 Conclusion

We have introduced the language CHRY, a simple extension of CHR. It supports
a new programming style where top-down evaluation, bottom-up evaluation,
and constraint solving can be intermixed in a single language. Furthermore, we
have shown a straightforward characterization of important aspects of query-
answering systems by means of CHRY programs. Programs of constraint logic
languages with integrity constraints, important for describing “fine-grained”

5.4. CONCLUSION 73

query evaluation and for constraint databases, can be written directly as CHRY
programs. Abductive frameworks fit naturally into this model which provides
an implementation that handles correctly a problem with variables in abducibles
that exists in some earlier approaches to abduction, e.g., [57, 38]. We can show
that indirect characterization of predicates by means of integrity constraints
and negation can be expressed also in straightforward ways. This shows that
CHRY is useful as a specification language and an implemented, experimental
framework for databases and query-answering mechanisms in general. Another
important consequence of these results is to demonstrate that efficient imple-
mentation techniques for constraint logic programs, as embedded in the underly-
ing CHR environment indeed is applicable for a variety of database applications
and query answering mechanisms.

The implementation of CHRY was the most pleasant aspect in our research:
Prolog-based implementations of CHR are already able to evaluate CHRY pro-
grams. (It happens that even the non-logical features of Prolog such as cut “!”,
assert/retract and ground work in these implementations in a reasonable

way.)

74

CHAPTER 5. EXTENSION: CHRY

Chapter 6

JACK: A Java Constraint
Kit

The constraint programming technology has matured to the point where it is
possible to isolate some essential features and offer them as libraries or embed-
ded cleanly in general purpose host programming languages. At the moment,
most constraint systems are either extensions of a programming language (often
Prolog), e.g. Eclipse, or libraries which are used together with a conventional
programming language (often C or C++), e.g. ILOG Solver. Due to the growing
popularity of Java and the possibilities of the Internet, there is a big interest to
provide constraint handling in Java to implement application servers, e.g. for
planning or scheduling systems.

Recently, several proposals have been made to combine the advantages of
constraint programming with the advantages of the programming language Java.

e Declarative Java (DJ) [103] provides syntax extensions to Java to support
constraint programming. DJ is especially designed to simplify the process
of GUT’s and Java applets.

e JSolver [34] is a Java library that provides classes to build constraints and
strategies to solve these constraints. Thereby it is possible to use variables
of the types int and bool.

e The Java Constraint Library (JCL) [96] provides several algorithms to
solve binary constraint satisfaction problems.

In this chapter, we present a new Java library providing constraint program-
ming features. This library is called JACK (JAva Constraint Kit) and consists
of three parts:

e JCHR (Java Constraint Handling Rules): A high-level language to write
application specific constraint solvers

e VisualCHR: An interactive tool to visualize JCHR computations (See Sec-
tion 3.3).

e JASE (Java Abstract Search Engine): A generic search engine for JCHR
to solve constraint problems

75

76 CHAPTER 6. JACK: A JAVA CONSTRAINT KIT

6.1 JCHR: Java Constraint Handling Rules

The first implementations of CHR. were interpreters: In 1991 in Eclipse Prolog
and in 1993 in Lisp. An interpreter was written in the logical concurrent object
oriented language Oz in 1996. In 1994, the first compiler was written as a library
of Eclipse [49]. In 1998, an implementation of CHR in Sicstus Prolog [54] was
proposed which improves previous implementations in terms of completeness,
flexibility and efficency. In this section, we present the first implementation of
CHR in Java.

6.1.1 Syntax of a JCHR Solver

A JCHR constraint solver is introduced by the keyword handler followed by the
name of the handler and the code of the handler written in curly braces (blocks
as known from Java):

handler leq {
}

A JCHR constraint handler consists of three sections: declarations, rules
and goals (in that order). Goals for constraints are optional, while a handler
without declaring constraints and rules for them would not make much sense.
There are two ways of using a constraint handler written in JCHR: Calling it
from Java (see Section 6.2) or running it stand-alone using goals. The former
will be the usual case in full-fledged applications, while the latter will be helpful
for testing and small examples that do not require search (the JASE library,
see Section 6.2). When used from Java, the goals of the constraint handler will
be ignored. Variables that appear in constraints are called logical variables.
Logical variables and class instances must be declared at the beginning of the
rules section and at the beginning of each goal in the goals section.

JCHR Declarations

In the declarations section, Java classes are imported and the signatures of the
constraints are declared. The Java classes will be needed in the signatures and
the code of the rules or goals. The constraints will be implemented in the rules
section. As in Java, each declaration is finished by a semicolon. A class import
is defined by the keyword class followed by the class name as it can be found in
the class path. All classes used in the following need to be imported, including
the classes mentioned in the constraint signatures. A constraint is declared by
the keyword constraint followed by the name of the constraint and its argument
types (much like a Java method):

handler leq {
class java.lang.Integer;
class IntUtil;
constraint leq(java.lang.Integer, java.lang.Integer, java.lang.Integer);

6.1. JCHR: JAVA CONSTRAINT HANDLING RULES 7

Rules

In the rules section, first the variables and class instances are declared and then
the rules are implemented that simplify the constraints. Variables are defined
by the keyword variable followed by a type and variable names:

handler leq {
rules {
variable java.lang.Integer X, Y, Z;

}
}

The rules describe the propagation and simplification of constraints. As in other
CHR libraries, there are three kinds of rules: A simplification rule is of the form

if Guard { Head } <=> { Body } Name ;

A propagation rule is of the form

if Guard { Head } ==> { Body } Name ;

A simpagation rule is of the form

if Guard { Headl &\& Head2 } <=> { Body } Name ;

A rule has an optional name, Name, which is a Java identifier. Besides that,
a rule consists of an optional guard, a head (left hand side) and a body (right
hand side). These parts are all conjunctions using the infix operator &&. The
head Head is a conjunction of user-defined constraints. The guard is optional. If
present the guard is a conjunction of built-in constraints and Java methods. If
the guard is not present, it has the same meaning as the guard true. The body
Body is a conjunction of user-defined constraints, built-in constraints and Java
methods. The built-in constraints are true and false. Moreover, syntactical
equality == is provided as a built-in constraint, it can be applied to arbitrary
logical variables, regardless of their type.

Goals

Typically, a goal section exists if the constraint solver has to be run stand-
alone. If the handler will be used from Java, the goals will be ignored. The goal
section consists of one or more goals. Each goal has a name and is introduced
by the keyword goal. A goal consists of declarations for the variables and class
instances followed by the goal itself. A JCHR goal is a named conjunction of
constraints and Java methods (like a rule body).

goal g1 {
variable java.lang.Integer A, B, C;

leq(A, B) && leq(C, A) && leq(B, C)
}

goal g2 {
}

Example 6.1 We will illustrate the syntax of JCHR by the 1eq/2 example.

78 CHAPTER 6. JACK: A JAVA CONSTRAINT KIT

handler leq { (1)
class IntUtil; (L2)
constraint leq(java.lang.Integer, java.lang.Integer); (L3)
rules { (L4)

variable java.lang.Integer X, Y, Z; (L5)
{ leq(X,X) } <=> { true } reflexivity; (L6)

{ leq(X,Y) && leq(Y,X) } <=> { X ==Y} antisymmetry; (L7)
{ leq(X,Y) && leq(Y,Z) } ==> { leq(X,Z) } tramsitivity; (L8)

{ 1leq(X,Y) &\& leq (X,Y) } <=> { true } idempotence; (L9)
if (IntUtil.ground(X) && IntUtil.ground(Y)) (L10)
{ leq(X,Y) } <=> { IntUtil.le(X,Y) } ground; (L11)
}
goal g1 { (L12)
variable java.lang.Integer A, B, C; (L13)
leq(A, B) && 1leq(C, A) &% leq(B, C); (L14)
}

The first line (L1) states that this is the definition of the solver leq. In the
declaration section, the constraint leq is defined by the keyword constraint
(L3). The constraint 1eq expects two arguments of the type java.lang.Integer.
In the rule section, three variables X, Y and Z of the type java.lang.Integer
are declared (Line L4). They are only used by the rules defined in the rule
section. The rule section implements reflexivity, antisymmetry, transitivity,
idempotence and a ground rule (L10-L11). The reflexivity, antisymmetry and
transitivity rules have the same meaning as in Example 3.32. The idempotence
rule (L9) absorbs multiple occurrences of the same constraint. It can be ex-
pressed by a simpagation rule. The last rule states that if the values of X and
Y are known (L10) then the constraint leq(X,Y) can be replaced by the Java
method IntUtil.le(X,Y) (L11) which is provided by a class IntUtil declared
in line L2. In the goal section, the goal 1eq(A,B) ,1eq(C,A) ,1leq(B,C) is stated.

O

6.1.2 The Prototyping Environment

The JCHR prototyping environment consists of several components. JCHR
programs are translated into Java code by the JCHR compiler. It generates Java
code which is intended to be integrated into Java applications or applets. The
last step which had to be taken to provide CHR for Java was the implementation
of an evaluator which is able to interprete the information built with JCHR. It
is called the JCHR evaluator. A constraint solver written with JCHR is based
on a common constraint system. This system receives information about the
used variables, rules, and goals. It is represented in Java by an instance of the
class ConstraintSystem. This class is also the main part of the evaluator.

A detailed description of the compilation and evaluation scheme and their
actual implementation can be found in [89].

6.1. JCHR: JAVA CONSTRAINT HANDLING RULES 79

JCHR Compiler

With the JCHR compiler, the rules and goals specified in JCHR, are translated
to Java code. The generated Java code is easy to understand. So it is possible
to create rules directly in Java. But the compiler is a useful tool, if CHR is
already known from Prolog.

There are three main classes in the compiler package: JCHRLexer, JCHRParser
and JCHRGenerator. The class JCHRLexer scans a JCHR file and generates a
token stream. The class JCHRParser generates an abstract syntax tree out of
this token stream. The class JCHRGenerator transforms this abstract syntax
tree into Java code. This segmentation is advantageous concerning modularity.
When a modification in JCHR is necessary, it is done in the JCHR, grammar file
(jehr.g). Compiling this grammar file with the ANTLR compiler, the classes
JCHRLexer, JCHRParser and JCHRParserTokenTypes are generated [19]. Even
the abstract syntax tree (AST) is generated automatically. After this, only the
class JCHRGenerator which produces the Java classes out of the AST needs to
be adapted to the changes.

