

3.3V, 1-port, SATA Gen 3i ReDriver™ with Adjustable Equalization/Pre-Emphasis

Features

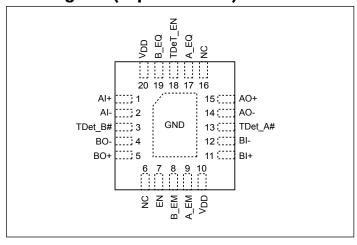
- → Supports SATA Gen 3i.
- → Two 6Gbps differential signal pairs
- → 100Ω Differential CML I/O's
- → Input signal level detect and squelch for each channel
- → OOB Support
- → Automatic HDD Rate detection for output swing/emphasis setting
- → Termination detect indication
 - Power saving mode control to Host or HDD
- → Adjustable Receiver Equalization
- → Selectable Output Pre-emphasis and Swing Control
- → High impedance I/O termination in standby mode
- → ESD +/-8kV
- → Low Power Operation: 254mW typical
- → Auto-Slumber Mode: 36mW typical
- → HDD unplugged: 3.6mW
- → Power down Stand-by Mode: 0.7mW max
- → Supply Voltage: 3.3V ±10%
- → Industrial Temperature Range: -40°C to 85°C
- → Packaging: 20-TQFN (4x4mm)

Description

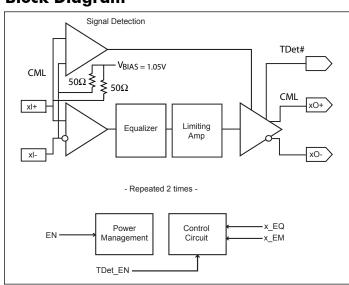
The PI3EQX6741ST is a low power, signal SATA Gen 3i 6Gbps ReDriver. The device provides programmable equalization and output emphasis, to optimize performance over a variety of physical mediums by reducing Inter-Symbol Interference. PI3EQX6741ST supports two 100Ω Differential CML data I/O's between the Protocol ASIC to a switch fabric, across a backplane, or to extend the signals across other distant data pathways on the user's platform.

The integrated equalization circuitry provides flexibility with signal integrity of the signal before the ReDriver.

A low-level input signal detection and output squelch function is provided for each channel. Each channel operates fully independently. When the channels are enabled (EN=1) and operating, that channels input signal level (on xI+/-) determines whether the output is active. If the input signal level of the channel falls below the active threshold level (Vth-) then the outputs are driven to the common mode voltage.


Termination Detect indication (TDet_A# or TDET_B#) provides indication when the load is connected ie HDD or Host. This can be used as control to go into power saving mode by either the host or HDD.

In addition to signal conditioning, when EN = 0, the device enters a low power standby mode.


Applications

→ Notebook, desktop, docking station, Set Top Box, Server Workstation, Data Storage

Pin Diagram (Top Side View)

Block Diagram

Pin Description

Standard Mode Pin #	Pin Name	Туре	Description
9	A_EM	Input	Output emphasis adjustment for channel A. (See Configuration Table) Digital control with $200 \mathrm{K}\Omega$ pull-up resistor.
17	A_EQ	Input	Channel A Equalization adjustment is active. (See Configuration Table) Tri-level input pin with $100 \mathrm{K}\Omega$ pull-up and $100 \mathrm{K}\Omega$ pull-down resistors.
1 2	AI+ AI-	Input	CML input forward channel A with internal 50Ω pull-up resistors connected to VBIAS (100Ω differential).
15 14	AO+ AO-	Output	CML output channel A with internal 50 Ω pull-up resistors connected to VBIAS (100 Ω differential).
8	B_EM	Input	Output emphasis adjustment for channel B. (See Configuration Table) Digital control with $200 \mathrm{K}\Omega$ pull-up resistor.
19	B_EQ	Input	Tri-level input pin with $100 \mathrm{K}\Omega$ pull-up and $100 \mathrm{K}\Omega$ pull-down resistors. (See Configuration Table)
11 12	BI+ BI-	Input	CML input return channel B with internal 50K Ω pull-up, resistor connected to VBIAS (100 Ω differential).
5 4	BO+ BO-	Output	Positive CML output channel B with internal 50Ω pull-up resistor connected to VBIAS (100Ω differential).
7	EN	Input	Chip Enable "High" provides normal operation. "Low" for power down mode. With internal 200K Ω pull-up resistor.
Center Pad	GND	GND	Supply ground.
10, 20	V _{DD}	Power	3.3V supply voltage ± 10%
3	TDet_B#	Output	Termination detect output for channel B-Active Low, open drain. Low: HDD Termination present. High: HDD Termination NOT present.
13	TDet_A#	Output	Termination detect output for channel A-Active Low, open drain. Low: HDD Termination present. High: HDD Termination NOT present.
18	TDet_EN	Input	Termination Detect Enable ($200K\Omega$ internal pull-up resistor) High: Enable Termination Detect for eSATA application or hot plug Device application Low: Disable Termination Detect for internal SATA application.
6, 16	NC		No Connection internally.

