
P11S, P11A

12.5 mm Modular Panel Potentiometer Cermet (P11S) or Conductive Plastic Elements (P11A)

FEATURES

12.5 mm square single turn panel control

Revision: 19-Jun-2018

Document Number: 51031

www.vishay.com

1 For technical questions, contact: sferpottrimmers@vishay.com

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishav.com/doc?91000

GENERAL SPECIFICATIONS

ELECTRICAL (initial)				
		P11A	P11S	
Resistive element		Conductive plastic	Cermet	
Electrical travel		270° ± 10°	270° ± 10°	
Resistance range ⁽¹⁾	Linear taper	1 k Ω to 1 M Ω	20 Ω to 10 M Ω	
	Non-linear taper	470 Ω to 500 kΩ	100 Ω to 2.2 M Ω	
Tolerance	Standard	± 20 %	± 20 %	
	On request	± 10 %	± 5 % or ± 10 %	
Taper		S1° Elect	S W L 50 % cal travel 270° trical travel switch 238° ical travel 300°	
Circuit diagram		$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} $ } \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} } \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} } \begin{array}{c} \end{array} \\ \end{array} } \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} } \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} } \\ \end{array} \\ \end{array} \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} \\ \end{array} \\ \end{array} } } \\ \end{array} } \\ \end{array} } \\ \end{array} } } } \\ \end{array} } } \\ \end{array} } } } \\ \end{array} } } } } } } } } } }		
	Linear taper	0.5 W at +70 °C	1 W at +70 °C	
	Non-linear taper	0.25 W at +70 °C	0.5 W at +70 °C	
	Multiple assemblies	0.25 W at +70 °C per module	0.5 W at +70 °C per module	
Power rating at 70 °C		Image: Constraint of the second system P11S Linear Taper P11S Non-Linear Taper 0.5 P11S Non-Linear Taper 0.25 P11A Linear Taper 0 0 10 20 <th>50 70 80 90 100 110 120 130 Ambient Temperature (°C)</th>	50 70 80 90 100 110 120 130 Ambient Temperature (°C)	
Temperature coefficient (typical)		± 500 ppm	± 150 ppm	
Limiting element voltage		350 V	350 V	
End resistance (typical)		2 Ω	2 Ω	
Contact resistance variation (typical) Linear taper		1 %	2 % or 3 Ω	
Independent linearity (typical)	Linear taper	± 5 %	± 5 %	
Insulation resistance		10 ⁶ MΩ min.	10 ⁶ MΩ min.	
Dielectric strength		1500 V _{RMS} min.	1500 V _{RMS} min.	
Attenuation		90 dB max./0.05 dB min.	-	
Mechanical endurance		50 000 cycles	50 000 cycles	

Note

⁽¹⁾ Consult Vishay Sfernice for other ohmic values

Vishay Sfernice

MECHANICAL (initial)	
Mechanical travel	300° ± 5°
Operating torque (typical)	
Single and dual assemblies	0.4 Ncm to 1.8 Ncm max. (0.57 ozinch to 2.55 ozinch max.)
Three to seven modules (per module)	0.2 Ncm to 0.3 Ncm max. (0.28 ozinch to 0.42 ozinch max.)
End stop torque (all bushing except G and concentric shaft configuration)	
3 mm, 4 mm, and 1/8" dia. shafts	35 Ncm max. (2.9 lb-inch max.)
6 mm and 1/4" dia. shafts	80 Ncm max. (6.8 lb-inch max.)
End stop torque for bushing G	
All shafts dia.	40 Ncm max. (3.4 lb-inch max.)
End stop torque for concentric shaft configuration	
3 mm and 1/8" dia. shafts	25 Ncm max. (2.1 lb-inch max.)
6 mm and 1/4" dia. shafts	80 Ncm max. (6.8 lb-inch max.)
Tightening torque	
6 mm, 7 mm, and 1/4" dia. bushings	150 Ncm max. (13 lb-inch max.)
10 mm and 3/8" dia. bushings	250 Ncm max. (21 lb-inch max.)
Weight	7 g to 9 g per module (0.25 oz. to 0.32 oz.)

