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Abstract

This paper considers a stochastic fluid model of a buffer content process
{X(t),t > 0} that depends upon an external environment process {Z(t),t >
0} as follows: whenever the environment is in state z the X process
changes state at rate n(z). The X process is restricted to stay in [0, B],
where B < oco. The aim is to study the steady state distribution of the
bivariate process {(X (), Z(t)),t > 0}. Three main cases are considered:
the environment is (i) a continuous time Markov chain (CTMC), (i) a
CTMC and white noise and (4i7) an Ornstein-Uhlenbeck process. Spectral
representations are obtained for the steady state distributions. Finally an
extension to state dependent drift is considered, where the rate of change
of the X process depends on both X and Z processes. The paper ends
with some interesting open problems in this area.

*This research was partially supportd by NSF Grant No. NCR-9406823.



1 Introduction

A stochastic fluid flow system is an input-output system where the input is
modeled as a continuous fluid that enters and leaves a storage device, called a
buffer, according to randomly varying rates. Such models are motivated as ap-
proximations to discrete queueing models of manufacturing systems, high-speed
data networks, etc. They have also been used in transportation systems, theory
of dams, queueing theory, etc.

The main aim of this paper is to provide a general framework for a vari-
ety of fluid models that have been studied in literature. This is accomplished
by introducing a stochastic process to model the external random environment
which modulates the input and output rates of the fluid to the buffer. We then
proceed to classify the models according to the stochastic nature of the random
environment,.

The fluid models where the external environment is a Continuous Time
Markov Chain have been used in data communication networks. For exam-
ple, Anick et al. [3] , Kosten [20, 21] and Kosten and Vrieze [22] treat a single
buffer which receives input data from several independent sources, each source
switching between on and off states according to a two-state CTMC. (This is
referred to as the AMS model).The data is removed from the buffer at a fixed
rate. Mitra [28, 29] considers a generalization of this model with multiple input
sources and output channels, both subject to on-off switching. This work con-
tinues in Elwalid and Mitra [7] and Stern and Elwalid [37].

More recently, Asmussen [2] and Kulkarni and Karandikar [26] have studied
fluid models where the environment process is a CTMC as well as white noise.
These models are useful in communication networks when the effect of jitter in
the channels needs to be accounted for. These are also called the second order
models since they introduce the variance terms explicitly in the model.

A special limiting case of the AMS model leads to fluid models where the
external environment is an Ornstein-Uhlenbeck (OU) process. Such models are
studied by Simonian [35], Simonian and Virtamo [36] and Kulkarni and Rolski
[27].

Although we are motivated by telecommunication applications, fluid models
have been used earlier in transportation systems to model the flow of vehicles
at a traffic intersection (see Newell [32]) and in dam theory (see Moran [30]). In
queueing theory, the work content process can be thought of as a fluid model
where the fluid arrives in instanteous quantities and leaves at a continuous rate
(see Gaver and Miller [10] and Prabhu [33]).In a recent paper, Chen and Yao
[6] consider a single source model with general on and off times. This can be



thought of as a fluid model with a simple two-state semi-Markovian environment
process. Kella and Whitt [16] study a stochastic fluid model with Levy input.

The rest of the paper is organized on the basis of the stochastic nature of
the external environment. General stability results are stated in Section 2. In
Section 3 we consider the case where the environment is a CTMC and summa-
rize the important results. Section 4 describes several applications of the model
of Section 3 to high-speed networks. It includes applications to a leaky-bucket
control scheme, the statistical multiplexing problem, and the admission control
policies using effective bandwidth concepts. Relevant literature is cited at ap-
propriate places.

Section 5 considers a bivariate environment process: one component is a
CTMC and the other component is a white noise. In Section 6 we consider an
Ornstein-Uhlenbeck process as a random environment. In Section 7 we consider
the case where the input and output rates depend on the buffer content as well
as the external environment. This case is useful in modeling the buffer sharing
schemes in high-speed networks. The paper concludes with a brief discussion of
the open problems in the area.

2 The Model

In this section we describe a general model of fluid entering and leaving a single
buffer system. The input and output rates of the fluid depend on an external
environment as follows: Let Z(t) be the state of the environment at time t.
and X (t) the amount of fluid in the buffer at time ¢. Let n(Z(t)) be the net
input rate (entry rate - exit rate) at time ¢. 7(.) is called the drift function. (In
Section 7 we shall consider the case where the input and output rates depend
on X (t) as well as Z(¢), i.e., the drift function is given by n(Z(t), X (t)).)