Configuration Table - Output Pre-emphasis/Swing Setting

A_EM/B_EM	3 Gb/s	6 Gb/s		
0	550mV pp	650mV pp		
1	550mV pp + 3dB Pre-emphasis	650mV pp + 1.5dB Pre-emphasis		

Configuration Table - Input Equalizer

A_EQ/B_EQ	1.5 Gb/s	3 Gb/s	6Gb/s
0	1 dB	2.5 dB	3 dB
floating	2.5 dB	5 dB	6 dB
1	4 dB	7.5 dB	9 dB

Termination Detect Feature:

Termination Detect is a power saving feature. The user can enable TDet_EN (set to High) for eSATA application as it would save more power when there is no external HDD connection. But for internal SATA application, TDet_EN should be set to LOW because internal HDD is always on and termination is always there.

When Redriver doesn't detect Host or HDD termination, there will be about 12us detect pulse width with 50us detect period at the output of ReDriver. Once the termination is detected, the detect period will change to about 40ms. Anyway when the signal is detected at the input of redriver, there will not be any detect pulse at both the output side of redriver.

01/04/17

Maximum Ratings

(Above which useful life may be impaired. For user guidelines, not tested.)

Storage Temperature65°C to +150°C
Supply Voltage to Ground Potential $-0.5V$ to $+4.6V$
DC SIG Voltage $-0.5V$ to $V_{\mbox{\scriptsize DD}}$ +0.5V
Output Current25mA to +25mA
$Power\ Dissipation\ Continuous 500mW$
Operating Temperature40°C to +85°C
ESD, Human Body Model8kV to 8kV

Note:

Stresses greater than those listed under MAXIMUM RAT-INGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

AC/DC Electrical Characteristics

Symbol	Parameter	Conditions	Min.	Typ. ⁽¹⁾	Max.	Units
V _D D	Power Supply Voltage		3.0		3.6	V
PSTANDBY	Supply Power, Standby	EN = 0		0.07	0.7	
PUNPLUG	Supply Power, HDD unplugged	No HDD attached, TDet_EN = High		3.6	11	
PSLUMBER	Supply Power, Slumber	TDet_EN = Low		36	50	mW
PACTIVE	Supply Power, Active	$EN = 1$ A/B_EM=0 DIFFP-P \geq VTH-SD		254	317	
IDD-STANDBY	Supply Current Standby	EN = 0		0.02	0.2	
IDD-UNPLUG	Supply Current, HDD unplugged	No HDD attached, TDet_EN = High		1	3	
IDD-SLUMBER	Supply Current Slumber	TDet_EN = Low		11	14	mA
I _{DD-ACTIVE}	Supply Current Active	EN = 1, input = 600mVppd,		77	88	
tPD	Latency	A/B_EM=0 From input to output		0.7		ns
CML Receiver Input						
Z _{RX-DC}	DC Input Impedance		40	50	60	
Z _R X-DIFF-DC	DC Differential Input Impedance		80	100	120	Ohm
VRX-DIFFp-p	Differential Input Peak-to-peak Voltage		0.2		1.2	V
VRX-CM-ACP	AC Peak Common Mode Input Voltage				150	mV
V _{TH-SD}	Signal detect Threshold	EN = 1	50		200 ⁽²⁾	mVppd

Note:

- 1. Typical values are at VDD = 3.3V, TA = 25°C ambient and maximum loading.
- 2. Using Compliance test at 1.5Gbps, 3Gbps and 6Gbps. Also using OOB (OOB is formed by ALIGNp primitive or D24.3) test patterns at 1.5Gbps. The ALIGN primitive (K28.5+D10.2+D27.3=0011111010+0101010101+0010011100). The D24.3 = 00110011001100110011.

