

256 MBit Synchronous Low-Power DRAM Data Sheet Revision Dec. 2002

Features

	-7.5	-8	Units
f _{ck,max}	133	125	MHz
t _{CK3,MIN}	7.5	8	ns
t _{AC3,MAX}	5.4	6	ns
t _{CK2,MIN}	9.5	9.5	ns
t _{AC2,MAX}	6	6	ns

- 16Mbit x16 organisation
- VDD = VDDQ = 3.3 V
- · Fully Synchronous to Positive Clock Edge
- Four Banks controlled by BA0 & BA1
- Programmable CAS Latency: 2, 3
- Programmable Wrap Sequence: Sequential or Interleave

- Automatic and Controlled Precharge Command
- Programmable Burst Length: 1, 2, 4, 8 and full page
- Data Mask for byte control
- Auto Refresh (CBR)
- 8192 Refresh Cycles / 64ms
- Very low Self Refresh current
- Power Down and Clock Suspend Mode
- Random Column Address every CLK (1-N Rule)
- P-TFBGA-54, with 9 x 6 ball array with 3 depopulated rows, 12 x 8 mm²
- P-TSOPII-54 alternate package
- Operating Temperature Range Commerical (0⁰ to 70⁰C)

Description

The HYB 39L256160AC Mobile-RAM is a new generation of low power, four bank Synchronous DRAM's organized as 4 banks x 4Mbit x 16. These synchronous Mobile-RAMs achieve high speed data transfer rates by employing a chip architecture that prefetches multiple bits and then synchronizes the output data to a system clock.

All of the control, address, data input and output circuits are synchronized with the positive edge of an externally supplied clock.

Operating the four memory banks in an interleave fashion allows random access operation to occur at higher rate. A sequential and gapless data rate is possible depending on burst length, \overline{CAS} latency and speed grade of the device.

Auto Refresh (CBR) and Self Refresh operation are supported. The device operates with a single 3.3V $\pm 0.3V$ power supply.

Compared to conventional SDRAM the self-refresh current is further reduced. The Mobile-RAM devices are available in FBGA "chip-size" or TSOPII packages.

INFINEON Technologies AG

1

Infineon

HYB39L256160AC/T 256MBit 3.3V Mobile-RAM

Ordering Information

Туре	Function Code	Package	Description
HYB 39L256160AC-7.5	PC133-333-522	BGA-BOC	133 MHz 4B \times 4M x16 LP-SDRAM
HYB 39L256160AC-8	PC100-222-620	BGA-BOC	100 MHz 4B \times 4M x16 LP-SDRAM
HYB 39L256160AT-7.5	PC133-333-522	P-TSOP-54 (400mil)	133 MHz 4B \times 4M x16 LP-SDRAM
HYB 39L256160AT-8	PC100-222-620	P-TSOP-54 (400mil)	100 MHz 4B \times 4M x16 LP-SDRAM

Pin Definitions and Functions

CLK	Clock Input	DQ	Data Input/Output
CKE	Clock Enable	LDQM, UDQM	Data Mask
CS	Chip Select	V _{DD}	Power (+ 3.3V)
RAS	Row Address Strobe	V _{ss}	Ground
CAS	Column Address Strobe	V _{DDQ}	Power for DQ's (+3.3V)
WE	Write Enable	V _{SSQ}	Ground for DQ's
A0 - A12, A0 - A8	Row Addresses Column Addresses	N.C.	Not connected
BA0, BA1	Bank Select		

2

INFINEON Technologies AG

Infineon technologies

HYB39L256160AC/T 256MBit 3.3V Mobile-RAM

Pin Configuration for BGA devices

1	2	3		7	8	9
V _{SS}	DQ15	$V_{\rm SSQ}$	А	V_{DDQ}	DQ0	V_{DD}
DQ14	DQ13	V_{DDQ}	В	$V_{\rm SSQ}$	DQ2	DQ1
DQ12	DQ11	$V_{\rm SSQ}$	С	V_{DDQ}	DQ4	DQ3
DQ10	DQ9	V_{DDQ}	D	$V_{\rm SSQ}$	DQ6	DQ5
DQ8	NC	V _{SS}	E	V_{DD}	LDQM	DQ7
UDQM	CLK	CKE	F	CAS	RAS	WE
A12	A11	A9	G	BA0	BA1	CS
A8	A7	A6	н	A0	A1	A10
V _{SS}	A5	A4	J	A3	A2	V_{DD}