ENVIRONMENTAL						
	P11A	P11S				
Operating temperature range	-55 °C to +125 °C	-55 °C to +125 °C				
Climatic category	55 / 125 / 21	55 / 125 / 56				
Sealing	IP64	IP64				

MARKING
Potentiometer module Vishay logo, SAP code of ohmic value, tolerance in %, variation law, manufacturing date (four digits), "3" for the lead 3, product series (P11S, P11A)
Switch module

Version, manufacturing date (four digits), "c" for common

Version, manufacturing date (four digits)

PACKAGING

• Box

PERFORMANCES							
TEOTO		TYPICAL VALUE AND DRIFTS					
TESTS	CONDITIONS		P11S	P11A			
Electrical endurance	1000 h at rated power	$\Delta R_{\rm T}/R_{\rm T}$	±2%	± 10 %			
Electrical endurance	90'/30' - ambient temp. 70 °C	Contact resistance variation	±4%	± 5 %			
Change of temperature	-55 °C to +125 °C, 5 cycles	$\Delta R_{\rm T}/R_{\rm T}$	± 0.2 %	± 0.5 %			
Denne hant stands state	+40 °C, 93 % relative humidity	$\Delta R_{\rm T}/R_{\rm T}$	±2%	± 5 %			
Damp heat, steady state	P11S: 56 days, P11A: 21 days	Insulation resistance	> 1000 MΩ	> 10 MΩ			
Mechanical endurance	50,000 evolas	$\Delta R_{\rm T}/R_{\rm T}$	± 5 %	±6%			
Mechanical endurance	50 000 cycles	Contact resistance variation	±5%	±4%			
Climatic sequence	Dry heat at +125 °C/damp heat cold -55 °C/damp heat, 5 cycles	$\Delta R_{\mathrm{T}}/R_{\mathrm{T}}$	±1%	-			
Chaoli	50 g's, 11 ms	$\Delta R_{\rm T}/R_{\rm T}$	± 0.2 %	± 0.2 %			
Shock	3 shocks - 3 directions	$\Delta R_{1-2}/R_{1-2}$	± 0.5 %	± 0.5 %			
Vibration	10 Hz to 55 Hz	$\Delta R_{\rm T}/R_{\rm T}$	± 0.2 %	± 0.2 %			
Vibration	0.75 mm or 10 <i>g</i> 's, 6 h	$\Delta V_{1-2}/V_{1-3}$	± 0.5 %	± 0.5 %			

Note

leadIndent module

• Nothing stated herein shall be construed as a guarantee of quality or durability

Revision: 19-Jun-2018

3

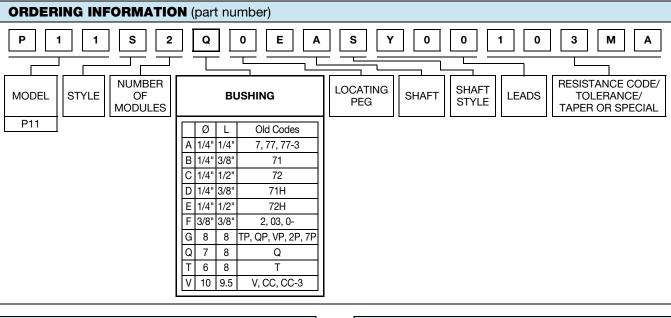
www.vishay.com

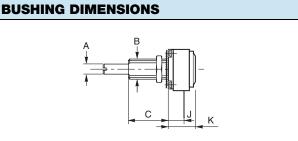
Vishay Sfernice

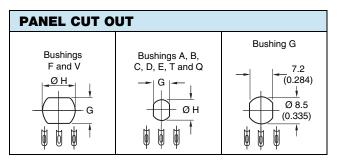
ORDER	ORDERING INFORMATION (part number)							
P 1 1 S 2 Q 0 E A S Y 0 0 1 0 3 M A								
MODEL	STYLE	NUMBER OF MODULES	BUSHING	LOCATING PEG	SHAFT	SHAFT STYLE	LEADS	RESISTANCE CODE/ TOLERANCE/ TAPER OR SPECIAL
P11	S = cermet element A = conductive plastic (audio)	1 2 3 4 5 6 7						