When the buffer capacity is infinite, the dynamics of the buffer content
process X = {X(¢),t > 0} is given by

dX (t) { n(Z(t) i X(t) >0, O
dt ((Z()* if X(t) =0,

where ()" = max(x,0). The special form at X(¢) = 0 ensures that the X
process does not become negative. When the buffer capacity is finite, say B,
the dynamics is given by:

(n(Z(t)* if X(t) =0,
d)éft) - nn(Z(t)) if0 < X(t) < B, 2)
-(m(zZ#))- i X(t) =B,



where ()~ = min(0,z). The form at X(¢) = B prevents the buffer content
from exceeding B.

Definition. The X process is called a fluid input-output process (or a fluid
process, for short) driven by the Z process.

In this article we shall assume the buffer capacity to be infinite unless other-
wise mentioned. To solve the Equation (1) with the initial condition X (0) = z,
we write

Y(t) =+ /0 n(Z(s))ds. (3)

Integrating both sides of Equation (1) and manipulating the result we get (see
Prabhu [33])

t
X0 =Y+ [ 0Z6) Tpxiods. (4)
Using the standard argument of queueing theory we get
X() = Y()- inf (0.Y(w) (5)
t
= swp (V(0), [ n(Z(5)ds). (6)
0<u<t u

The next theorem gives the result about the existence of the stationary
distribution for the buffer-content process. (See Borovkov [4]).

Theorem 1 Suppose {Z(t),t > 0} is stationary and ergodic with
E(n(Z(t))) <0. (7)
Then,

0
X = ffi%/ n(Z(s))ds (8)

is an a.s. finite random variable and

lim P(X(t) > x) = P(X* > x), x> 0. (9)

t—oo

In the following sections we consider fluid processes driven by various stochastic
processes Z.

3 Driving Process: CTMC

In this section we study the fluid process driven by a CTMC. Let {Z(t),t > 0}
be an irreducible CTMC on state space S = {1,2,..., M} and infinitesimal



generator matrix () = [g;;]. The drift function is given by 1(i) = d(3),i € S. d(7)
is called the drift in state 7. Let

mi(t) = P(Z(t) = j12(0) =), i,j €S, (10)
and m; = tlggo P(Z(t) = 71Z(0) =) i,j€S. (11)

It is well known (see Ross [34], Kulkarni [23].) that II(¢) = [m;;(¢)] satisfies the
following equations:

dII(t
T —nne, no) =1 (12)
Furthermore, m = (w1, w2, ..., maz) is given by the unique solution to
Q@ = 0, (13)
o= L (14)
€S

Transient Behavior. It is clear that (X, Z) = {(X(¢),Z(¢)),t > 0} is a
bivariate Markov process. For 0 < z,y < oo, and 4,5 € 5, let

F(t,x,j;y,1) = P(X(t) < 2, Z(t) = j|X(0) = y, Z(0) = i). (15)

The next theorem gives the forward differential equations satisfied by the tran-
sition probabilities {F'(¢, x, j;y,1)}. First we need the following notation:

Ft,zy) = [F(t =z 5;9,1)ijes, (16)
D = diag(d(1),d(2),...,d(M)). (17)

We call D the drift matriz.
Theorem 2 The transition probabilities {F(t,xz,j;y,1)} satisfy the equations

OF (t,z;y) N OF (t,;y)
ot Ox

D = F(t,7;9)Q, (18)
with the boundary conditions
F(t,0,5;y,4) =0 if d(j) > 0. (19)
If the buffer capacity is finite the additional boundary conditions are
F(t,B, j;y,1) = mi;(t) if d(j) < 0. (20)

The solution of the differential equations of Theorem 2 is a complicated task.
Hence we turn our attention to the steady-state behavior.

Limiting Behavior. For the finite capacity buffer the (X, Z) process is
always stable. In the case of the infinite capacity buffer, from Theorem 1, it is



clear that the buffer content process is stable, i.e., it has a limiting distribution,

if
d=>Y md(i) <0. (21)
i€S
The above condition makes intuitive sense since d is the net input rate to the
buffer in steady state.