JCHR Evaluator

The main part of the evaluator is the class ConstraintSystem. It provides data
structures to store rules and goal constraints and the functionality to evaluate
the goal constraints with the rules. In the following, the evaluation algorithm
will be explained.

When the constraint system is initialized with rules and a goal, the evalua-
tion process is started with the method callGoal. The constraints stored in the
constraint system will be evaluated, until the execution of a built-in constraint
fails (false will be inserted into the built-in constraint memory) or until no
rule can be applied to the user-defined constraint memory. This is the case,
when all user-defined constraints have been removed from the memory, or when
all rules have been tried to be applied on the user-defined constraint memory,
the memory state did not change during this period and there is no untested
(active) constraint left. If a rule fires for an active constraint, the memories
(user defined constraint memory, built-in constraint memory) are updated ac-
cording to the rule properties. Furthermore, this rule is added to a rule history
for debugging purposes. If the currently active constraint has been removed
from the user-defined constraint memory (in case of a simplification or a simp-
agation rule), the next user-defined constraint which is waiting in a queue has
to be activated. If there is no untested constraint left, the algorithm finishes.
Otherwise, when the currently active constraint has not been removed, the rule
loop is reinitialized and the search for firing rules begins again. But now, rules
which have already fired with this active constraint may not fire again, at least
not with the same combination of partner constraints. When no rule can be
found to fire with the currently active constraint, it is set passive and the next
constraint in the queue is taken to be active.

Handling of Variables The handling of logical variables in the evaluator is
centralized in a variable table in order to keep the occurrences of each variable
consistent. Furthermore, the additional information for each variable can be
stored in the table. This keeps the variable objects small. A central variable

80 CHAPTER 6. JACK: A JAVA CONSTRAINT KIT

handling presupposes that every constraint used in a rule or as a goal constraint
needs to know the variable table. This is done by adding the variable table to
each constraint added to the system as a goal constraint and to each rule added
to the system as a rule.

Application of Rules The application of a rule consists of

o matching the currently active constraint with a head of a rule

finding and matching passive partner constraints in constraint store

checking the guard
¢ removing matched constraints from constraint store if required
e Executing the body of the rule

The main challenge was to implement the search for finding partner con-
straints efficiently. We implemented the same approach used in the Sicstus
Prolog implementation of CHR, [54]. When searching for a partner constraint,
a variable common to two constraints in the head of a rule restricts the number
of candidate constraints to be checked. Therefore, we index the constraint store
by the variables shared between partner constraints.

6.1.3 Finite Domain Solver in JCHR

In the following, we present a sample of the finite domain solver implemented in
JCHR and the visualization of a goal of the form Xe€{2,3} AYe{1,2} A X<Y
(Figure 6.1).

handler fd

{
class java.lang.Integer;
class IntUtil;
class nl; // linked list
class N1IntUtil;
class FDUtil;
class ConstraintSystem;

constraint fdEnu(java.lang.Integer, nl);
constraint fdInt(java.lang.Integer,
java.lang.Integer,
java.lang.Integer);
constraint fdlLe(java.lang.Integer,
java.lang.Integer);
constraint fdLt(java.lang.Integer,
java.lang.Integer) ;
constraint fdNe(java.lang.Integer,
java.lang.Integer);

rules {
variable java.lang.Integer X,Y,Z;
variable java.lang.Integer Min,Max;
variable java.lang.Integer MinX,MinX1,MinY;

6.1. JCHR: JAVA CONSTRAINT HANDLING RULES

variable java.lang.Integer MaxY,MaxY1,MaxX;
variable nl L, L1, L2, L3, L4, L5, L6;
variable FDA11Diff AD;

// failure
if (nl.isEmpty(L)) { fdEnu(X, L) } <=>
{ false } failure;

// intersection
{ fdEnu(X, L1) && fdEnu(X, L2) } <=>
{ L = nl.intersection(L1, L2) &&
fdEnu(X, L) } intersection;

// interaction with intervals
{ fdEnu(X, L) && fdInt(X, Min, Max) } <=>

{ L1 = N1IntUtil.removeLower (Min, L) &&
L2 = N1IntUtil.removeHigher(Max, L1) &&
fdEnu(X, L2) } intersection2;

// interaction with inequalities

if (nl.notEmpty(L1) && MinX = N1IntUtil.minList(L1) &&
nl.notEmpty(L2) && MinY = N1IntUtil.minList(L2) &&
IntUtil.gt (MinX, MinY))

{ fdlLe(X, Y) && fdEnu(X, L1) &&
fdEnu(Y, L2) } ==

{ MinX = N1IntUtil.minList(L1) &&
MaxY = N1IntUtil.maxList(L2) &&
fdInt (Y, MinX, MaxY) } leMin;

if (nl.notEmpty(L1) && MaxX
nl.notEmpty(L2) && MaxY
IntUtil.gt (MaxX, MaxY))

N1IntUtil.maxList(L1) &&
N1IntUtil.maxList(L2) &&

{ fdlLe(X, Y) && fdEnu(X, L1) &&
fdEnu(Y, L2) } ==

{ MinX = N1IntUtil.minList(L1) &&
MaxY = N1IntUtil.maxList(L2) &&
fdInt (X, MinX, MaxY) } leMax;

if (nl.notEmpty(L1) && MinX = N1IntUtil.minList(L1) &&
nl.notEmpty(L2) && MinY = N1IntUtil.minList(L2) &&
MinX1 = IntUtil.inc(MinX) &&
IntUtil.gt (MinX1, MinY))

{ fdLt (X, Y) &&
fdEnu(X, L1) &&
fdEnu(Y, L2) } ==>

{ MinX = N1IntUtil.minList(L1) &&
MinX1 = IntUtil.inc(MinX) &&

81

82 CHAPTER 6. JACK: A JAVA CONSTRAINT KIT

MaxY = N1IntUtil.maxList(L2) &&
fdInt (Y, MinX1, MaxY) } 1tMin;

if (nl.notEmpty(L1l) && MaxX = N1IntUtil.maxList(L1) &&
nl.notEmpty(L2) && MaxY = N1IntUtil.maxList(L2) &&
MaxY1l = IntUtil.dec (MaxY) &&
IntUtil.1lt(MaxY1, MaxX))

{ fdLt(X, Y) &&
fdEnu(X, L1) &&
fdEnu(Y, L2) } ==

{ MinX = N1IntUtil.minList(L1) &&
MaxY = N1IntUtil.maxList(L2) &&
MaxY1 = IntUtil.dec(MaxY) &&
fdInt (X, MinX, MaxY1) } 1ltMax;

// interaction with fdNe
if (N1IntUtil.member(X, L))
{ fdNe(X, Y) && fdEnu(Y, L) } <=>
{ L1 = N1IntUtil.remove(L, X) &&
fdEnu(Y, L1) } nel;

if (N1IntUtil.member(X, L))
{ fdNe(Y, X) && fdEnu(Y, L) } <=>
{ L1 = N1IntUtil.remove(L, X) &&
fdEnu(Y, L1) } ne2;

if (N1IntUtil.notMember (X, L))
{ fdEnu(Y, L) &\& fdNe(X, Y) } <=>
{ true } ne3;

if (N1IntUtil.notMember (X, L))
{ fdEnu(Y, L) &\& fdNe(Y, X) } <=>
{ true } ne4;

// fdlLe, fdLt trivial constraints
{ fdLe(X, Y) && fdLe(Y,X) } <=> { X =Y } lele;
{ fdLt (X, Y) && fdLt(Y,X) } <=> { false } 1tLt;

}

goal gl

{
variable java.lang.Integer X, Y;
fdEnu (X,new nl(2,new nl1(3))) &&
fdEnu(Y,new nl(1,new nl1(2))) &&
fdLe (X,Y)

}

6.2. JASE: JAVA ABSTRACT SEARCH ENGINE 83

- Graph Frame B =k

H ‘ » ‘ @ |ur v]
Sip |

Mext

Constraint Store

X Cl|

 Logend
Cmmee JC o [oeizen) (S =

@i Unsigned Java applet Window

Figure 6.1: Visualization of a goal

6.2 JASE: Java Abstract Search Engine

Usually, constraint reasoning and constraint propagation is incomplete, i.e. it
cannot detect inconsistency at all times. Propagation must be combined with
search, which is used to assign values to variables. After each assignment step
constraint propagation restricts the possible values for the remaining variables,
removing inconsistent values or detecting failure. If a failure is detected, the
search returns to a previous decision and chooses an alternative. In this section,
we present a Java abstract search engine, called JASE!, which has been actually
designed for JCHR but can be used for any Java constraint library. The design
of JASE has been inspired by a proposal for the Figaro system [30].

For the search, an exploration is used to walk through a search tree which
consists of nodes; the behavior of the nodes is implemented by choices.

e A search tree is an unbalanced binary tree. Each inner node of the tree
represents one state of the constraint system. Each edge between two
nodes represents the transformation of one state into another. Leaf nodes

1Pronounced “chase”, because it “chases a solution”

84 CHAPTER 6. JACK: A JAVA CONSTRAINT KIT

are either empty, and represent a failed constraint system state, or they
contain a solution.

o An exploration (interface SExploration)implements how to walk through
the tree; for example depth-first search.

e A node is implemented by a class called SNode. An object of this class
stores the constraint system state, and is used by the SExploration
classes. It does not, however, know about any application details - i.e.,
what handler is used, which variables are enumerated, which constraints
are to be evaluated.

e A choice (point) is implemented by a class that implements the interface
SChoice. It deals with selecting variables to enumerated, and evaluates
constraints. If a new JCHR handler should be enabled for search, (only)
this interface must be implemented by a new class.

In the following we illustrate by an example how to use JCHR and JASE.2
A detailed description of the different classes can be found in [63].

As example for a constraint solver implemented in JCHR, the finite domains
solver is used throughout this paper (see Section 6.1.3 for a sample of the finite
domain solver). A finite domain constraint is a constraint of the form X € D,
where X is a variable, and D C N is a finite subset (domain) of the natural num-
bers. The textual representation of such a constraint is written as fdEnu(X,D)?
or £dInt(X,Min,Max) (which means X € D = [Min, Min+1,..., Max]).

The most important Java object when using JCHR is the ConstraintSystem,
which encapsulates the constraint solver, the constraint store, and all rules. It
is the main object used by the host code.

ConstraintSystem cs=new ConstraintSystem();

Rules must be inserted in the constraint system; this is done by creating a
constraint handler.

fdHandler fd=new fdHandler();
fd.defineRules(cs);

Constraint variables are represented by Java objects of type Object. They
are associated with a type and a name.