STANDA	STANDARD RESISTANCE ELEMENT DATA											
	P11S CERMET							P11A CONDUCTIVE PLASTIC				
STANDARD	I	LINEAR TAP	PER	NO	N-LINEAR 1	APER		LINEAR TAP	PER	NO	N-LINEAR 1	TAPER
RESISTANCE VALUES				POWER	MAX. WORKING VOLTAGE		POWER	MAX. WORKING VOLTAGE	MAX. CUR. THROUGH WIPER		MAX. WORKING VOLTAGE	MAX. CUR. THROUGH WIPER
Ω	w	v	mA	w	v	mA	w	v	mA	w	v	mA
22	1	4.69	213									
47	1	6.86	146									
50	1	7.07	141									
100	1	10.0	100	0.5	7.07	70.7						
220	1	14.8	67.4	0.5	10.5	47.7						
470	1	21.7	46.1	0.5	15.3	32.6						
500	1	22.4	44.7	0.5	15.8	31.6				0.25	11.2	22.4
1K	1	31.6	31.6	0.5	22.4	22.4	0.5	22.4	22.4	0.25	15.8	15.8
2.2K	1	46.9	21.3	0.5	33.2	15.1	0.5	33.2	15.1	0.25	23.5	10.7
4.7K	1	69	14.5	0.5	48.5	10.3	0.5	48.5	10.3	0.25	34.3	7.29
5K	1	70.7	14.1	0.5	50.0	10.0	0.5	50.0	10.0	0.25	35.4	7.07
10K	1	100	10.0	0.5	70.7	7.07	0.5	70.7	7.07	0.25	50.0	5.00
22K	1	148	6.74	0.5	105	4.77	0.5	105	4.77	0.25	74.2	3.37
47K	1	217	4.61	0.5	153	3.26	0.5	153	3.26	0.25	108	2.31
50K	1	224	4.47	0.5	158	3.16	0.5	158	3.16	0.25	112	2.24
100K	1	316	3.16	0.5	224	2.24	0.5	224	2.24	0.25	158	1.58
220K	0.56	350	1.59	0.5	332	1.51	0.5	332	1.51	0.25	235	1.07
470K	0.26	350	0.75	0.26	349	0.74	0.26	350	0.74	0.25	343	0.73
500K	0.25	350	0.70	0.25	350	0.71	0.25	350	0.71	0.25	350	0.71
1M	0.12	350	0.35	0.12	350	0.34	0.12	350	0.34			
2.2M	0.06	350	0.16	0.056	350	0.16						
4.7M	0.03	350	0.074									
5M	0.02	350	0.070									
10M	0.01	350	0.035									

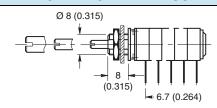
Revision: 19-Jun-2018

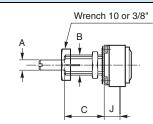

Document Number: 51031




www.vishay.com

P11S, P11A


Vishay Sfernice



PANEL AND SHAFT SEALED: BUSHING G

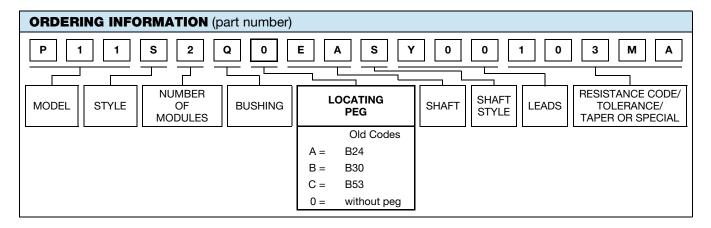
All models have the same bushing Dia. 8 mm - L 8 mm