We assume from now on that the above stability condition holds when the
buffer capacity is infinite, and study the distribution of (X, Z). Define

F(Lj):tlirgoF(t,mj;y,i), 0<z<o0,i€S. (22)

Note that we have implicitly assumed that the limiting distribution is indepen-
dent of the initial state. Let

F(z) = [F(x,1), F(x,2), ..., F(z, M)]. (23)
The next theorem gives the equations satisfied by F(z).
Theorem 3 F(z) satisfies

dF(x)
D=F 24
2D = F()Q, (24)
with the boundary conditions
F(0,4) =0 if d(j) > 0. (25)

When the buffer capacity is finite the additional boundary conditions are:
F(B,j) =m; if d(j) <0. (26)

Proof: See Mitra [28, 29].

Now we develop a spectral representation of F(x). Towards this end we try
F(z) = e, (27)

where A is a scalar and ¢ is an M-dimensional row vector. Substituting in
Equation (24) we get
AeM oD = e Q. (28)

This yields
$(AD — Q) = 0. (29)

Now, a non-zero vector ¢ satisfying Equation ( 29) exists if

det(AD — Q) = 0. (30)



The next theorem discusses the solutions (called the eigenvalues) A to the above
equation. See Mitra [29]. We need the following notation:

S, = {ieS:d@) >0}, (31)
So = {ieS:d@) =0}, (32)
S = {ie S:d(i) <0}, (33)
My = |54, (34)
Mo = [Sol, (35)
M. = S| (36)

Theorem 4 Equation (30) has My + M_ solutions (counting multiplicities)
{Ai,i=1,2,.., My +M_}. Whend <0, exactly M, have negative real parts,
1 is zero, and M_ — 1 have positive real parts.

Now consider the infinite buffer case with d < 0. Number the \;’s as follows:
Re()\l) < R@()\g) <..< Re(/\1w+) <
Re()\M++1) = 0< Re()\M++2) <. < Re()\A,4++M7). (37)

We assume that all the eigenvalues {\;,i = 1,2,..., M, + M_} are distinct. Let
¢i = (¢i1, iz, .-, Pins) be the eigenvector corresponding to the eigenvalue )\;
such that the pair (\;, ¢;) satisfies Equation ( 29). (Note: m is the eigenvector
corresponding to eigenvalue 0.) Then the general solution F(z) to Equation
(24) is given by
Mi+M_
F(x) = Z a;e i p; (38)
i=1

where {a;,i = 1,2,..., M} + M_} are scalar unknowns to be determined from
the appropriate boundary conditions. The following theorem shows how this
can be done. See Mitra [29].

Theorem 5 (i) Infinite capacity buffer with d < 0. The a;’s are given by the
solution to

a; = 0 if Re(\;) >0 (39)
apM, +1 = 17 (40)
Mi+1
Z aipi; = 0 ifj €54 . (41)
i=1
(it) Buffer with finite capacity B. The a;’s are given by the solution to;
M_+M,
Z aigi; = 0 ifjesy, (42)
i=1
M_4+M,
> agie? = ifjes_ . (43)
i=1



The condition in Equation (39) arises because the F(x) is a bounded function
of . Note that in both cases there are as many linear equations as there are
unknown aj-s. This completes the spectral representation that we set out to
obtain. We illustrate with an example.

Example 1. Suppose the input is generated by an on-off source. Such
a source stays on for an exp(a) amount of time and stays off for an exp(f3)
amount of time. It generates fluid at rate R when it is on and does not produce
any fluid when it is off. The fluid is removed at a constant rate ¢ from the
buffer.

In this case the environment process Z is a two-state CTMC on state space
S = {1 =on,2 = off} with the following generator matrix

—a
= . 44
o=| 5 (44)
The drift matrix is given by
R—c 0
bo[e o) -

Assume that the buffer capacity is infinite and that RG/(a+ 3) < c for stability.
The two eigenvalues are Ay = 0 and Ay = A = 3/c — a/(R — ¢) < 0. The final
solution is given by

F(z,1) = @ f 5 (1—er), (46)
_ o - ﬂ(R — c)e @
F(z,2) = w1d)  aip A (47)

4 Applications

In this section we consider several applications of the fluid model of the previous
section to high-speed telecommunication networks.

4.1 Congestion Control

A basic preventive congestion control strategy used in high speed networks is
called the leaky bucket mechanism (See Elwalid and Mitra [7], Glin and Guérin
[12], Guérin et al. [13], Butt6 et al. [5]) that operates as follows:

Tokens enter a token pool of size M at rate . Each token gives permission
for transmission of a single bit of information, i. e., 7 is in bits/sec and M is
in bits. The user generating data behaves like an on-off source as described in
Example 1 above. If a token is waiting in the token pool, an arriving bit of data
removes it from the token pool and enters the network. If no tokens are in the
pool the incoming data waits in the data buffer of size B. When the data buffer



is full, the arriving data is lost. Similarly, if the token pool is full, the arriving
tokens are lost.