Object X = new Object();
cs.addVariable(X, "java.lang.Integer", "X");

The last step in setting up the constraint system is inserting initial con-
straints with the addGoalConstraint method of ConstraintSystem. Here, the
constraint fdEnu(X, [2,3,4,5,6]) is created and inserted into the constraint
store:

2All the code snippets are one contiguous block of source code, they are just separated to
insert the explanation text between. Places, where “...” is used, are not relevant for the
search, and only contain implementation details.

3%£g” is the prefix for all finite domain constraints; “Enu” stands for “enumeration”, which
means that D is simply a collection of integers.

6.2. JASE: JAVA ABSTRACT SEARCH ENGINE 85

cs.addGoalConstraint (new FDENUConstraint (X, createList(2,6)));

Now, the search engine is being set up. In this particular example, the values
of the variable X should simply be enumerated. So, a container with the variable
is created:

ObjectContainer vars=new ObjectContainer();
vars.add (X) ;

The next line creates an object that defines what should happen with each
solution that is encountered during the search.

SChoice collector=new SCollectorChoice(vars,...);

The collector accumulates all solutions into a container for later use; it is
applied to all successful leaves of the search tree (“solutions”).
The most important part of the search are the choices made at each node:

SChoice rootChoice=new SFDEnuChoice(vars,collector,...);

rootChoice is the root of the search tree. It is responsible for creating
more choices, and it actually modifies and runs the constraint system during
the search. The SFDEnuChoice used in the example enumerates variables from
left to right with no particular heuristic.

Now, the way to explore the search tree is defined (depth-first search).

SExploration exploration=
new SDepthFirstExploration(cs,rootChoice);

The search is run, looking for all solutions.
boolean success=SSearch.all(exploration);
And finally, all solutions can be displayed or otherwise processed.

System.out.println(collector.toBeautifulString());

86

CHAPTER 6. JACK: A JAVA CONSTRAINT KIT

Chapter 7

Applications

We present two applications that benefit from using a rule-based language to
write constraint solvers. The necessary constraints are expressed and imple-
mented in CHR.

7.1 University Course Timetabling

University course timetabling problems are combinatorial problems which con-
sist in scheduling a set of courses within a given number of rooms and time
periods. Solving a real world timetabling problem manually often requires a
significant amount of time, sometimes several days or even weeks. Therefore, a
lot of research has been invested in order to provide automated support for hu-
man timetablers. Contributions come from the fields of operations research (e.g.
graph coloring, network flow techniques) and artificial intelligence (e.g. simu-
lated annealing, tabu search, genetic algorithms, constraint satisfaction) [88].
This work refers to terms and methods from constraint satisfaction [65, 64].
The methods presented were developed using CLP.

Applying classical methods from constraint satisfaction requires to model
the problem as a constraint satisfaction problem (CSP), i.e. a set of variables
(representing the points in time courses must begin, for example), each asso-
ciated with a domain of values it can take on, and a set of constraints among
the variables. Constraints are relations which specify the space of solutions by
forbidding combinations of values.

The classical CSP framework is of particular interest because many problems
from design, resource allocation and decision support (among others) can be cast
as CSPs naturally [56, 100]. However, it is not sufficiently expressive for the
application under study here. In particular, it does not allow for a distinction
between hard constraints, which are mandatory, and soft constraints, which
should get satisfied but may get violated in case this is unavoidable. This
limitation forces to treat soft constraints as if they were hard, which frequently
leads to over-constrained CSPs without solutions.

Several CSP based frameworks have been introduced which facilitate the
formal treatment of soft constraints. For example, hierarchical constraint logic
programming [26] allows for constraint hierarchies (a constraint on some level
is more important than any set of constraints from lower levels but constraints

87

88 CHAPTER 7. APPLICATIONS

of the same level are equally important) while in partial constraint satisfaction
[44] each constraint is associated with the cost of its violation; see [25] for a
more powerful framework, which subsumes other frameworks.

In practice, most constraint-based timetabling systems either do not support
soft constraints [22] or use a branch & bound search instead of chronological
backtracking [53, 43]. Branch & bound starts out from a solution and requires
the next solution to be better. Quality is measured by a suitable cost function
that depends on the set of violated soft constraints. With this approach, how-
ever, soft constraints play no role in selecting variables and values, i.e. they do
not guide search.

Another approach is to adopt techniques developed to propagate hard con-
straints; soft constraint propagation is intended to associate values with an es-
timate of how selecting a value will influence solution quality, i.e. which value is
known (or expected to) violate soft constraints, or the other way round, which
value is known (or expected to) satisfy soft constraints. By considering esti-
mates in value selection, one hopes that the first solution will satisfy a lot of
soft constraints. For example, [73] presents a commercial C++ library provid-
ing black-box constraint solvers and search methods for the nurse scheduling
problem.

Since the black-box approach makes it hard to modify a solver or build a
solver over a new domain, our aim was to implement a solver for our timetabling
problem using CHR. Inspired by an existing finite domain solver written in CHR
we developed a solver which performs hard and soft constraint propagation. The
core of the solver takes no more than 20 lines of code. Furthermore, our system,
called IfIPlan!, brought down the time necessary for creating a timetable from
a few days by hand to a few minutes on a computer [8, 9].

In the following, we describe the main features of the constraint solver that
was used to generate a timetable for the Computer Science Department of the
University of Munich. Section 7.1.1 introduces our timetabling problem and the
constraints that a solution of the problem had to satisfy. Section 7.1.2 shows
how the problem can be modelled as a partial constraint satisfaction problem.
Section 7.1.3 gives an overview of the implementation.

7.1.1 Problem Description
The Process of Timetabling

The Computer Science Department at the University of Munich offers a five
year program for a master degree in computer science consisting of undergrad-
uate studies (two years) and graduate studies (three years). The problem of
timetabling is to be solved every term on base of the timetable of the previ-
ous year, the teachers’ personal preferences and a given set of courses, each
associated with its teachers. The overall process of manual timetabling runs as
follows.

After collecting wishes of teachers and information on new courses, a first
proposal is developed with the timetable of the previous year as a starting point.
This is done by using free slots in the timetable left by courses not taking place
again for new courses offered by the same people, whereas wishes of teachers

IfIPlan is an acronym for the German ,,Planer fiir das Institut fiir Informatik .

7.1. UNIVERSITY COURSE TIMETABLING 89

take precedence over the timetable of the previous year. After handing out the
proposal to all teachers, evaluations and new wishes are collected.

With the current proposal as a starting point, a next proposal is developed
incorporating the responses on the current proposal, again changing as little as
possible, and so on. Creating a new timetable is thus a multi-stage, incremental
process. Relying on the timetable of the previous year and changing as little as
possible by incremental scheduling drastically reduces the amount of work nec-
essary for creating a new timetable and ensures acceptance of the new timetable
by keeping the weekly course of events people are accustomed to.

Note that the assignment of rooms is done elsewhere. Nevertheless conflict-
ing requirements for space or certain equipment may be a cause for changing
the timetable.

Constraints

The general constraints are due to physical laws, academic reasons and personal
preferences of teachers:

e A teacher cannot be at two places the same time, so avoid clashing the
courses of a teacher. There should be at least a one hour break between
two courses of a teacher.

e Some teachers prefer certain times or days for teaching.

e Monday afternoon is reserved for professors’ meetings: Do not schedule
professors’ courses for Monday afternoon.

e The department consists of five units, each dedicated to a certain area
of research. Most courses are held by members of a single unit while
only a few courses are held by members of different units. Courses held
by members of a certain unit must not clash with courses held by other
members of the same unit.

e An offering typically consists of two lectures and a tutorial per week. There
should be a day break between the lectures of an offering. The tutorial
should not take place on a day, on which a lecture of the same offering
takes place. All courses should be scheduled between 9am and 6pm. No
lectures should be scheduled for Friday afternoon. No tutorials should be
scheduled for late Friday afternoon.

e Only few of the courses are mandatory for and dedicated to students of
a certain term while most courses are optional and open to all students.
For each term of the undergraduate studies there is a set of mandatory
courses, the attendance of which is highly recommended. Courses of the
graduate studies only rely on the knowledge provided by courses of the
undergraduate studies. There is no recommended order of attendance.
Undergraduate courses of a term must not clash, while undergraduate
courses of different terms are allowed to clash. Graduate courses should
not clash.

90 CHAPTER 7. APPLICATIONS

Observations and Problems

First observations made clear that existing timetables do not meet the require-
ments stated, e.g. courses of a unit or graduate courses clash or a lecture of an
offering and a tutorial of the same offering are scheduled for the same day. Fur-
thermore, considering the number of graduate courses offered over the years,
it became clear that there is too little space to schedule all graduate courses
without clashes. This is due to the following reason. As mentioned before,
undergraduate courses are mandatory and there is a recommended order of at-
tendance. This way it is possible to distinguish students of the first term from
students of the third term and students of the second term from students of the
fourth term, which makes it possible to allow clashing of undergraduate courses
of different terms. The graduate courses only rely on the knowledge provided
by the undergraduate courses. There is no recommended order of attendance
thus making it impossible to distinguish students of the fifth term from, e.g.,
students of the seventh term, which makes it necessary to disallow clashing of
graduate courses in some way. So we faced two problems:

e The demand for incremental scheduling by basing the new timetable on
the timetable of the previous year and changing as little as possible made
it necessary to handle old timetables, which do not meet the requirements
stated.

e From a scheduler’s point of view the graduate studies lack structure taking
freedom and leading to over-constrained timetable specifications.

Tackling the second problem by removing selected no-clash constraints turned
out to be laborious and time-consuming and therefore impractical. Classifying
graduate courses by contents and expected number of students and allowing
clashing of courses of different categories won back some freedom, but it was
not possible to identify enough categories in such a way that courses spread
evenly over categories, which would have been necessary to prevent conflicts. It
became clear that we were in need of some kind of weighted constraints able to
express weak and strong constraints that are not mandatory.

7.1.2 A Constraint Model for the Timetabling Problem

A constraint satisfaction problem (CSP) [66] (V,C) is a pair, where V is finite
set of variables, each associated with a finite domain, and C is a finite set of
constraints on these variables. A solution of a CSP maps each variable to a
value of its domain such that all the constraints are satisfied. Since we have
to address quality of a room plan and therefore, have to take into account
wishes as well as exploitation of resources, CSP can not model our problem
completely. Therefore, we use an extension of the CSP concept. A partial
constraint satisfaction problem PCSP [44] is a triple (V, C,w), where (V,C) is
a CSP and w is a total function w : C' — R, i.e., w maps constraints to weights.
The weight of a constraint expresses its importance. Thus, one can describe hard
constraints, which must be satisfied, as well as soft constraints, which should
be satisfied. A hard constraint is given an infinite weight. Then, a solution of
the PCSP is an assignment of the variables in V' to their domains, such that
the total weight of all violated constraints ¢ € C' is minimized.