BUSHING D AND E WITH LOCKING NUT

	DUCHINGS		G	Т	Q	V	Α	В	С	D	E	F
	BUSHINGS		DI	MENSION	S mm (± 0).5)		DIME	INSIONS I	NCHES (±	0.02)	
Α	Shafts	Ø	All Dia.	3	4	6	1/8"	1/8"	1/8"	1/8"	1/8"	1/4"
В	Bushing	Ø	8	6	7	10	1/4"	1/4"	1/4"	1/4"	1/4"	3/8"
С		L	8	8	8	9.5	1/4"	3/8"	1/2"	3/8"	1/2"	3/8"
J	Lead versions X Y		6.7	5	5	7	0.200	0.200	0.200	0.200	0.200	0.278
	K		10.4	9.1	9.1	11.1	0.357	0.357	0.357	0.357	0.357	0.436
G	Panel		7.2	5.2	6.2	8.2	0.197	0.197	0.197	0.197	0.197	0.323
Н	Cutout	Ø	8.5	6.5	7.5	10.5	0.268	0.268	0.268	0.268	0.268	0.394
	Thread			0.75					32 threa	ads/inch		
	Wrench nut		12	8	10	12	0.313	0.313	0.313	0.313	0.313	0.500
	Style									Slotted	Slotted	

Notes

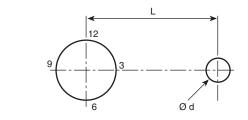
• Hardware supplied in separate bags


Slotted bushing for locking nut option

Revision: 19-Jun-2018

Document Number: 51031

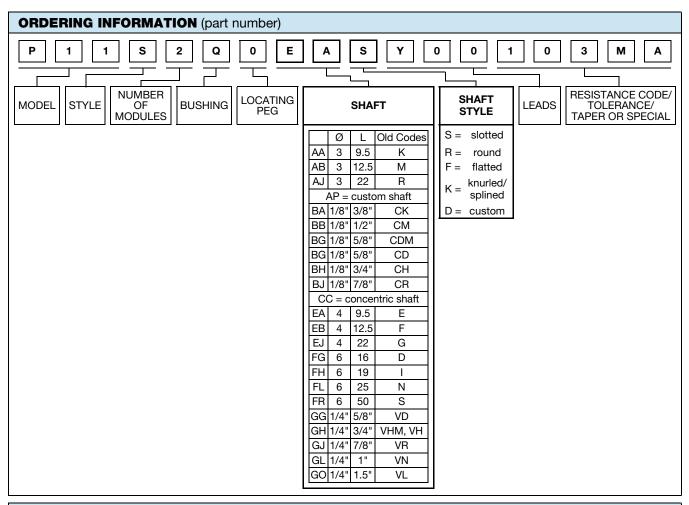
For technical questions, contact: <u>sferpottrimmers@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>



LOCATING PEGS (anti-rotation lug)

The locating peg is provided by a plate mounted on the bushing and positioned by the module sides. Four set positions are available, clock face orientation: 12, 3, 6, 9.

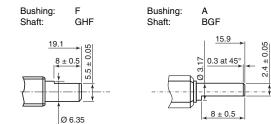
All P11 bushings have a double flat. When panel mounting holes have been punched accordingly, an anti-rotation lug is not necessary.



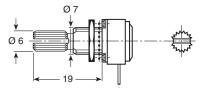
CODE	VERSION	BUSHING A, B, C, D, E, T, Q	BUSHING F, V	EFFECTIVE HIGH PEG
^	Ø d mm	2	2	0.7
A	L mm	6.2	6.2	
в	Ø d mm	2	2	0.7
Б	L mm	7.75	7.75	
С	Ø d mm	-	3.5	1.1
0	L mm	-	13.5	

Locating pegs are supplied in separate bags with nuts and washers

6



SHAFTS in millimeters ± 0.5


The shaft length is always measured from the mounting face. Standard shafts are designed by a 3 letters code (3 digits). Shafts slots are aligned to $\pm 10^{\circ}$ of the wiper position. All standard shafts are slotted except flatted and splined, see exeptions for bushing.