Now let Y'(t) be the amount of data in the data buffer at time ¢, Z(t) be
the state of the source at time ¢, W(¢) be the amount of tokens in the token
pool at time t. The logic of the leaky bucket implies that the data buffer and
the token pool cannot be simultaneously nonempty, i.e., W(¢)Y (¢t) = 0 for all ¢.
Now define

X(t)=Y(t)—W(t) + M. (48)
It can be seen that {X(t),t > 0} is a fluid process on [0, M + B] driven by a
two-state CTMC as given in Example 1, with drifts d(1) =+ and d(2) = v — R.
Then the limiting distribution of X (¢) can be written down by using the results
in Example 1. The limiting distributions of Y'(¢) and W (¢) can then be obtained
as follows:

PY(t)=0) = P(X(t) <M), (49)
PY(t)>z) = PX@t)>z+M) for 0 <z < B, (50)
P(Y(t)=B) = P(X() =M+ B), (51)
P(W(t)=0) = PX(t)>M), (52)
PW(t)>x) = P(X({t)<M -z for0<z < M, (53)
P(W(t)=M) = P(X(t)=0). (54)

4.2 Multiplexing in High Speed Networks

The two-state source described in Example 1 is a special case of a Markov
Modulated Fluid Source (an MMFS, for short). An MMFS is described by two
parameters (Q,r), where @ is the generator matrix of a CTMC on state space S
and r = [r(4)];cs is a vector. When the CTMC is in state ¢ the source produces
traffic at rate r(¢). In high speed networks several such sources of fluid traffic
are multiplexed onto a single buffer, i.e., the output from several such sources
is superimposed to form a single input stream to the buffer. Such a situation
can be modeled by simply constructing a large environment process Z that
keeps track of the state of each source. However, the size of the state-space of
the composite process undergoes a combinatorial explosion, and it makes the
computation infeasible. In this section we discuss how to exploit the structure
of the composite process to make the computation easier. The results here are
based on Stern and Elwalid [37].

Consider the situation where K MMFS’s are multiplexed onto a single infi-
nite buffer. The k" source has parameters (Qg,7%). Let Zy(t) be the state of
the k" source at time t and assume that {Zx(¢),* > 0} is an irreducible CTMC
on state-space Sg = {1,2, ..., Ny }. The fluid is removed from the buffer at rate
c.

Let X(¢) be the amount of fluid in the buffer at time ¢. Then it can
be seen that {X(¢),t > 0} is a fluid process driven by the CTMC {Z(t) =



(Z1(t), Za(t), ..., ZK (t)),t > 0}. The generator matrix of the Z process is given
by

Q=10 ... ©Qxk, (55)
where @ represents Kronecker sum. The drift matrix is given by
D=Ri®Rs®... 0 R — cl, (56)
where
Ry, = diag(rg), for1<k<K. (57)

Notice that the @ and D matrices are of size Hle Ng, which is a combina-
torially large number. Ry is an Ny by N diagonal matrix whose ii*" element
is 75(¢). Fortunately, the problem of computing the (eigenvalue, eigenvector)
pairs for these matrices can be reduced to K coupled (eigenvalue, eigenvector)
problems involving smaller matrices (Q; and Dy, as explained below.

For 1 < k < K, define

1
Ap(A) = Ry, — XQ'“' (58)
The main result is given in the next theorem.

Theorem 6 A pair (A, ¢) satisfies Equation (29) if and only if the following
equations hold:

gN)de = drAR(N), (59)
K
doaN) = ¢ (60)
h—1

and ¢ = 1 RVP®..QPk. (61)

Example 2. Consider the multiplexing of K identical and independent
on-off sources as described in Example 1. From Anick et al [3] we get

F(z,i) = Z Priexp(—AnT), (62)
n=0
where m = K — [£], ([x] is the largest integer less than or equal to x) and

An,n = 0,1,...,m are the positive roots of the following K + 1 quadratic equa-
tions:

A A2 4+ B A+ Cp =0, n=0,1,..K, (63)
where
4 = RE n-(GEo2, (64)
B, = 2R(a-p)(y —n— Kla+ (5 o). (65)
o = (ot PR~ (5 ) (66)



Furthermore, ¢, is the eigenvector corresponding to A, such that the pair
(¢n, An) satisfies Equation (29) and can be computed easily by using the above
theorem.