< Top-view >

3

INFINEON Technologies AG

Pin Configuration for TSOP devices

		161	Mb x 16	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} DQ0 \\ V_{DD0} \\ DQ1 \\ DQ2 \\ V_{SSQ} \\ DQ3 \\ DQ4 \\ V_{DD0} \\ DQ5 \\ DQ6 \\ V_{SSQ} \\ DQ7 \\ V_{DD} \\ LDQM \\ WE \\ CAS \\ RAS \\ CS \\ BA0 \\ BA1 \\ A10 \\ A0 \\ A1 \\ A10 \\ A0 \\ A1 \\ A2 \\ A3 \\ \end{array}$	$ \begin{bmatrix} 1 2 3 4 5 6 7 6 7 8 9 0 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 26 $	54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29	$\begin{array}{c} {\sf DQ15} \\ V_{\rm SSQ} \\ {\sf DQ14} \\ {\sf DQ13} \\ V_{\rm DDQ} \\ {\sf DQ12} \\ {\sf DQ10} \\ {\sf DQ10} \\ {\sf DQ10} \\ {\sf DQ9} \\ V_{\rm DDQ} \\ {\sf DQ8} \\ V_{\rm SS} \\ {\sf N.C.} \\ {\sf UDQM} \\ {\sf CLK} \\ {\sf CKE} \\ {\sf A12} \\ {\sf A11} \\ {\sf A9} \\ {\sf A8} \\ {\sf A7} \\ {\sf A6} \\ {\sf A5} \\ {\sf A4} \\ \end{array}$

TSOPII-54 (10.16 mm x 22.22 mm, 0.8 mm pitch)

SPP04121

INFINEON Technologies AG

4

Functional Block Diagrams

Block Diagram: 16Mb x16 SDRAM (13 / 9 / 2 addressing)

INFINEON Technologies AG

5

Signal Pin Description

Pin	Туре	Signal	Polarity	Function
CLK	Input	Pulse	Positive Edge	The system clock input. All of the SDRAM inputs are sampled on the rising edge of the clock.
CKE	Input	Level	Active High	Activates the CLK signal when high and deactivates the CLK signal when low, thereby initiates either the Power Down mode, Suspend mode, or the Self Refresh mode.
<u>CS</u>	Input	Pulse	Active Low	CS enables the command decoder when low and disables the command decoder when high. When the command decoder is disabled, new commands are ignored but previous operations continue.
RAS CAS WE	Input	Pulse	Active Low	When sampled at the positive rising edge of the clock, \overline{CAS} , \overline{RAS} , and \overline{WE} define the command to be executed by the SDRAM.
A0 - A12	Input	Level	-	During a Bank Activate command cycle, A0 - A12 define the row address (RA0 - RA12) when sampled at the rising clock edge. During a Read or Write command cycle, A0-An define the column address (CA0 - CAn) when sampled at the rising clock edge. CAn depends from the SDRAM organization: 16M x16 SDRAM CA0 - CA8 (Page Length: 512bits) In addition to the column address, A10 (=AP) is used to invoke autoprecharge operation at the end of the burst read or write cycle. If A10 is high, autoprecharge is selected and BA0, BA1 defines the bank to be precharged. If A10 is low, autoprecharge is disabled. During a Precharge command cycle, A10 (=AP) is used in conjunction with BA0 and BA1 to control which bank(s) to precharge. If A10 is high, all four banks will be precharged regardless of the state of BA0 and BA1. If A10 is low, then BA0 and BA1 are used to define which bank to precharge.
BA0, BA1	Input	Level	-	Bank Select Inputs. Selects which bank is to be active.
DQx	Input Output	Level	-	Data Input/Output pins operate in the same manner as on conventional DRAMs.

6

INFINEON Technologies AG

Infineon

HYB39L256160AC/T 256MBit 3.3V Mobile-RAM

Pin	Туре	Signal	Polarity	Function
LDQM UDQM,	Input	Pulse	Active High	The Data Input/Output mask places the DQ buffers in a high impedance state when sampled high. In Read mode, DQM has a latency of two clock cycles and controls the output buffers like an output enable. In Write mode, L/UDQM has a latency of zero and operates as a word mask by allowing input data to be written if it is low but blocks the write operation if DQM is high. LDQM and UDQM controls the lower and upper bytes in x16 SDRAM.
$V_{ m DD}$ $V_{ m SS}$	Supply	-	-	Power and ground for the input buffers and the core logic.
$V_{ m DDQ}$ $V_{ m SSQ}$	Supply	-	-	Isolated power supply and ground for the output buffers to provide improved noise immunity.

7

INFINEON Technologies AG

Operation Definition

All of SDRAM operations are defined by states of control signals CS, RAS, CAS, WE, and xDQM at the positive edge of the clock. The following list shows the truth table for the operation commands.