FLATTED SHAFT

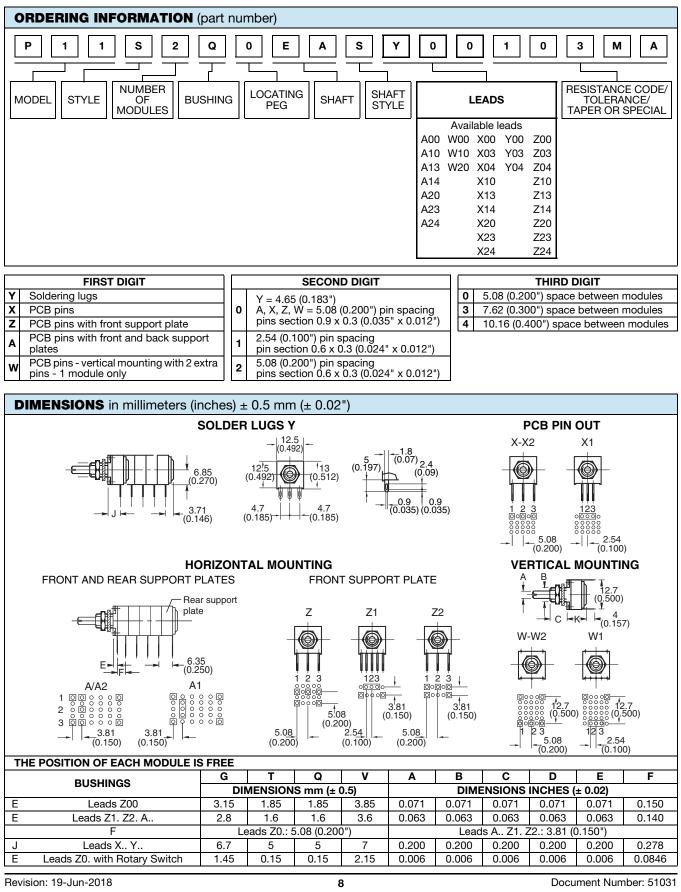
BUSHING: Q

SPLINED SHAFT: FHK

CUSTOM SHAFTS

When special shafts are required - flat, threated ends, special shaft lengths, etc. a drawing is required.

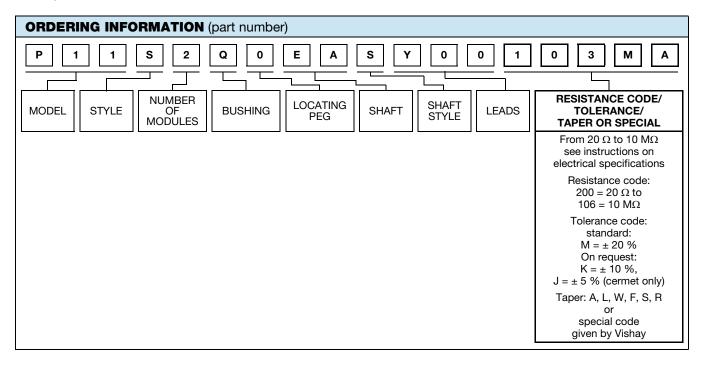
STANDARD COMBINATION OF SHAFT STYLES AND BUSHINGS								
SHAFT DIA.	BUSHING CODE	SHAF	F LENGTH AND	STYLE AVAILAE	BLE IN STANDA	RD (others on re	equest)	
3	Т	AAS	ABS	AJS				
3.17	A	BAS	BBS	BGS	BGF	BHS	BJS	
3.17	В	BBS	BGS	BHS	BJS			
3.17	С	BGS	BHS	BJS				
4	Q	EAS	EBS	EJS	FHK			
6	V	FGS	FLS	FRS				
6.35	F	GGS	GHS	GJS	GLS	GOS	GHF	


Revision: 19-Jun-2018

7

Document Number: 51031

For technical questions, contact: <u>sferpottrimmers@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>



For technical questions, contact: sferpottrimmers@vishay.com

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishav.com/doc?91000

SPECIAL CODES GIVEN BY VISHAY

Option available:

- Custom shaft
- Custom design on request
- Specific linearity
- · Specific interlinerarity
- Specific taper
- Multiple assemblies with various modules

www.vishay.com

P11S, P11A

Vishay Sfernice

P11 OPTION: ROTARY SWITCH MODULES

MODULES: RS ON/OFF SWITCH RSI CHANGEOVER SWITCH

The position of each module is free.