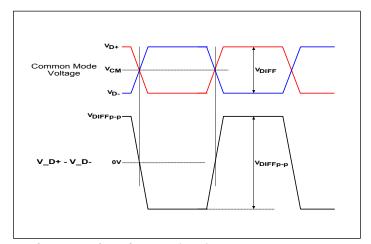
AC/DC Electrical Characteristics (CML Receiver Input continued)

Symbol	Parameter	Conditions		Min.	Typ. ⁽¹⁾	Max.	Units
RL _{dd11_RX}	RX differential mode return loss	75MHz-300MHz 300MHz-600MHz 600MHz-1.2GHz 1.2GHz-2.4GHz 2.4GHz-3.0GHz 3.0 GHz-5.0GHz		18 14 10 8 3 1			dB
RL _{cc11_RX}	RX common mode return loss	150MHz - 300MHz 300MHZ - 600MHz 600MHz - 1.2GHz 1.2GHz - 2.4GHz 2.4GHz - 3.0GHz 3.0GHz - 5.0GHz		3 5 2 2 1 1			dB
RL _{dc11_RX}	RX impedance balance	150MHz - 300M 300MHz - 600M 600MHz - 1.2GH 1.2GHz - 2.4GHz 2.4GHz - 3.0GHz 3.0GHz - 5.0GHz	Hz Iz z	30 30 20 10 4 4			dB
CML Transmitt	CML Transmitter Output (100Ω differential) ⁽³⁾						
Z _{TX-DIFF-DC}	DC Differential TX Impedance			80	100	120	Ohm
V _{TX-DIFFp-p}	Differential Peak-to-peak Output	$V_{TX-DIFFp-p} = 2$ * V_{TX-D}	SATA2	450		700	
- TA-DITTP-P	Voltage		SATA3	550		750	mV
V _{TX-C}	Common-Mode Voltage	$ V_{TX-D+} + V_{TX-I} $	_{D-} /2	0.5		1.2	V
t_F , t_R	Transition Time	20% to 80% ⁽³⁾ 0dB Pre-emphasis		40		150	ps
V_{amp_bal}	TX amplitude imbalance	3G only; HFTP, N	3G only; HFTP, MFTP			10	%
T_{skew}	TX differential skew	1.5G and 3G; HF	TP, MFTP			20	ps
V _{cm_ac}	TX AC common mode voltage	3G only; MFTP				50	mVpp
Version	Max TX Pre-emphasis Level				3		dB
V _{TX-Pre-Ratio-max}	Wax 1X 1 re-emphasis Level				1.5		
RL _{dd11_TX}	TX differential mode return loss	150MHz - 300M 300MHz - 600M 600MHz - 1.2GH 1.2GHz - 2.4GHz 2.4GHz - 3.0GHz 3.0 GHz - 5.0GH	Hz Iz z	14 8 6 6 3 1			dB
C_{TX}	AC Coupling Capacitor			2	4.7	12	nF
T _J	Total Jitter	FR4 Input Trace	18" 36"			0.16	UI
DJ	Deterministic Jitter	FR4 Input Trace	18"			0.24	UI
,	,	1	36"			0.19	

Note:

3. Recommended output coupling capacitor is 4.7nF to 12nF (on each output)

AC/DC Electrical Characteristics


Symbol	Parameter	Conditions	Min.	Гур.(1)	Max.	Units
		150MHz - 300MHz	5			
		300MHz - 600MHz	5			
RL _{cc11} TX	TX common mode return loss	600MHz – 1.2GHz	2			dB
RECCII_IX	177 common mode return 1000	1.2GHz – 2.4GHz	2			
		2.4GHz – 3.0GHz	1			
		3.0 GHz – 5.0GHz	1			
		150MHz – 300MHz	30			
		300MHz - 600MHz	20			
RL _{dc11_TX}	TX impedance balance	600MHz – 1.2GHz	10			dB
KLacII_IX	1 A impedance balance	1.2GHz – 2.4GHz	10			аь
		2.4GHz – 3.0GHz	4			
		3.0 GHz – 5.0GHz	4			
LVCMOS Con	Input High Voltage (Bi-Level)		0.65 ×			
V IH	Input High Voltage (Di-Level)		V_{DD}			V
3.7	I I V-14 (D: I1)				0.35 ×	V
V_{IL}	Input Low Voltage (Bi-Level)				V_{DD}	
I_{IH}	Input High Current				100	4
I_{IL}	Input Low Current		-100			μA
V _{OL}	DC Output Logic Low	I _{OL} = 4 mA			0.4	V
V_{IH}	Input High Voltage (Tri-Level)		0.8 ×V _{DD}			V
V_{IL}	Input Low Voltage (Tri-Level)				$0.2 \times V_{\mathrm{DD}}$	V

Auto Slumber Mode Entry/Exit Time

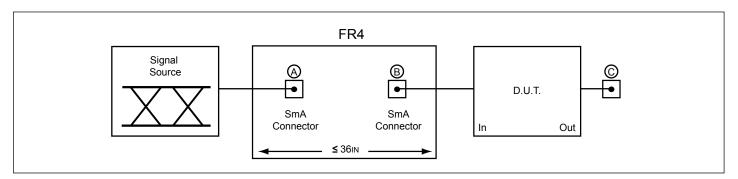
Symbol	Parameter	Conditions	Min.	Typ. ⁽¹⁾	Max.	Units
T _{SlumberON}	Entry time to Slumber Mode	Electrical Idle at Input (See Figure)		10	20	μS
T _{SlumberOFF}	Exit time from Slumber Mode	After first signal activity (See Figure)		6	20	ns