7.1. UNIVERSITY COURSE TIMETABLING 91

Clearly, we only need one variable for each course holding the period, i.e. the
starting time point, it has been scheduled for. Each variable’s domain consists
of the whole week, the periods being numbered from 0 to 167, e.g. 9 denotes
9am on Monday, and so on. Requirements, wishes and recommendations can
be expressed with a small set of specialized constraints.

o No-clash constraints demand that a course must not clash with another
one.

e Preassignment constraints and availability constraints are used to express
teachers’ preferences and that a course must (not) take place at a certain
time.

e Distribution constraints make sure that there is at least one day (hour)
between a course and another one or that two courses are scheduled for
different days.

o Compactness constraints make sure that one course will be scheduled di-
rectly after another one.

With respect to soft constraints, we chose to distinguish three grades of prefer-
ences: weakly preferred, preferred and strongly preferred, which get translated
to the integer weights 1, 3 and 9.

7.1.3 Solving the Problem using CHR
Domains

Constraint solving for finite domains constraints is based on consistency tech-
niques [65, 64]. For example, the constraints X :: [2, 3, 4],i.e. X must take a
value from the list [2, 3, 4],andX :: [3, 4, 5] may bereplaced by the new
constraint X :: [3, 4]. Implementing this technique with CHR is straightfor-
ward [48]. The first rule ensures that the domain for X is non-empty, the second
rule intersects two domains for the same variable:

X::[1 & false.
X::L1 A X::L2 & intersection(L1,L2,L) A X::L.

However, this scheme is not sufficient for our needs: Since soft constraints
may be violated, the values to be constrained must not be removed from the
domain of the variable. Moreover, when we have to choose a value for the
variable during search, we must be able to decide whether a certain value is a
good choice or not. Therefore, each value must be associated with an assessment.
We chose to represent a domain as a list of value-assessment pairs. For example,
assume the domain of X is [(3, 0), (4, 1), (5, -1)]. Then X may take
one of values 3, 4 and 5, whereas 4 is encouraged with assessment 1 and 5 is
discouraged with assessment -1.

Low-level Constraints

The solver is based on three types of constraints.

e domain(X, D) means that X must get assigned a value occurring in the
list of value-assessment pairs D.

92 CHAPTER 7. APPLICATIONS

e in(X, L, W):Its meaning depends on the weight W. If W = inf, i.e. if the
constraint is hard, it means that X must get assigned a value occurring in
the list L. If W is a number, i.e. if the constraint is soft, it means that the
assessment for the values occurring in L should be increased by W.

e notin(X, L, W), if hard, means that X must not get assigned any of the
values occurring in the list L. If it is soft, it means that the assessment for
the values occurring in L should be decreased by W.

The Core of the Solver

Propagating a soft constraint is intended to modify the assessment of the values
to be constrained. For example, assume the domain of X is [(3, 0), (4, 1),
(5, -1)] and assume the existence of the constraint in(X, [3], 2) stating
that 3 should be assigned to X with preference 2. Then we have to increase the
assessment for value 3 in the domain of X by adding 2 to the current assessment
of 3 obtaining the new domain [(3, 2), (4, 1), (5, -1)] for X. However,
applying a hard constraint will still mean to remove values from the variable’s
domain. Consequently, an in constraint is processed by either pruning the
domain or increasing the assessment for the given values.

fd_in_hard @ domain(X, D) A in(X, L, W) <=> W = inf |
domain_intersection(D, L, D1) A
domain(X, D1).

fd_in_soft @ domain(X, D) A in(X, L, W) <=> W # inf |
increase_assessment (W, L, D, D1) A
domain(X, D1).

In case a hard in constraint has arrived, rule fd_in_hard looks for the corre-
sponding domain constraint, which contains the current domain D, and replaces
both by a new domain constraint, which contains the new domain D1. The do-
main D1 results from intersecting D with the list of values L. Rule fd_in_soft
works quite similar except for D1 results from D by increasing the assessments for
the values occurring in L. Note that the guards exclude each other. Therefore,
whichever constraint arrives, only one of the rules will be applicable. The rules
for notin are similar.

fd_notin_hard @ domain(X, D) A notin(X, L, W) & W = inf |
domain_subtraction(D, L, D1) A
domain(X, D1).

fd_notin_soft @ domain(X, D) A notin(X, L, W) < W # inf |
decrease_assessment (W, L, D, D1) A
domain(X, D1).

Subtracting weights, which are always positive, may result in negative assess-
ments.

Whenever a domain of a variable has been reduced to the empty list, the
variable cannot get assigned a value without violating hard constraints. This
case is dealt with by the following simplification rule.

fd_empty @ domain(_, []) & false.

7.1. UNIVERSITY COURSE TIMETABLING 93

With only one value left in a domain of a variable we can assign the remaining
value to the variable immediately.

fd_singleton @ domain(X, [(A, _)]) = X = A.

We use a propagation rule instead of a simplification rule because the domain
constraint must not be removed. Without it the processing of in and notin
constraints imposed on the domain of a variable would not be guaranteed and
thus an inconsistency might be overlooked.

Treatment of Global Constraints

Up to now we only dealt with the low-level constraints of our finite domain
solver. Now we exemplify how to express global (n-ary) application-level con-
straints in terms of in and notin constraints.

no_clash(W, Xs) means that, depending on the weight W, the variables from
Xs must or should get assigned distinct values. It gets translated to notin
constraints. This translation is data-driven: whenever one of the variables from
Xs gets assigned a value, this value gets discouraged or forbidden for the other
variables by the following rule.

fd_no_clash @ no_clash(W, Xs) <
Xs # [L1 A
select_ground_var(Xs, X, XsRest)
[
post_notin_constraints(W, X, XsRest) A
no_clash(W, XsRest).

The guard first makes sure that Xs contains at least two elements. Then it
selects a ground variable X from Xs remembering the other variables in XsRest.
With no ground variable in Xs, the Prolog predicate select_ground var fails.
If the guard holds, no_clash(W, Xs) gets replaced by

e notin constraints produced by the Prolog predicate post notin_constraints,
one for each member of XsRest, discouraging or forbidding the value X and

e ano_clash constraint stating that the variables in XsRest should or must
get assigned distinct values.

Note that the predicate post_notin_constraints fails in case XsRest contains
the value X.

A singleton list of variables means that there is nothing more to do. This
case is handled by the following rule.

fd_no_clash_singleton @ no_clash(_, [_]) < true.

The translation of the other application-level constraints either follows this
scheme or is a one-to-one translation.

Interaction of the no_clash Rules and the the Core of the Solver

In the following, we present two examples to show how the CHR rules interact
with each other. In the first example, we deal only with hard constraints.
Assume the current state of a computation consists of the constraints

94 CHAPTER 7. APPLICATIONS

domain(X, [(1, 0), (2, 0)1),
domain(Y, [(1, 0), (2, 0)1)
and no_clash(inf, [X, Y]).

Since neither X nor Y are ground, no rule is applicable. After adding the con-
straint in(X, [1], inf) rule fd_in hard becomes applicable and simplifies

domain(X, [(1, 0), (2, 0)1)
and in(X, [1], inf)
to domain(X, [(1, 0)1).

Now rule fd_singleton becomes applicable and propagates the equality con-
straint X = 1. Then rule fd_no_clash becomes applicable and simplifies

no_clash(inf, [1, Y])
to notin(Y, [1], inf)
and no_clash(inf, [Y]).

Then rules fd no_clash_singleton and fd notin_hard become applicable: rule
fd no_clash singleton removes no_clash(inf, [Y]) and rule fd notin hard
simplifies

domain(Y, [(1, 0), (2, 0)])
and mnotin(Y, [1], inf)
to domain(Y, [(2, 0)]1).

Finally, rule fd_singleton becomes applicable and propagates the equality con-
straint Y = 2. Thus, the final state of the computation consists of

domain(X, [(1, 0)1),
domain(Y, [(2, 0)1),
X=1

and Y = 2.

In the second example, we want to show how the rules treat soft no_clash
constraints. Assume the current state of a computation consists of the con-
straints

domain(X, [(1, 0), (2, 0)1),
domain(Y, [(1, 0), (2, 0)1)
and no_clash(1l, [X, Y]).

Again we add in(X, [1], inf). Until rule fd no_clash becomes applicable,
the computation proceeds as before. Then rule fd_no_clash simplifies

no_clash(1, [1, Y])
to notin(Y, [1], 1)
and mno_clash(1, [Y]).

Finally, both rules fd no_clash singleton and fd notin_soft become applica-
ble: rule fd no_clash_singletonremovesno_clash(1l, [Y]) andrule fd notin soft
simplifies

domain(Y, [(1, 0), (2, 0)1)
and notin(Y, [1]1, 1)
to domain(Y, [(1, -1), (2, 0O)1).

7.1. UNIVERSITY COURSE TIMETABLING 95

Thus, the final state of the computation consists of

domain(X, [(1, 0)1),
domain(Y, [(1, -1), (2, 0)1)
and X = 1.

Propagation Performance

The first rule for no_clash (fd_no_clash) acts as a constraint propagator that
amplifies the constraint store by incrementally spanning a network of notin
constraints. Since the propagator sleeps as long as none of the variables it
surveys gets assigned a value, a no_clash constraint cannot contribute to a
solution as long as none of its courses gets scheduled. This approach is similar
to the implementation of CHIP’s all different constraint [97].

Combining our solver with chronological backtracking results in a search
procedure, which, with respect to propagation performance, is a little better
than the forward checking algorithm [52] and much worse than the generalized
arc-consistency algorithm [74].

Concerning the reuseability of our solver, we cannot give a definite answer.
On the one hand, experience shows that, for a variety of problems, forward
checking together with additional search is more efficient than applying more
expensive consistency techniques [64]. On the other hand, there is evidence
that maintaining arc-consistency is necessary to solve the larger and the harder
problems efficiently [24, 85, 71].

Whether the performance of our solver is sufficient to solve a whole university
timetabling problem depends on the structure of the problem. If departments
share teachers, students, rooms or equipment and sharing has to be taken into
account, the problem might be too hard. Otherwise, the university timetabling
problem breaks down into several independent timetabling problems, one for
each department. This is the case with most German universities.