RS and RSI rotary switches are housed in a standard P11 module size 12.7 mm x 12.7 mm x 5.08 mm (0.5" x 0.5" x 0.2"). They have the same terminal styles as the assembled electrical modules.

An assembly can comprise 1 or more switch modules.

Switch actuation is described as seen from the shaft end. D: Means actuation in maximum CCW position F: Means actuation in maximum CW position

The switch actuation travel is 25° with a total mechanical travel of $300^{\circ} \pm 5^{\circ}$ and electrical travel of electrical modules is $238^{\circ} \pm 10^{\circ}$.

Leads finish: Gold plated

RDS SINGLE POLE SWITCH, NORMALLY OPEN

In full CCW position, the contact between 1 and 3 is open. It is made at the beginning of the travel in CW direction.

RSF SINGLE POLE SWITCH, NORMALLY OPEN

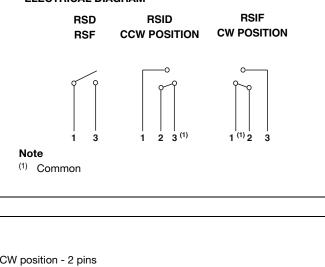
In full CW position, the contact between 1 and 3 is open. It is made at the beginning of the travel in CCW direction.

RSID SINGLE POLE CHANGEOVER

In full CCW position, the contact is made between 3 and 2 and open between 3 and 1. Switch actuation (CW direction) reverses these positions.

RSIF SINGLE POLE CHANGEOVER

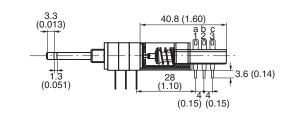
RSID


ORDERING INFORMATION (First order only)

In full CW position, the contact is made between 1 and 2 and open between 1 and 3. Switch actuation (CCW direction) reverses these positions.

- Rotary switches
- Current up to 2 A
- Actuation CW or CCW position
- Sealing IP60

SWITCH SPECIFICATIONS						
Switching pov	62.5 VA ν 15 VA =					
Switching cur	0.25 A 250 V v 0.5 A 30 V =					
Maximum cur	Maximum current through element					
Contact resist	Contact resistance					
Dielectric	Terminal to terminal	1000 V _{RMS}				
strength	Terminal to bushing	2000 V _{RMS}				
Maximum vol	tage operation	250 V v 30 V =				
Insulation resi	stance between contacts	10 ⁶ ΜΩ				
Life at P _{max.}	Life at P _{max.}					
Minimal trave	25°					
Operating ten	nperature	-40 °C to +85 °C				


ELECTRICAL DIAGRAM

RSD	SPST: Single pole, open switch in CCW position - 2 pins
RSF	SPST: Single pole, open switch in CW position - 2 pins
RSID	SPDT: Single pole, changeover switch in CCW position - 3 pins
RSIF	SPDT: Single pole, changeover switch in CW position - 3 pins

Vishay Sfernice

P11 OPTION: PUSH/PUSH OR MOMENTARY/PUSH SWITCH MODULES

www.vishay.com

MODULES: PUSH/PUSH SWITCH RSPP MOMENTARY/PUSH SWITCH RSMP

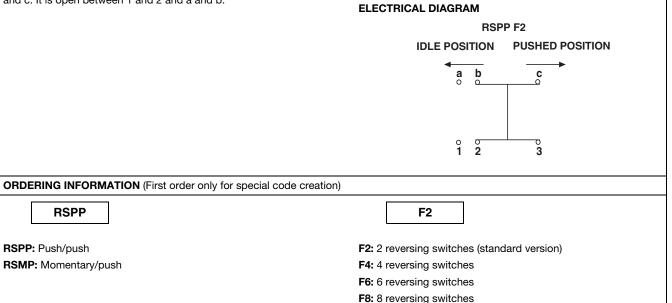
They have to be the last element of potentiometer Options:

- 2 reversing switches F2 4 reversing switches F4
- 6 reversing switches F6 8 reversing switches F8

Not available with panel sealed option.

Number of modules before the switch limited to 3 modules. Length of shaft (FMF) 25 mm maximum.

RSPP F2: PUSH/PUSH SWITCH WITH TWO REVERSING SWITCHES


Idle position: The contact is made between 1 and 2 and a and b. It is open between 2 and 3 and b and c.