Pre-emphasis = 20·Log(V_{DIFF-PRE}/V_{DIFF})

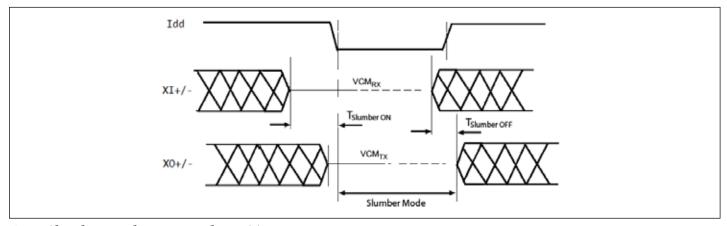
V_D

V_D

V_D


V_D

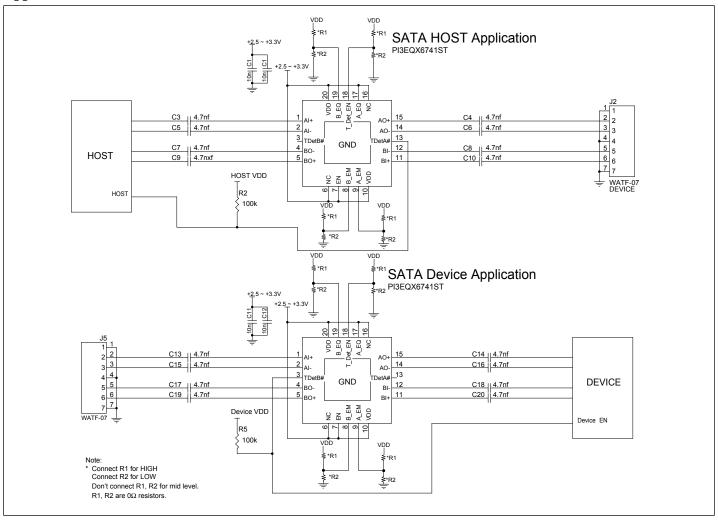
1stT_{BIT}


2nd +T_{BIT}(s)

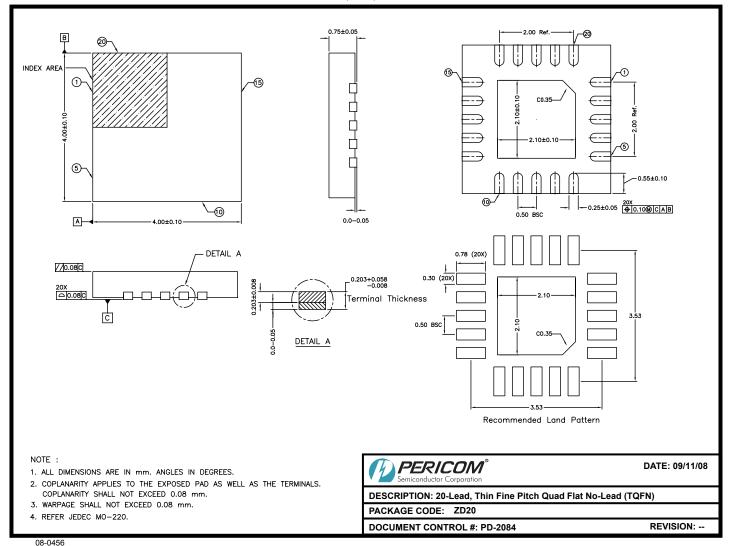
Definition of Differential Voltage and Differential Voltage Peak-to-Peak

Definition of Pre-emphasis

Test Condition Referenced in the Electrical Characteristic Table



Auto Slumber Mode Entry and Exit Timing


Application Schematic

Packaging Mechanical: 20-contact TQFN (ZD)

Note: For latest package info, please check: http://www.pericom.com/support/packaging/packaging-mechanicals-and-thermal-characteristics/

Ordering Information

Ordering Number	Package Code	Package Description
PI3EQX6741STZDE ZD .		20-Lead, Thin Fine Pitch Quad Flat No-Lead (TQFN)
PI3EQX6741STZDEX	ZD	20-Lead, Thin Fine Pitch Quad Flat No-Lead (TQFN), Tape & Reel

9

Notes:

- Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
- E = Pb-free and Green
- X suffix = Tape/Reel

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.

Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

- A. Life support devices or systems are devices or systems which:
 - 1. are intended to implant into the body, or
- 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
- B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2016, Diodes Incorporated www.diodes.com

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Diodes Incorporated: PI3EQX6741STZDE