4.3 Effective Bandwidths

Now suppose that the network provides assurance that the incoming data will
be dropped with a probability that is bounded above by a given number €. Typ-
ically, € ~ 1078, This Quality of Service (QoS) criterion can be mathematically
expressed as

G(B) = tl;rgo P(X(t) > B) <e. (67)

The following theorem gives (see Elwalid and Mitra [8]) a simple yet powerful
result in the asymptotic region

l
B — o0,e — 0, such that % — z € (—00,0]. (68)

Theorem 7 In the asypmtotic region in Equation (68) the QoS criterion (67)
is satisfied if

K
ng(z) <ec. (69)
k=1

and it is violated if

K
ng(z) > c. (70)
k=1

(Note that the case Zszl gr(%) = c is left as indeterminate bth above thte-
orem. In the case the QoS criterion may or may not be satisfied.) The quantity
gr(2) is called the effective bandwidth (or equivalent capacity) of the k' source,
as it depends upon the Quality of Service parameter z and other source parame-
ters (Qg, k). If the sum of the effective capacities of the sources is less than the
channel capacity the QoS criterion is satisfied for all the multiplexed sources.
This simple additive structure provides a very useful call admission criterion.
Elwalid and Mitra [8] study important properties of the effective bandwidths.
The concept of effective bandwidths has its roots in the theory of large devia-
tions and it has appeared in many other contexts. See Gibbens and Hunt [11],
Guérin et al [13], Kelly [17], Kesidis and Walrand [18] etc.

5 Driving Process: CTMC + White Noise.

The fluid process studied in the previous section has piecewise deterministic
sample-paths. In practice the input and output rates depend deterministically

11



on an external environment, but in addition, there is a small random component,
called jitter, that introduces further randomness. We model this situation by
a fluid process driven by a composite process {(Z(t), W(t)),t > 0} where the
Z component is a CTMC as described in Section 3 (with state space S =
{1,2,..,M} and generator @), and {W(t),¢ > 0} is a standard white noise
process. See Karlin and Taylor [15]. We consider the following drift function:

n(Z(t), W(t) = d(Z(t)) + o*(Z(t)) W (1) (71)

One way to interpret Equations (1) and (2) is the following Ito stochastic dif-
ferential equation (see Harrison [14], and Karlin and Taylor [15]):

dX(t) = d(Z(t)) + 0*(Z(t))dB(t) (72)

where {B(t),t > 0} is the standard Brownian motion. The boundary behavior
at 0 (and at B, if required) needs to be studied carefully. This fluid model
is studied by Asmussen [2] and Kulkarni and Karandikar [26]. Kulkarni and
Karandikar [26] study the spectral representation of the steady state distribu-
tion of the (X, Z) process, while Asmussen [2] studies the (X, Z) process via
change of measure techniques. Here we concentrate on the steady-state results
of Kulkarni and Karandikar [26].

When the buffer is finite, the fluid process is always stable. When it is
infinite, the stability condition remains the same as in Equation (21). Assume
that the process is stable and let F(x,j),j7 € S and F(z) be as defined in
Equations (22) and (23). The equations satisfied by F'(z) are given in the next
theorem. We need the following notation:

(1) 0 0
5 1 0 a?(2) 0 (73)
2| o 0 0
0 0 o?(M)
S, = {ieS:0%@1) >0}, (74)
Soy = {i€S:0%(i)=0,d(i) >0}, (75)
Seo = {i€S:0%(i)=0,d(i) =0}, (76)
So. = {ie€S:0%)=0,d(i) <0} (77)
Theorem 8 F(x) satisfies
d*F(x) dF (z) B
s DI I D+ F(x)Q =0 (78)
with the following boundary conditions:
F(O, 7,) = O, fO?" xS S+ U S()+. (79)

12



If the buffer content, B, is finite it satisfies the following additional boundary
conditions:

F(B,i) =n(i), forie Sy USy_. (80)

As in the previous section we derive a spectral representation for F(z).