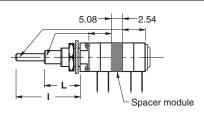
Pushed position: The contact is made between 2 and 3 and b and c. It is open between 1 and 2 and a and b.

٠	Push/push or m	nomentary push
---	----------------	----------------

- Current up to 2 A
- Sealing IP60

SWITCH SPECIFICATIONS					
Switching pov	50 VA v				
Switching cur	0.5 A v				
Maximum cur	2 A				
Contact resist	Contact resistance				
Dielectric	Terminal to terminal	1500 V _{RMS}			
strength	Terminal to bushing	2000 V _{RMS}			
Maximum vol	250 V v				
Insulation resi	10 ³ ΜΩ				
Life at P _{max.}	100 000 actuations				
Minimal trave	3.3 mm to 4.7 mm				
Operating ten	-40 °C to +70 °C				

P11 OPTION: CONCENTRIC SHAFTS


The CC concentric shaft versions allies the total flexibility of the P11 modular system to the advantage of having two separate shafts.

The outer 6 mm or 1/4" or 1/8" dia. shaft drives the modules situated immediately behind the panel, before the spacer module.

The inner 3 mm or 1/8" or 0.07" dia. shaft drives the modules situated after the spacer module.

Spacer is available with a choice of two spacer thickness:

5.08 mm designations or 2.54 mm designation. See dimensional drawing

BUSHING	OUT	TER SHAFT DIAME	TER	INNER SHAFT DIAMETER			
CODE	DIAMETER	LENGTH L	SHAFT STYLE	DIAMETER	LENGTH I	SHAFT STYLE	
V	6	16	R	3	28.5	R	
F	6.35 (1/4")	16	R	3.17 (1/8")	28.5	R	
А	3.17 (1/8")	12.7 (1/2")	R	1.8 (0.07")	22.2 (7/8")	R	

ORDERING INFORMATION (First order only for special code creation)

2.54: Mechanical spacer of 2.54 mm

5.08: Mechanical spacer of 5.08 mm

Customer should define witch modules is driven by each shaft (see example of ordering information at the end of the datasheet)

P11 OPTION: DETENT MODULES

The detents mechanism is housed in a standard P11 module. Up to 21 detent positions available. Count detents as follows: 1 for CCW position, 1 for full CW position, plus the other positions forming equal resistance increments (linear taper) - not equal angles. α = <mark>270</mark>° Available: CVID - CVIF - CVIM CV3 - CV11 - CV21 CVID CVIM CVIF CV $\beta = \alpha + 15^{\circ}$ Mechanical endurance: 10 000 cycles **ORDERING INFORMATION** (First order only for special code creation) CV1M CV1M 1 detent at half travel CV1M with accuracy of center point ± 2 % (all tapers except S) **CV1M J84** CV1D 1 detent at CCW position CV1F 1 detent at CW position CV3 3 detents **CV11** 11 detents **CV21** 21 detents **P11 OPTION: NEUTRAL MODULES "EN"**

 Neutral or screen module is housed in a standard P11 module.