The Search Procedure

The search procedure employed integrates the solver given above with chrono-
logical backtracking and heuristics for variable and value selection. For variable
selection, we chose the first fail principle [52] which dynamically orders vari-
ables by increasing cardinality of domains, i.e. the principle proposes to select
one of the variables with the smallest domains with respect to the current state
of computation. For value selection, we used a best-fit strategy choosing one
of the best-rated periods. From an optimistic point of view, this will be one
of the periods violating a set of soft constraints with minimal total weight, but
the estimate may be too good due to the low propagation performance of the
no_clash solver. Furthermore, the best assessment does not necessarily violate
a minimum number of constraints: a strong personal preference may balance
out ten weak no-clash constraints. This approach yielded a good first solution
to our problem. It was not necessary to search for a better solution.

Generation of Timetables

The generation of a timetable runs as follows. Each course is associated with
a domain constraint allowing for the whole week, the periods being numbered

96 CHAPTER 7. APPLICATIONS

from 0 to 167. It is important to note that, for each course, the initial assessment
for all periods is 0 indicating that no period is given preference initially. Then
preassignment constraints and availability constraints will be translated into
in and notin constraints. Adding in and notin constraints may narrow the
domains of the courses using the rules presented above. Propagation continues
until a fixpoint is reached, that is to say, when further rewriting does not change
the store. Usually, our consistency based finite domain solver is not powerful
enough to determine that the constraints are satisfiable. In order to guarantee
that a valid solution is found the search procedure is called. Addition of an in
constraint may initiate propagation, and so on.

Now, that we have discussed the details of creating a timetable, how do
we create a new timetable based on a timetable of the previous year with our
system? Central to our solution is the notion of fizing a timetable. Fixing a
timetable consists in adding a (strongly preferred) soft preassignment constraint
for each course that has been scheduled ensuring that all courses offered again
will be scheduled for the same time.

The time necessary to compute a timetable depends on whether a previ-
ous timetable is reused or not. Scheduling 89 courses within 42 time periods
from scratch took about five minutes. Considering an “almost good” previous
timetable saved about two and a half minutes.

7.2 Classroom Assignment

In most universities, the university course timetabling problem is solved in two
phases. In the first phase timetables have to be created, one for each department.
Since departments can share rooms, the availability of rooms is not taken into
account in the first phase. In the second phase, rooms have to be assigned to
courses. The assignment of rooms is done centrally for the whole university.

The classroom assignment problem is a difficult and time-consuming expert
task since a lot of requirements have to be met. For example, courses must
be assigned to rooms based on the number of students taking the courses and
capacities of rooms. Furthermore, some courses may require special equipments
such as beamer or internet access. While for the first phase of the university
course timetabling several systems have been developed [22, 53, 43], to our
knowledge mainly theoretical work has been done on the topic of the classroom
assignment problem [42, 28].

In our approach, the generation of classroom plans for universities is tackled
using the CLP framework. The system is called RoomPlan and is currently
tested at the University of Munich [12]. Qur prototype brought down the time
necessary for creating a classroom plan from a few days by hand to a few minutes
on a computer.

Usually not all specified requirements can be fulfilled since the number of
(special) rooms is obviously limited. We distinguish between hard and soft
constraints. The classical approach to deal with these requirements is based
on a variant of branch & bound search. Usually, the computation of the cost
function is incorporated into the labeling process. In the following, we propose
another approach computing the cost function during the constraint solving
process independent of the labeling procedure. This requires to modify the
constraint solving part.

7.2. CLASSROOM ASSIGNMENT 97

For our need, we extended an existing finite domain solver written in CHR
in a way that the cost for a solution is computed during the propagation of
soft constraints. CHR allows to express the calculation of the cost in a very
declarative and straightforward manner.

In the following, we describe the main features of the constraint solver that
was used to generate a classroom plan for the University of Munich. Section 7.2.1
introduces our classroom assignment problem and the constraints that a solution
of the problem had to satisfy. Section 7.2.2 shows how the problem can be
modelled as a partial constraint satisfaction problem. Section 7.2.3 gives an
overview of the implementation.

7.2.1 Problem Description

In universities, where each department is responsible for its own timetable and
where rooms can be shared by different departments, timetables are usually
generated in two phases. In the first phase an assignment of courses within a
given number of periods is done without taking into account the availability
of rooms. This task has to be performed separately for each department. For
the Computer Science Department at the University of Munich, the first phase
is solved automatically by a system that generates a new timetable based on
a timetable of the previous year (See Section 7.1). For other departments the
generation of timetables is still done by hand. In the second phase an assign-
ment of courses within a given number of rooms has to be performed. After
collecting timetables of all departments and wishes of teachers a classroom plan
is generated centrally.

In the following, we want to investigate the classroom assignment problem
of the University of Munich. Since timetables for departments change every
semester, a new classroom plan has to be created each semester. The University
of Munich dispose of different buildings. The biggest building consists of 40
rooms where about 1000 courses have to be held.

The generation of a classroom plan is a difficult and time-consuming task
since different kinds of constraints have to be taken into account:

e The no-occupation overlap constraint tells that occupation time of a room
by courses must not overlap.

e The seat requirement constraint tells how many seats a course requires.
e The teacher’s wishes: We distinguish three kinds of wishes.

— A room constraint binds a course date to a room.
— A building constraint assigns a course date to a certain building.

— An equipment constraint constrains a course date to be assigned to
a room with certain technical equipment, e.g. beamer or video.

Usually not all specified requirements can be fulfilled since the number of
(special) rooms is obviously limited. Therefore we distinguish between hard and
soft constraints. Roughly speaking, no-occupation overlap constraints and seat
requirement constraints determine hard constraints, wishes may be hard or soft
constraints.

98 CHAPTER 7. APPLICATIONS

7.2.2 A Constraint Model for Classroom Assignment

Now, the classroom assignment problem is modeled as a PCSP. Note, that it
does not suffice to assign a room to each course, but instead we have to assign
a room to each date, when a course is held. Therefore, we use one variable for
each course date. For example, if a course consists of two lectures, the course is
represented by two different course date variables. The initial domain of each
course date variable is the set of all rooms in the university. Thus, the solution
is an assignment of course dates to rooms.

There are two constraints that occur only as hard constraints and thus have
infinite weight: the no-occupation overlap constraint and the seat requirement
constraint. Wishes may also be hard, i.e. have infinite weight.

To ensure a good exploitation of resources by a solution, we evaluate assign-
ments of a room to a course date. For this reason, we modify the weight w(«)
for the constraint «, that assigns a course date for a course ¢ to a room 7. This
is done by adding a term to the user-defined evaluation w'(«), thus defining
w(a) in the following way.

: seat
_ seats, — requirement,
seats,

wl@) =w'(a)+a (7.1)

equipment,. — requirement®d“Pment

min(0, as - ,

equipment,,
where seats, is the number of seats in room r, requirement®**" is the number of
seats required by course ¢, equipment,, is a valuation of the technical equipment
in 7 and requirement®d“P™" 5 value for the technical requirements of c. a;
and as are negative constants weighting the exploitation of seats and equipment
resources against each other and the violation of wishes. Since the equipment
constraint can be soft, the value of the technical requirements can be greater
than the value of the equipment. In this case, we have to avoid that the third
term of the function w(«a) is positive.

7.2.3 Solving the Problem using CHR

In a PCSP, one has additionally to satisfying all hard constraints to take soft
constraints into account. According to the PCSP model, we have to minimize
the total weight of violated soft constraints. This is equivalent to maximize
the total weight of satisfied constraints. We use a branch & bound approach
to tackle this maximization problem. Branch & bound is a standard method
to optimize a score that works by constraining the score during the search.
Every time an assignment satisfying the hard constraints is found, the score
is bound to be even better. Thus, the last assignment compatible to the hard
constraints that is found will have an optimal score. Therefore, we incrementally
compute a bound of the score, that an assignment compatible to the current
hard constraints may have, during the enumeration. This way we prune the
search tree every time the maximally achievable score is worse than the score
of the previous solution.

To prune the search tree efficiently in our branch & bound algorithm, we
have to keep track of the upper bound of the score. The upper bound of the
score may be affected each time the constraint store changes. This change may

7.2. CLASSROOM ASSIGNMENT 99

be done either by a constraint which is directly inserted by the labeling process
or by constraint propagation. If only changes of the first kind could affect the
upper bound, the calculation of the score could be easily incorporated into the
labeling process. However, since we also have to take care of the second kind
of constraint store changes, it is much more natural and intuitive to do this
calculation concurrently to the labeling process and triggered by the alteration
of the constraint store. Constraint Handling Rules (CHR) allows to express
this in a very declarative and straightforward manner, where the calculation is
formulated independently of the labeling.

Handling Hard Constraints

Regarding just the hard constraints, our solver is essentially a finite domain
solver, i.e. a course date variable is bound to a list of rooms and constraints
may eliminate rooms from the domain list of the constrained variable.

To solve our classroom assignment problem, the no-occupation overlap con-
straint can be expressed using the global constraint all_distinct. The con-
straint all distinct(Xs) tells that all variables in the list Xs must be bound
to different values. The no-occupation overlap constraint is propagated to con-
straints all distinct (Xs), where the Xs are lists of the course date variables
for all course dates that overlap in time. The hard seat requirement constraint
propagates by filtering the domains of the course date variables.

Handling Soft Constraints

In the following, the calculation of the score done by a CHR program is de-
scribed. It is most intuitive to calculate the total score from three sub-scores,
which can easily be done by a rule. One sub-score ScoreWish is the total weight
of satisfied wishes, the second ScoreSeatRes is the sum of the second terms in
equation (1) over all assignments of course dates to rooms, i.e. a measure of the
exploitation of seats. Analogously, the last ScoreEquipmentRes is the sum of
the third terms in equation (1), i.e. a measure of the exploitation of equipment.
The total score is computed as a weighted sum of the sub-scores. Instead of
minimizing the total weight of violated constraints, we equivalently maximize
the total weight of the satisfied soft constraints. Since we maximize the score
we need to compute an upper bound of the score, that an assignment which
satisfies the hard constraints of the current constraint store may have.

We start with describing the computation of the sub-score ScoreWish. The
different types of wishes are expressed by CHR constraints of the form wish (Type,
CourseDate, Wished, Weight), where the first argument gives the type of the
wish, namely room, building or equipment. CourseDate holds a course date
identifier, the variable Wished specifies the instance of the wish and Weight holds
the weight of the wish. We use the constraint assignment (CDate,CDateVar)
which tells that CDateVar is the course date variable corresponding to the course
date CDate. The constraint scoreWish(Up) tells that Up is the upper bound of
the sub-score ScoreWish.