Assume that F(z) is as given in Equation (27), and substitute it into Equation
(78). We see that (), ¢) is a valid (eigenvalue, eigenvector) combination if

det(\*~ —AD+Q) = 0, (81)
(N —AD+Q) = 0. (82)

The next theorem describes the nature of the solutions (), @) to the Equations
(81) and (82). We use the following notation: My = |Sy|, Moy = |Sot|, Moo =
‘Soo‘ and MO, = |SO,‘.

Theorem 9 Equation (82) has 2M + My + My solutions (counting multi-
plicities). When d <0, ezxactly My + Mo— — 1 have positive real parts, 1 is zero
and M + Myt have negative real parts.

Now assume that all the eigenvalues {\;,i = 1,2,...,2M, + My + My_}
are distinct and arranged in ascending order of their real parts. Let ¢; be the
eigenvector that satisfies Equation (82) for A = X;. Then the general solution
F(z) to Equation (78) is given by

2M 4 +Mos+Mo_
F(z) = Z a;e g, (83)

i=1

where {a;,i =1,2,...,2M; My, + My_} are scalar unknowns to be determined
from the appropriate boundary conditions. The following theorem is analogous
to Theorem 5.

Theorem 10 (i) Infinite capacity buffer with d < 0. The a;’s are given by the
solution to

a; = 0 Zf R@()\J) >0, (84)
a; = 1 ’Lf )\j = 0, (85)
My+Moy
Y agy; = 0 ifj €8, USoy . (86)
i=1

(it) Buffer with finite capacity B. The a;’s are given by the solution to

2M 4 + Mo+ +Mo—
> aidij = 0 ifje S, USyy , (87)
=1
2M_ +Moy+Mo_
> agged® = ifj€SiUSo-.  (88)
=1
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Example 3. Consider the extreme case of M = 1. Thus the Z process does
not change state and has the generator @ = [0]. Let 0%(1) = ¢ and d(1) = d.
Then the {X(t),¢ > 0} process reduces to a standard Brownian motion on [0, B]
with reflection at 0 and B. Equation (81) becomes

1
502)\2 —dx=0.
Hence we get A\; = 0, Ay = 2d/0?. If B = 0o and d < 0 we get
2d
F(z,1) =1~ exp{— =} for x > 0.
o

If B is finite we get

1 exp{ 24z}

= - o° - for 0 < z < B.
1—emp{§—‘§B} -

F(x,1)

These results match with known distributions. See Harrison [14] and Karlin
and Taylor [15].

It can easily be seen that the results of this section reduce to those of the
previous section if we set 02(i) = 0 for all i € S.

6 Driving Process: Ornstein-Uhlenbeck Process

Consider the multiplexing of K on-off sources of Example 2. Suppose R = R(K)
goes to zero and ¢ = ¢(K) goes to oo as K — oo in such a way that

R(K)VKf(1-f) — (89)
oK) - KfR(K) — e (90)

where f = a/(a + ). Under this asymptotic behavior, the fluid process of
Example 2 converges to the fluid process driven by an Ornstein Uhlenbeck (OU)
process with drift parameter —(a + 3)z and variance parameter 2(a + 3). The
drift function for this limiting fluid process is given by

n(z)=rz—c. (91)

(See Kulkarni and Rolski [27], Simonian [35], Simonian and Virtamo [36].)
This motivates the study of a fluid process driven by a general Ornstein-
Uhlenbeck (OU) process. Thus we assume that {Z(t),t > 0} is an OU process,
i.e., it is a diffusion process on (—oo,00) with drift parameter u(b — z) and
variance parameter o2, where u and o? are non-negative constants. See Karlin
and Taylor [15]. We consider the drift function given in Equation (91) with r =

14



1, without loss of generality. Now define the following transformed processes:

X - 2 (92)
Z’(t) Z(t/:u) —b (93)

o/v2u

Then the transformed process {Z’(t),¢ > 0} is an OU process with drift —z and
variance parameter 2. The process {X'(t),t > 0} is a fluid process driven by Z’
with the following drift function:

n(z") =2 =1, (94)

where v = (¢ — b)/(0/+/21). From now on we omit the primes for clarity and
consider this normalized (X, Z) process with a single parameter ~.

Next we study the stationary distribution of the bivariate process (X, Z).
Theorem 1 implies that the process is stable if v > 0. We assume this to be
the case from now on. Now, in steady-state, the X process has a mass at zero
whenever the Z process is below . Hence the bivariate process has an absolutely
continuous density f(z,z) on S = {(z,2)|z > 0,—00 < z < oo} U {(z, 2)|z =
0,z > 7}, and an absolutely continuous density fo(z) on Sy = {z < v}. The
next theorem gives the equations satisfied by them:

Theorem 11 The densities f(x, z) and fo(z) satisfy the following equations

2 X,z X,z
%z;) + %(zf(a:7 2)) = (z—7) af(@zj ), (z,2) €8, (95)
TRE Lep@) = G010, zes  (99)

where £(0,z) = lim, ¢ f(z, 2).