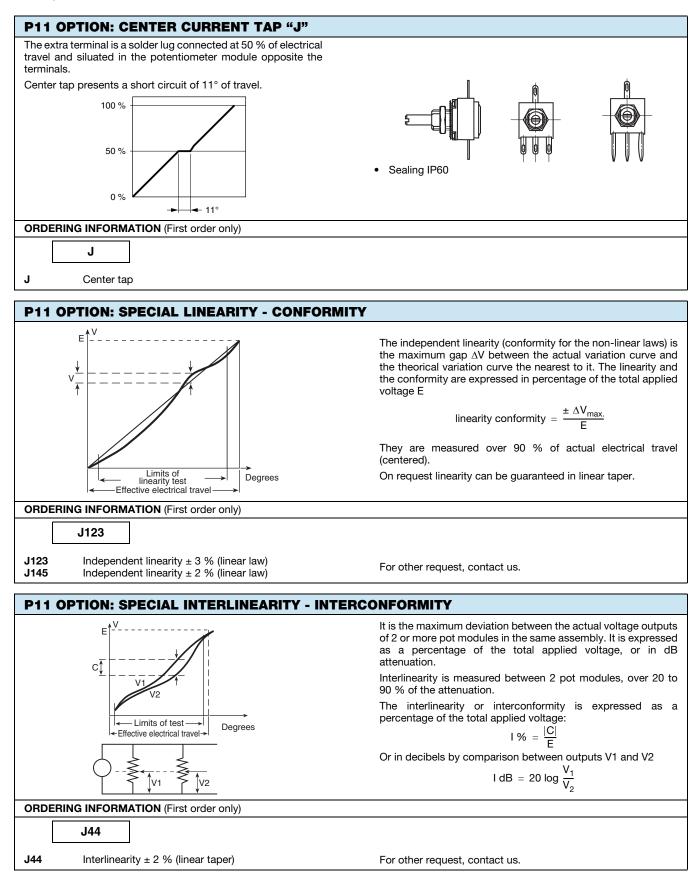
 It is used as a screen between two electrical modules.

 The leads can be connected to ground.

 ORDERING INFORMATION (First order only for special code creation)

 EN

 Neutral module


Revision: 19-Jun-2018

12

Document Number: 51031

Vishay Sfernice

Revision: 19-Jun-2018

13

Document Number: 51031

For technical questions, contact: <u>sferpottrimmers@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

EXAMPLES OF FIRST ORDER INFORMATION								
FIRST EXAMPLE: Triple module (switch is counted as a module)								
P 1 1 S 3 MODEL STYLE 3 MODULES		A P S Y 0 0 WITHOUT CUSTOM SHAFT SOLDER LUGS SPECIAL TO BE LOCATING PEG SLOTTED SOLDER LUGS DEFINED BY VISHAY						
P11 S (Ø 7: L8) LOCATING PEG SLOTTED DEFINED BY VISHAY								
ORDERING INFORMATION:								
PART NUMBER		P11S3Q0APSY00						
SHAFT AND BUSHING	See dra	wing of special shaft attached						
MODULE NO. 1	RSID							
MODULE NO. 2	103 M A	J123						
MODULE NO. 3	503 M A	J						
SECOND EXAMPLE: Concentric sha	aft with 2 modul	les on each shaft						
P 1 1 S 5 MODEL STYLE 5 MODULES	V 0 BUSHING Q (Ø 10: L9.5)	C C R Y 0 0 WITHOUT LOCATING PEG STANDARD CONCENTRIC SHAFT CCR SOLDER LUGS SPECIAL TO BE DEFINED BY VISHAY						
ORDERING INFORMATION:								
PART NUMBER		P11S5V0CCRY00						
SHAFT AND BUSHING								
MODULE NO. 1	CV1M	Driven by outer shaft						
MODULE NO. 2	502 K A	Driven by outer shaft						
MODULE NO. 3	5.08	Mechanical spacer 5.08 mm						
MODULE NO. 4	103 M A	J44 Driven by inner shaft						
MODULE NO. 5	103 M A	J44 Driven by inner shaft						

PART NUMBER DESCRIPTION (used on some Vishay document or label, for information only)												
P11S	2	Q	0	EA	S	Y00	10K	20 %	Α			e3
MODEL	MODULES	BUSHING	LOCATING PEG	SHAFT	SHAFT STYLE	LEADS	VALUE	TOL.	TAPER	SPECIAL	SPECIAL	LEAD (Pb)-FREE

RELATED DOCUMENTS					
APPLICATION NOTES					
Potentiometers and Trimmers	www.vishay.com/doc?51001				
Guidelines for Vishay Sfernice Resistive and Inductive Components	www.vishay.com/doc?52029				

14

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Vishay:

 BR09209401
 BR01180501
 BR01180502
 BR01250102
 BR01280303
 BR04089901
 BR04089902
 BR04130001

 BR05240201
 BR06160501
 BR08030101
 BR06060001
 BR04170101
 BR04200004
 BR11119702
 BR11119701

 BR03-1999-02
 BR11119703
 BR011119703
 BR041200004
 BR11119703