In the following, we introduce rules to update the sub-score ScoreWish,
whenever a wish is satisfied or violated. In the following, we will discuss the
rules for handling room constraints. The rules handling building and equipment
constraints are analogous.

100 CHAPTER 7. APPLICATIONS

assignment (CDate, CDateVar) A CDateVar::Dom \
wish(room, CDate, RoomWish, infinite) <
CDateVar:: [RoomWish].

assignment (CDate, CDateVar) A CDateVar::[RoomWish] \
wish(room, CDate, RoomWish, Weight) <
Weight # infinite | true.

assignment (CDate, CDateVar) A CDateVar::Dom \
wish(room, CDate, RoomWish, Weight) A scoreWish(Up) &
Weight # infinite A not member (RoomWish, Dom) |
scoreWish(Up - Weight).

The first rule propagates a hard wish, i.e. a wish with infinite weight,
in such a way that an assignment of the course date variable to the wished
room is performed. Therefore, the simpagation rule tests whether constraints
of the form assignment (CDate, CDateVar), CDateVar::Domand wish(room,
CDate, RoomWish, infinite) can be found in the constraint store. In this
case, the rule fires and the constraint CDateVar:: [RoomWish], that binds the
room to the wished room, is added to the store. Furthermore, the wish con-
straint is removed from the constraint store. The application of this rule leads
to the occurrence of two domains for the same variable. These constraints can
be simplified by the intersection rule presented above.

The second rule handles already satisfied soft constraints. If the constraints
assignment (CDate, CDateVar), CDateVar::[RoomWish] and wish(room, CDate,
RoomWish, Weight) are found in the constraint store, then the wish is obviously
satisfied and the rule consequently removes the wish. The guard ensures that
only soft constraints, i.e. wishes with finite weight, are handled by this rule,
since hard wish constraints are already handled by the first rule. Note that the
upper bound of the score is unaffected if a wish is satisfied. In contrast, if a
wish is violated, the upper bound of the score has to be decreased.

The updating of the bound is done by the third rule. The guard ensures
that only soft constraints which are violated lead to a change of the score. A
room, constraint is violated if the wished room is not contained in the domain of
the course date variable. If the rule fires, the upper bound is recomputed as Up
- Weight and the constraint scoreWish(Up - Weight) replaces the constraint
scoreWish(Up).

The evaluation of resource exploitation is handled by a single rule.

assignment (CDate, CDateVar) A CDateVar:: [RoomNr] \

scoreSeatsRes (UpS) A scoreEquipmentRes(UpT) <«
scoreSeatsRes_diff(CDate, RoomNr, SSD) A
scoreEquipmentRes_diff (CDate, RoomNr, TSD) A
scoreSeatsRes(UpS + SSD) A
scoreEquipmentRes (UpT + TSD) .

The rule updates the scores for seat resource and equipment resource exploita-
tion, where the actual weight is calculated by the predicates scoreSeatsRes diff
and scoreEquipmentRes diff analogously to equation (7.1). The updating of
the sub-scores is done by replacing the constraints scoreSeatsRes (UpS) and
scoreEquipmentRes (UpT) by the recomputed constraints scoreSeatsRes (UpS

7.2. CLASSROOM ASSIGNMENT 101

+ SSD) and scoreEquipmentRes (UpT + TSD) each time an assignment of a
course date variable to a room was newly created, either by labeling or by
constraint propagation.

Each time a sub-score is recomputed, the total score has to be recalculated.
This can be done by the following propagation rule.

scoreWish(UpW) A scoreSeatsRes(UpS) A scoreEquipmentRes(UpT) =
score(UpC + UpS + UpT).

The rule fires if a sub-score changes. Then, a constraint with the newly cal-
culated upper bound of the total score is inserted. A further rule ensures that
only the most restrictive score constraint remains in the constraint store.

score(A) \ score(B) < A<B | true.

This rule removes the larger of two upper bounds of the total score.

Now, the upper bound can be used to prune the search tree, since we use
a branch & bound algorithm. Every time an assignment of the course date
variables that satisfies the hard constraints is found, we insert a constraint
last_score(Score) with the score of this assignment. The following propaga-
tion rule ensures, that only better assignments can be found in consequence.

last_score(LastScore) A score(Up) < LastScore>Up | false.

This rule causes the constraint solver to fail whenever the score of an assignment
in the current branch cannot be better than the last score. This is indicated by
the upper bound of the score.

Labeling

After stating the problem constraints, normally there are still many feasible
solutions, so it is necessary to label the domain variables, i.e. assign them with
values that remain on their domains. For the labeling one needs to apply a
heuristic strategy that tends to enumerate high scoring solutions early in the
search. In a branch & bound search this helps to prune the search tree. In
practice also suboptimal solutions may be appropriate, which also emphasizes
the use of finding good solutions early.

We employed a leftmost variable, leftmost value strategy that selects for
each assignment the leftmost course date variable and the leftmost value from
the domain of the selected course date variable. Since we sort the list of vari-
ables as well as the values in the domains before the labeling as we describe
below, this strategy prefers most constrained assignments. The sorting is done
in the following way. We compute a weight for each course and a weight for
each room with respect to a certain course, i.e. actually a weight for a certain
assignment. The weights for courses respect seat and equipment requirements,
such that courses with strong requirements get great weights. The weight of
an assignment totals the weights of the soft constraints which are satisfied by
the actual assignment. Then, the course date variables and the rooms in each
domain are sorted in descending order by these weights. As a consequence the
leftmost course date variables, which are selected first by our strategy, belong
to the courses with the strongest requirements. Further, the leftmost values in
each domain lead to assignments, which satisfy the "best” soft constraints.

102 CHAPTER 7. APPLICATIONS

7.3 Conclusion

In this chapter, we have argued that CHR is a good vehicle for implementing
finite domain solvers, which performs hard and soft constraint propagation.
These solvers are powerful enough to serve as the core of a university timetabling
system and a classroom assignment system.

Both prototypes have been designed to meet the specific requirements of
the University of Munich. However, it can be applied to other universities,
since adaption can easily be done due to the the declarativity of constraint logic
programming. The university timetabling system, If[Plan has been in use at the
Computer Science Department, of the University of Munich for six terms. The
classroom assignment system, RoomPlan, is currently tested at the University
of Munich. Typically, for 1000 courses and 40 rooms, RoomPlan generates a
satisfying schedule within a few minutes.

Chapter 8

Conclusions

The present work contributes to a number of research directions in the area of
rule-based constraint programming.

Programming environments are essential for the acceptance of program-
ming languages. Thus, the first step was to propose static and dynamic
analysis methods for the rule-based constraint language CHR (Chapter 3).

Writing constraint solvers remains a hard task even in a rule-based formal-
ism since the programmer has to determine the propagation algorithms.
We have proposed a method to generate automatically the propagation
and simplification process of constraints (defined over finite domains) in
form of rules (Chapter 4).

To use CHR as a general-purpose logic language, especially for search-
oriented problems, we have introduced the language CHRY, a simple ex-
tension of CHR, and have shown that CHRY is useful as a specification
language and an implemented, experimental framework for databases and
query-answering mechanisms in general (Chapter 5).

We have described the design of a Java Constraint Kit, called JACK,
consisting of a high-level language for writing constraint solvers (JCHR),
an interactive tool to visualize JCHR, computations (VisualCHR), and a
generic search engine (JASE) to solve combinatorial problems (Chapter 6).

Finally, two applications have been taken to study the benefit of rule-based
constraint programming to solving real problems in timetabling and room
assignment (Chapter 7).

Tacking all techniques together, the research presented in this paper enables
us to make constraint solving easier, allows for a declarative problem represen-
tation, and can be implemented efficiently.

103

104 CHAPTER 8. CONCLUSIONS

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

(8]

[9]

[10]

S. Abdennadher. Operational semantics and confluence of constraint
propagation rules. In Third International Conference on Principles and
Practice of Constraint Programming, CP97, LNCS 1330. Springer-Verlag,
November 1997.

S. Abdennadher. Analyse von regelbasierten Constraintlosern (in Ger-
man). PhD thesis, Computer Science Institute, LMU Munich, 1998.

S. Abdennadher and H. Christiansen. An experimental CLP platform for
integrity constraints and abduction. In Flezible Query Answering Systems.
Springer-Verlag, 2000.

S. Abdennadher and T. Frithwirth. On completion of constraint handling
rules. In 4th International Conference on Principles and Practice of Con-
straint Programming, CP98, LNCS 1520. Springer-Verlag, 1998.

S. Abdennadher and T. Frithwirth. Operational equivalence of CHR pro-
grams and constraints. In 5th International Conference on Principles and
Practice of Constraint Programming, CP99, LNCS 1713. Springer-Verlag,
1999.

S. Abdennadher, T. Frithwirth, and H. Meuss. On confluence of con-
straint handling rules. In 2nd International Conference on Principles and
Practice of Constraint Programming, CP96, LNCS 1118. Springer-Verlag,
August 1996.

S. Abdennadher, T. Friithwirth, and H. Meuss. Confluence and semantics
of constraint simplification rules. Constraints Journal, 4(2), May 1999.

S. Abdennadher and M. Marte. University timetabling using constraint
handling rules. In Actes des Journées Francophones de Programmation
en Logique et Programmation par Contraintes, 1998.

S. Abdennadher and M. Marte. University course timetabling using con-
straint handling rules. Journal of Applied Artificial Intelligence, Special
Issue on Constraint Handling Rules, 2000.

S. Abdennadher and C. Rigotti. Automatic generation of propagation
rules for finite domains. In 6th International Conference on Principles
and Practice of Constraint Programming, CP00, LNCS 1894. Springer-
Verlag, 2000.

105

106

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

BIBLIOGRAPHY

S. Abdennadher and C. Rigotti. Using confluence to generate rule-based
constraint solvers. In Third International Conference on Principles and
Practice of Declarative Programming. ACM Press, September 2001. To
appear.

S. Abdennadher, M. Saft, and S. Will. Classroom assignment using con-
straint logic programming. In The Second International Conference and
Exhibition on The Practical Application of Constraint Technologies and
Logic Programming, 2000.

S. Abdennadher and H. Schiitz. Model generation with existentially quan-
tified variables and constraints. In 6th International Conference on Alge-
braic and Logic Programming, LNCS 1298. Springer-Verlag, 1997.