The solution to the above equations is given in the next theorem. First we need
the following notation:

we = %(\/72 T4k 4 ) k>0, (97)
H(z) = (f1)kexp(z2/2)j—;e$p(fz2/2) E>0 (98)
g(2) = eapl—wt/Dean(—(z — P RDHCE—E) k20, (99)

V2

The Hy/(z) functions defined above are the standard Hermite polynomials. (See
Andrews [1].) With this notation we have
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Theorem 12 (Knessl and Morrison [19]) The densities f(x,z) and fo(2) are
given by:

flz,2) = Z apwrexp(—wrx)gr(z), (x,2) € S (100)

fo(z) = \/1—63719( 2/2) *—Zakgk z € Sp. (101)

The constants ag, k > 0 are given by

o0

ag = exp(y((1/2)) H 5 ,Yexp (=vy/m), (102)
a, 2*’”2% —eap((((1/2) = 1/VE)wr + (ky —1)/2)
[T s oean(w/vim—k/(2m) k> 1, (103)
m=1mz#k m

where v is Euler’s constant and {(-) is Riemann’s zeta function.

One consequence of the above theorem is the following asymptotic result when
z is large:
tlim P(X(t) > z) ~e 7" (104)
— 00

This result has been improved in Kulkarni and Rolski [27] who prove the fol-
lowing bound for all > 0, using change of measure techniques:

lim P(X(t) > z) < e exp(—1*/2). (105)

t—o00

7 State-Dependent Drift

Here we consider a further generalization of the basic model of Section 2: when
the external environment is z and the buffer content is x, the net input to the
buffer is given by 7(z,2). There is no general theory for such a case. The
stability condition for the infinite buffer case can be intuitively seen to be the
following:
limsup E(n(Z,x)) <0, (106)
T—> 00
where Z has the steady state distribution of {Z(t),t > 0}. We describe below
one case for which explicit results are available.
The buffer capacity is B. The given J thresholds are 0 = By < B; <
B, < .. < By = B. The environment process is a CTMC on state-space
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S =1{1,2,..., M} with rate matrix @ and steady state distribution 7. The drift
function is a step function of z as follows:

n(i,x) = d(i,5) for Bj_1 <z < B;,1<j<J. (107)

If B is finite, the system is always stable. If B is infinite, the stability condition
is:

M
> mid(i, J) < 0. (108)
i=1

We assume this to hold if B = oo and study the steady distribution of the
{(X(t), Z(t)),t > 0} process. The results here are based on Elwalid and Mitra
[9].

Let F(z,i) and F(z) be as defined by Equations (22) and (23). For 1 < j <
J, we use the notation

Fi(z,i) = F(z,i) for B;_; <z < Bj,i€ S, (109)
Fi(z) = F(z) for B;_1 <z < Bj, (110)
ST = {i€S:d(i,j) >0}, (112)
S = {ieS:d(i,j) =0}, (113)
§7 = {ieS:d(i,j) <0} (114)
From the results of Section 3 we get the following theorem.
Theorem 13 {Fi(x),1 < j < J} satisfy the following equations:
dFi(z) . .
——2D7 =FY 11
I (2)Q; (115)
with the following boundary conditions:
FY0,4) = 0 ifie S, (116)

FI(Bj—,i) = F*Y(Bj+,i) ifieS NSt 1<j<J—1or
ifie SNt 1<j<J -1 (117)
If the buffer capacity is finite the additional boundary conditions are
F/(Bj—,i) =m; ifi e S7. (118)
Proof: See Elwalid and Mitra [9].