S. Abdennadher and H. Schiitz. CHRV: A flexible query language. Flexible
Query Answering Systems, LNAT 1495, 1998.

A. Aggoun and N. Beldiceanu. Extending CHIP in order to solve complex
scheduling and placement problems. Mathl. Comput. Modelling, 17(7):57—
73, 1993.

A. Aggoun, F. Bueno, M. Carro, P.Deransart, M. Fabris, W. Drabent,
G. Ferrand, M. Hermenegildo, C. Lai, J. Lloyd, J. Maluszynski, G. Puebla,
and A. Tessier. CP Debugging Needs and Tools. In International Work-
shop on Automated Debugging, pages 103-122, 1997.

Rakesh Agrawal, Tomasz Imielinski, and Arun N. Swami. Mining associ-
ation rules between sets of items in large databases. In Proceedings of the
1993 ACM SIGMOD International Conference on Management of Data,
pages 207-216. ACM Press, 1993.

J. F. Allen. Maintaining knowledge about temporal intervals. Communi-
cations of ACM, 26(11):832-843, 1983.

The ANTLR translator generator. Internet: http://www.antlr.org, 1999.

K. Apt and E. Monfroy. Automatic generation of constraint propagation
algorithms for small finite domains. In 5th International Conference on
Principles and Practice of Constraint Programming, CP99, LNCS 1713.
Springer-Verlag, 1999.

K.R. Apt. Some remarks on boolean constraint propagation. In New
Trends in Constraints. Lecture Notes in Artificial Intelligence 1865, 2000.

F. Azevedo and P. Barahona. Timetabling in constraint logic program-
ming. In Proceedings of 2nd World Congress on Expert Systems, 1994.

R. J. Bayardo, R. Agrawal, and D. Gunopulos. Constraint-based rule
mining in large, dense databases. In Proceedings of the 15th International
Conference on Data Engineering, pages 188-197. IEEE Computer Society,
1999.

BIBLIOGRAPHY 107

[24] C. Bessiére and J. Régin. MAC and combined heuristics: Two reasons
to forsake FC (and CBJ?) on hard problems. In Second International
Conference on Principles and Practice of Constraint Programming, LNCS
1118, pages 61-75. Springer, 1996.

[25] S. Bistarelli, U. Montanari, and F. Rossi. Semiring-based constraint sat-
isfaction and optimization. Journal of the ACM, 44(2):201-236, 1997.

[26] Alan Borning, Bjorn N. Freeman-Benson, and Molly Wilson. Constraint
hierarchies. Lisp and Symbolic Computation, 5(3):223-270, 1992.

[27] F. Bry and A. Yahya. Minimal model generation with positive unit hyper-
resolution tableaux. In 5th Workshop on Theorem Proving with Tableaux
and Related Methods, Springer LNAI, 1996.

[28] M. Carter and C. Tovey. When is the classroom assignment problem hard?
Operations Research, 40(1):28-39, 1989.

[29] Y. Caseau, F. Josset, and F. Laburthe. Claire: Combining sets, search,
and rules to better express algorithms. In ICLP99, 1999.

[30] T. Chew, M. Henz, and K. Ng. A toolkit for constraint-based inference
engines. In Practical Aspects of Declarative Languages, 2000.

[31] H. Christiansen. Automated reasoning with a constraint-based metain-
terpreter. Journal of Logic Programming, 37(1-3):213-254, 1998. Special
issue on Constraint Logic Programming.

[32] H. Christiansen and D. Martinenghi. Symbolic constraints for meta-logic
programming. Special Issue Journal of Applied Artificial Intelligence on
Constraint Handling Rules, 2000.

[33] Constraint Handling Rules Online,
http://www.pms.informatik.uni-muenchen.de/ webchr/

[34] A. Chun. Constraint programming in java with JSolver. In Practical
Application of Constraint Logic Programming, 1999.

[35] K. Clark. Logic and Databases, chapter Negation as Failure, pages 293
322. Plenum Press, 1978.

[36] P. Codognet and D. Diaz. Boolean constraint solving using clp(FD). In
D. Miller, editor, Logic Programming - Proceedings of the 1993 Interna-
tional Symposium, Vancouver, Canada, 1993. The MIT Press.

[37] J. Cohen. A view of the origins and development of Prolog. Communica-
tions of the ACM, 31(1):26-36, 1988.

[38] H. Decker. An extension of SLD by abduction and integrity maintenance
for view updating in deductive databases. In Proc. of JICSLP’96, pages
157-169, 1996.

[39] M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T. Graf, and
F. Berthier. The Constraint Logic Programming Language CHIP. Tech-
nical Report TR-LP-37, ECRC, Munich, Germany, May 1988.

108

[40]
[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

BIBLIOGRAPHY

R. Eckstein, M. Loy, and D.Wood. Java Swing. O’Reilly, 1998.

S. Etalle, M. Gabrielli, and M. Meo. Unfold/fold transformations of CCP
programs. In 9th International Conference on Concurrency Theory, 1998.
Corrected version.

J. Ferland and S. Roy. Timetabling problem for university as assignment
of activity to resources. Computers and Operational Research, 12(2):207—
218, 1985.

H. Frangouli, V. Harmandas, and P. Stamatopoulos. UTSE: Construction
of optimum timetables for university courses — A CLP based approach.
In Proceedings of the Third International Conference on the Practical Ap-
plications of Prolog, pages 225-243, 1995.

E. C. Freuder and R. J. Wallace. Partial constraint satisfaction. Artificial
Intelligence, 58(1-3):21-70, 1992.

T. Frithwirth. A Declarative Language for Constraint Systems: Theory
and Practice of Constraint Handling Rules. Habilitation, Computer Sci-
ence Institute, LMU Munich, 1998.

T. Frithwirth. Theory and practice of constraint handling rules, special
issue on constraint logic programming. Journal of Logic Programming,
37(1-3):95-138, October 1998.

T. Frithwirth. Proving termination of constraint solver programs. In New
Trends in Constraints. LNAI 1865, 2000.

T. Frithwirth and S. Abdennadher. Constraint-Programmierung: Grund-
lagen und Anwendungen. Springer-Verlag, September 1997.

T. Friithwirth and P. Brisset. High-level implementations of constraint
handling rules. Technical report, ECRC, 1995.

T. Frithwirth, A. Herold, V. Kiichenhoff, T. Le Provost, P. Lim, E. Mon-
froy, and M. Wallace. Constraint logic programming: An informal in-
troduction. In G. Comyn, N.E. Fuchs, and M.J. Ratcliffe, editors, Logic
Programming in Action, LNCS 636. Springer-Verlag, 1992.

M. Gabbrielli, G. Levi, and M. Chiara Meo. Observable behaviors and
equivalences of logic programs. Information and Computation, 122(1):1-
29, October 1995.

R. M. Haralick and G. L. Elliott. Increasing tree search efficiency for
constraint satisfaction problems. Artificial Intelligence, 14:263-313, 1980.

M. Henz and J. Wiirtz. Using Oz for college time tabling. In Proceed-
ings of the First International Conference on the Practice and Theory of
Automated Timetabling, pages 283-296, 1995.

C. Holzbaur and T. Frithwirth. A prolog constraint handling rules compiler
and runtime system. Special Issue Journal of Applied Artificial Intelligence
on Constraint Handling Rules, 2000.

BIBLIOGRAPHY 109

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

J. Jaffar and J. Lassez. Constraint logic programming. In Michael J.
O’Donnell, editor, Conference Record of the 14th Annual ACM Symposium
on Principles of Programming Languages. ACM Press, January 1987.

J. Jaffar and M. J. Maher. Constraint logic programming: A survey.
Journal of Logic Programming, 20, 1994.

A. C. Kakas and P. Mancarella. Database updates through abduction. In
Proc. 16th Int’l Conf. on Very Large Databases, pages 650-661. Morgan
Kaufmann, California, 1990.

A. C. Kakas and A. Michael. Integrating abductive and constraint logic
programming. In Leon Sterling, editor, Proceedings of the 12th Inter-
national Conference on Logic Programming, pages 399-416, Cambridge,
June 13-18 1995. MIT Press.

C. Kirchner, H. Kirchner, and M. Vittek. Implementing computational
systems with constraints. In Proceedings of the First Workshop on Prin-
ciples and Practice of Constraints Programming. MIT Press, April 1993.

H. Kirchner and C. Ringeissen. A constraint solver in finite algebras and
its combination with unification algorithms. In Proc. Joint International
Conference and Symposium on Logic Programming, pages 225-239. MIT
Press, 1992.

S.C. Kleene. Introduction to Metamathematics. Van Nostrand, Princeton,
New Jersey, 1950.

R. Kowalski and G. Wetzel F. Toni. Executing suspended logic programs.
Special Issue of Fundamenta Informaticae, 34(3), 1998.

E. Kramer. A generic search engine for a java constraint kit. Master’s
thesis, Ludwig-Maximilians-University, 2001.

V. Kumar. Algorithms for constraint-satisfaction problems: A survey. Al
Magazine, 13(1), 1992.

A. Mackworth. Constraint satisfaction. In Stuart C. Shapiro, editor,
Encyclopedia of Artificial Intelligence. Wiley, 1992. Volume 1, second
edition.

A. K. Mackworth. Consistency in networks of relations. Artificial Intelli-
gence, 8:99-118, 1977.

M. J. Maher. Equivalences of logic programs. In Proceedings of Third
International Conference on Logic Programming, Berlin, 1986. Springer.

M. J. Maher. Logic semantics for a class of committed-choice programs.
In J.-L. Lassez, editor, Proceedings of the Fourth International Conference
on Logic Programming. The MIT Press, May 1987.

R. Manthey and F. Bry. SATCHMO: A theorem prover implemented in
Prolog. In 9th Int. Conf. on Automated Deduction (CADE), LNCS 310,
Argonne, IL, USA, may 1988. Springer-Verlag.

110 BIBLIOGRAPHY

[70] K. Marriott and P. Stuckey. Programming with Constraints: An Introduc-
tion. The MIT Press, 1998.

[71] M. Marte. Constraint-based grammar school timetabling — A case
study. Diplomarbeit, Lehr- und Forschungseinheit fiir Programmier-
und Modellierungssprachen, Institut fiir Informatik, Ludwig-Maximilians-
Universitdt Miinchen, 1998.

[72] M. Meier. Debugging constraint programs. Lecture Notes in Computer
Science, 976:204-221, 1995.

[73] H. Meyer auf’'m Hofe. ConPlan/SIEDAplan: Personnel assignment as
a problem of hierarchical constraint satisfaction. In Proceedings of the
3rd International Conference on the Practical Application of Constraint
Technology, pages 257-272, 1997.

[74] R. Mohr and G. Masini. Good old discrete relaxation. In Proceedings
of the 8th European Conference on Artificial Intelligence, pages 651-656.
Pitman Publishers, 1988.

[75] S. Muggleton and L. De Raedt. Inductive Logic Programming : theory
and methods. Journal of Logic Programming, 19,20:629-679, 1994.

[76] Group of Prof. Dr. Bernd Krieg-Briickner. The graph visualization system
davinci. www.informatik.uni-bremen.de/daVinci/.

[77] N.Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Efficient mining of asso-
ciation rules using closed itemset lattices. Information Systems, 24(1):25—
46, 1999.

[78] L. M. Pereira and J. J. Alferes. Well founded semantics for logic programs
with explicit negation. In Bernd Neumann, editor, Proceedings of the 10th
European Conference on Artificial Intelligence, pages 102-106, Vienna,
Austria, August 1992. John Wiley & Sons.

[79] G. Plotkin. A note on inductive generalization. In Machine Intelligence,
volume 5, pages 153-163. Edinburgh University Press, 1970.

[80] T. Le Provost and M. Wallace. Generalised constraint propagation over
the CLP scheme. Journal of Logic Programming, 16(3):319-359, 1993.

[81] D. A. Randell, Z. Cui, and A. G. Cohn. A spatial logic based on regions
and connection. In Proceedings of the 3rd International Conference on
Principles of Knowledge Representation and Reasoning, pages 165-176,
Cambridge, MA, October 1992. Morgan Kaufmann.

[82] C. Ringeissen. Etude et implantation d’un algorithme d’unification dans
les algebres finies. Rapport de DEA, Université de Nancy I, 1990.

[83] C. Ringeissen and E. Monfroy. Generating propagation rules for finite
domains via unification in finite algebra. In ERCIM Working Group on
Constraints / CompulogNet Area on Constraint Programming Workshop,
1999.

BIBLIOGRAPHY 111

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

K. Ryall, J. Marks, and S. Shieber. An interactive constraint-based system
for drawing graphs. In User Interface Software and Technology (, 1997.

D. Sabin and E. C. Freuder. Understanding and improving the mac algo-
rithm. In Third International Conference on Principles and Practice of
Constraint Programming, LNCS 1330, pages 167—181. Springer, 1997.

V. A. Saraswat. Concurrent Constraint Programming. MIT Press, Cam-
bridge, 1993.

V. A. Saraswat, M. Rinard, and P. Panangaden. The semantic foundations
of concurrent constraint programming. In Conference Record of the 18th
Annual ACM Symposium on Principles of Programming Languages. ACM
Press, January 1991.

A. Schaerf. A survey of automated timetabling. Technical Report CS-
R9567, CWI - Centrum voor Wiskunde en Informatica, 1995.

M. Schmauss. A constraint library for java. Master’s thesis, Ludwig-
Maximilians-University, 1999.

C. Schulte. Oz Explorer: A visual constraint programming tool. In Lee
Naish, editor, Proceedings of the Fourteenth International Conference on
Logic Programming, pages 286-300, Leuven, Belgium, July 1997. MIT
Press, Cambridge, MA, USA.

H. Simonis and A. Aggoun. Search-tree visualisation. In Debugging Sys-
tems for Constraint Programming. LNCS 1870, Springer Verlag, 2000.

D. A. Smith. Mixlog: A generalized rule based language. In VIémes
Journées Francophones de Programmation en Logique et programmation
par Contraintes. Hermes, 1997.

G. Smolka. The Oz programming model. Lecture Notes in Computer
Science, 1000, 1995.

G. Smolka and C. Schulte. Logische Programmierung. Skriptum zur
Vorlesung, Fachbereich 14 - Informatik, Universit”at des Saarlandes, 1993.

H. Toivonen, M. Klemettinen, P. Ronkainen, K. Hat6nen, and H. Man-
nila. Pruning and grouping of discovered association rules. In Workshop
Notes of the ECML-95 Workshop on Statistics, Machine Learning, and
Knowledge Discovery in Databases, pages 47-52, April 1995.

M. Torrens, R. Weigl, and B. Faltings. Java Constraint Library: bringing
constraint technology to the internet using the java language. In Working
Notes of the Workshop on Constraints and Agents, 1997.

P. van Hentenryck. Constraint Satisfaction in Logic Programming. MIT
Press, Cambridge, Massachusetts, 1989.

P. van Hentenryck. Constraint logic programming. The Knowledge Engi-
neering Review, 6, 1991.

112 BIBLIOGRAPHY

[99] P. van Hentenryck, H. Simonis, and M. Dincbas. Constraint satisfaction
using constraint logic programming. Artificial Intelligence, 58(1-3), De-
cember 1992.

[100] M. Wallace. Practical applications of constraint programming. Constraints
Journal, 1(1,2), September 1996.

[101] G. Wetzel and F. Toni. Semantic query optimization through abduc-
tion and constraint handling. Flexible Query Answering Systems, LNAI
1495:366-381, 1998.

[102] J. E. Wunderwald. Adding Bottom-up Evaluation to Prolog. PhD thesis,
Technische Universitiat Miinchen, 1996.

[103] N. Zhou, S. Kaneko, and K. Yamauchi. DJ: A java-based constraint lan-
guage and system. In Proceedings of the Annual JSSST Conference, 1998.

Appendix A

Horn Clause Programs and
SLD Resolution

Even though we expect the reader to be familiar with Horn clause programs and
SLD resolution, we give some definitions in order to introduce our terminology
and notation, which we will need for comparisons with CHRV.

A.1 Syntax

A Horn clause program is a set of Horn clauses, also called rules, which are
formulas of the form H <+ B, where H is an atom, i.e., an atomic first-order
formula and B is a conjunction of atoms. We call H the head and B the body
of the rule.

A.2 Declarative Semantics

The logical meaning of a Horn clause program P is given by its completion [35]:
The completed definition of a predicate p is a formula of the form Vo(p(v) +
(374 (1727?1 AB)V...V an(ﬁzfn A Bn))),l where p(fl) — By, ..., p(fn) « B,
are all the clauses with head predicate p in P, every Z; is the list of variables
occurring in the 4th such clause, and v is a list of fresh variables of appropriate
length. The completion of P consists of the completed definitions of all the
predicates occurring in P and a theory defining = as syntactic equality.

A.3 Operational Semantics

The operational semantics can be described as a state transition system for
states of the form G, where G (the goal) is a conjunction of atoms. Transitions
from a state G are possible if for some fresh variant? of a rule H < B in the
given program P and some atom A in the goal G the head H and A are unifiable.

1Here #=t; stands for the conjunction of equations between respective components of the
lists ¥ and ;.

2Two formulas or terms are variants, if they can be obtained from each other by a variable
renaming. A fresh variant contains only new variables.

113

114 APPENDIX A. SLD RESOLUTION

Unfold

It (H « B) is a fresh variant of a rule in P
and 0 is a most general unifier of H and A
then ANG— (BAG)Y

Figure A.1: SLD resolution step

In the resulting state, A is replaced by B and a most general unifier of H and
A is applied to BAG.

This computation step is also given in Figure A.1. Conjunctions are consid-
ered to be associative and commutative.

We are looking for chains of such transitions from the initial state, which
consists of the user-supplied query to some final state, where the goal must be
the empty conjunction T.

Given some state A A G, there are two degrees of nondeterminism when we
want to reduce it to another state:

e Any atom in the conjunction A A G can be chosen as the atom A.
e Any rule (H + B) in P for which H and A are unifiable can be chosen.

In order to achieve certain completeness properties of SLD resolution we have
to try all possibilities w.r.t. the second degree. But it is a fundamental property
of SLD resolution that w.r.t. the first degree it suffices to choose an arbitrary
atom A. So the first degree of nondeterminism is of “don’t-care” type, while
the second is of “don’t-know” type.

We leave the don’t-care nondeterminism implicit in the calculus as usual,
whereas we note the don’t-know nondeterminism in a refined version of the
Unfold computation step in Figure A.2. With this modified rule we construct

UnfoldSplit
It (Hy < B1),...,(H, « By,) are fresh variants

of all those rules in P for which

H; (1 < i< n) is unifiable with A

6; is a most general unifier of H; and A (1 <i < n)
then ANG = (BIANG)Y | ... | (Ba NG,

Figure A.2: SLD resolution step with case splitting

trees of states rather than sequences of states. The root is the initial state as
given above. Every inner node has children according to some application of
UnfoldSplit. Leaves are either successful leaves, where the goal has become
empty, or failing leaves if there are no appropriate rules in P for the chosen goal
atom A.

List of Figures

2.1

3.1
3.2
3.3
3.4
3.5

5.1
5.2

6.1

Al
A2

Computation Steps of CHR 10
Box View of a Constraint Store 26
Sub-Box View of a Constraint Store 26
Step-by-Step Expansion oo oL 27
Expansion L 28
Hiding Nodes 29
Computation step for disjunctions 59
Evaluation of Example 5.13 68
Visualization of agoal 83
SLD resolution step o 114
SLD resolution step with case splitting 114

115

Index

atom, 8

CHR symbol, 8
c-dependent, 18
dependency set, 18
depends, 18
depends directly, 18

computation, 10, 58

constraint, 8, 33
atomic, 8
built-in, 8
hard, 90
soft, 90
theory, 9

ground, 36
user-defined, 8

constraint solver, 1

cover, 33

critical pair, 14

CSP, 90
solution of, 90

goal, 8, 113
simple, 58

Horn clause, 113
body, 113
head, 113
logical meaning, 113

interesting pattern, 34
normalization function, 9

PCSP, 90
solution of, 90
program
CHR, 8
compatible, 16
confluent, 14

terminating, 14
CHRY, 58
Horn clause, 113

rule
body, 8
closing, 61
definition, 60

extensional introduction, 61

failure, 33

guard, 8

head, 8

left hand side, 33

logical meaning, 9

propagation, 8, 33, 58
relevant, 34
valid, 33

right hand side, 33

simpagation, 8

simplification, 8, 58

state, 9, 113
P, P;-joinable, 16
c, 17
c-critical, 18
critical, 24
critical ancestor, 14
failed, 10
final, 10, 58
initial, 10
joinable, 14
logical meaning, 11
successful, 10, 58
subconjunction, 20

operationally equivalent, 16
operationally c-equivalent, 17

116