We follow the methodology of Section 3 to obtain the spectral representation
for F'(x) given in the next theorem.
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Theorem 14 Let {()\Z,qf)f), 1<i< M 1<j<J} be the (eigenvalue, eigen-
vector) pairs for the following generalized eigenvalue problems:

#(AD? —Q) =0 1<j<J. (119)

Then F3(x) has the following spectral representation:
Fi(z) =) al¢leh® 1<j<J, (120)
i—1

where the scalars {af, 1<i< M,1<j<J} are chosen to satisfy the boundary
conditions in Equations (116) - (118). If the buffer capacity is infinite the
conditions generated by Equation (118) are replaced by the following:

al] =0 if Re(\) >0, (121)
a] =1 if Re(M\/) = 0. (122)

Equation (117) says that the bivariate process {(X(t), Z(t)),t > 0} has no mass
at (Bj,1) if the drift (in state ¢) on both sides of B; has the same sign. Other-
wise there may be a positive mass at (B;,4). This makes intuitive sense. Note
that there are as many equations as there are unknown af’s. Hence the above
theorem gives a complete solution to the steady-state distribution of the bivari-
ate process.

When 7(z, z) is not a step function in x, one can approximate it by a step
function in x and use the above results. Hence we have an approximate numer-
ical procedure for solving the general problem when the external environment
is a CTMC.

Example 4. Consider an on-off source (see Example 1). Suppose it produces
two types of fluid (at rates R! and R?) when it is on. The type 2 fluid is always
accepted in the buffer if there is space for it. The type 1 fluid is accepted only
if the buffer content is less than a given threshold 0 < B; < B. (Thus the type
2 fluid will suffer fewer losses than the type 1 fluid and hence will have a better
QoS.) The buffer is emptied at a fixed rate c.

This situation fits into the model analyzed above with two-state CTMC as
an external environment and a two-step drift function(i.e., M = 2, J = 2). The
Q matrix is given in Example 1. The two drift matrices are given by

1 2

Dl _ |:R +OR c _OC:|’ (123)
2 _

p? = {ROCOC]. (124)
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For a solution (in the case of an infinite buffer) we refer the reader to Kulkarni
et al [25].

As discussed in Section 4.3, one can develop the concepts of effective band-
widths for multiclass traffic using a shared buffer approach. The models de-
veloped in the current section have been found useful in area of multiplexing
multipriority traffic. Some work in this direction is in Kulkarni et al [25, 24].

8 Further Work

8.1 Other Driving Processes

One possible extension is to consider a semi-Markov process as a driving process
and extend the results of Section 3 to this case. However, the work of Chen and
Yao [6] suggests that the analysis is going to be rather hard.

Another possibility is to extend the results of Section 6 to the case where
the driving process is a bivariate process {(Z1(t), Z2(¢)),t > 0}, with Z(¢t)
being a CTMC and Z3(t) an OU process. The drift function is the same as in
Section 6. Such a driving process is motivated by the multiplexing problems
where a large number of small sources (giving rise to the OU component) are
multipliexed along with a small number of large sources (giving rise to the
CTMC component) onto a single buffer. The solution promises to be extremely
complicated.

8.2 State Dependent Drifts

The results of Section 7 can be extended to other driving processes. For exam-
ple, the driving process can be the CTMC + White Noise as in Section 5 or it
can be the OU process of Section 6. These models are motivated by the buffer
sharing models as explained in Example 4.

Work is currently in progress on a process that satisfies the following sto-
chastic differential equation:

dX(t) = d(Z(t), X(t)) + o*(Z(t), X (t))dB(t) (125)

where {Z(t),t > 0} is a CTMC. As in Section 7 we first concentrate on the case
where d(z,r) and 0?(z, ) are step functions of x.

8.3 Multiclass Fluid Models

This subsection is motivated by the desire to extend the fluid models to the
multiclass case along the same line as in the multipriority queues. The simplest
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case is to assume that there are K classes. When the external environment is
in state z the fluid of class k arrives at rate R(z,k). The buffer is emptied at
a maximum rate of c. Let X (¢) be the amount of fluid of class k in the buffer
at time ¢ and define X (¢t) = (X;(¢), X2(t), ..., Xk (¢)). The aim is to study the
limiting distribution of {(X (¢), Z(t)),t > 0}. Of course we need to specify how
the the K classes are treated. A simple case is the Full-Service-Static-Priority
discipline, under which the highest priority fluid that is in the buffer is always
served first at the maximum possible rate.

Zang [38] has attempted to solve this problem via transform techniques.
The joint distribution of X (¢) is rather messy. Narayanan [31] has developed
the transforms of the marginal steady-state distributions of X (t). Note that
Yi(t) = Zﬁzl X,(t) is a standard fluid model driven by Z(t), assuming class 1
is the highest priority and class K is the lowest priority class. Hence, the steady
state expected values of X (t) are readily available.
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