Operation	Device State	CKEn-1	CKEn	DQM	BA0 BA1	AP= A10	Addr	CS	RAS	CAS	WE
Bank Active	Idle ³	Н	Х	Х	V	V	V	L	L	Н	Н
Bank Precharge	Any	Н	Х	Х	V	L	Х	L	L	Н	L
Precharge All	Any	Н	Х	Х	Х	Н	Х	L	L	Н	L
Write	Active ³	Н	Х	Х	V	L	V	L	Н	L	L
Write with Autoprecharge	Active ³	Н	Х	Х	V	Н	V	L	Н	L	L
Read	Active ³	Н	Х	Х	V	L	V	L	Н	L	Н
Read with Autoprecharge	Active ³	н	Х	Х	V	Н	V	L	Н	L	Н
Mode Register Set ⁴	Idle	Н	Х	Х	V	V	V	L	L	L	L
No Operation	Any	Н	Х	Х	Х	Х	Х	L	Н	Н	Н
Burst Stop	Active	Н	Х	Х	Х	Х	Х	L	Н	Н	L
Device Deselect	Any	Н	Х	Х	Х	Х	Х	Н	Х	Х	Х
Auto Refresh	Idle	Н	Н	Х	Х	Х	Х	L	L	L	Н
Self Refresh Entry	Idle	Н	L	Х	Х	Х	Х	L	L	L	Н
Self Refresh Exit	Self	L	Н	Х	Х	Х	Х	н	Х	Х	Х
	Refresh							L	Н	Н	Х
Clock Suspend Entry	Active ⁵	Н	L	х	Х	Х	Х	Х	Х	х	Х
Clock Suspend Exit	Active	L	Н	Х	Х	Х	Х	Х	Х	Х	Х
Power Down Entry	Idle	Н	L	Х	Х	Х	Х	Н	Х	Х	Х
(Precharge standby or active standby)	Active ⁵							L	Н	н	Н
Power Down Exit	Any	L	Н	Х	Х	Х	Х	н	Х	Х	Х
	Power Down							L	Н	Н	L
Data Write/Output Enable	Active	Н	Х	L	Х	Х	Х	Х	Х	Х	Х
Data Write/Output Disable	Active	н	Х	Н	х	х	х	х	х	х	Х

Notes

V = Valid, x = Don't Care, L = Low Level, H = High Level.
 CKEn signal is input level when commands are provided, CKEn-1 signal is input level one clock before the commands are provided.
 This is the state of the banks designated by BA0, BA1 signals.

Address Input for Mode Set (Mode Register Operation)
 Power Down Mode can not be entered during a burst cycle. When this command is asserted during a burst cycle the device enters Clock Suspend Mode.

INFINEON Technologies AG

Mode Register Table

9

INFINEON Technologies AG

Power-On and Initialization

The default power-on state of the mode register is supplier specific and may be undefined. The following power on and initialization sequence guarantees the device is preconditioned to each users specific needs. Like a conventional DRAM, the Synchronous DRAM must be powered up and initialized in a predefined manner. V_{DD} must be applied before or at the same time as V_{DDQ} to the specified voltage when the input signals are held in the "NOP" or "DESELECT" state. The power on voltage must not exceed V_{DD} +0.3 V on any of the input pins or VDD supplies. The CLK signal must be started at the same time. After power on, an initial pause of 200 µs is required followed by a precharge of all banks using the precharge command. To prevent data contention on the DQ bus during power on, it is required that the DQM and CKE pins be held high during the initial pause to initialize the Mode Register. A minimum of eight Auto Refresh cycles (CBR) are also required. These may be done before or after programming the Mode Register. Failure to follow these steps may lead to unpredictable start-up modes.

Programming the Mode Register

The Mode Register designates the operation mode at the read or write cycle. This register is divided into 4 fields. A Burst Length Field to set the length of the burst, an Addressing Selection bit to program the column access sequence in a burst cycle (interleaved or sequential), and a \overline{CAS} Latency Field to set the access time at clock cycle, an The mode set operation must be done before any activate command after the initial power up. Any content of the mode register can be altered by re-executing the mode set command. All banks must be in precharged state and CKE must be high at least one clock before the mode set <u>operation</u>. After the mode register is set, a Standby or NOP command is required. Low signals of RAS, \overline{CAS} , and WE at the positive edge of the clock activate the mode set operation. Address input data at this timing defines parameters to be set as shown in the previous table. BAO and BA1 have to be set to "0" to enter the Mode Register.

Read and Write Operation

When \overline{RAS} is low and both \overline{CAS} and \overline{WE} are high at the positive edge of the clock, a \overline{RAS} cycle starts. According to address data, a word line of the selected bank is activated and all of sense amplifiers associated to the wordline are set. A \overline{CAS} cycle is triggered by setting \overline{RAS} high and \overline{CAS} low at a clock timing after a necessary delay, t_{RCD} , from the \overline{RAS} timing. WE is used to define either a read ($\overline{WE} = H$) or a write ($\overline{WE} = L$) at this stage.

SDRAM provides a wide variety of fast access modes. In a single \overline{CAS} cycle, serial data read or write operations are allowed at up to a 133MHz data rate. The numbers of serial data bits are the burst length programmed at the mode set operation, i.e., one of 1, 2, 4, 8 and full page. Column addresses are segmented by the burst length and serial data accesses are done within this boundary. The first column address to be accessed is supplied at the \overline{CAS} timing and the subsequent addresses are generated automatically by the programmed burst length and its sequence. For example, in a burst length of 8 with interleave sequence, if the first address is '2', then the rest of the burst sequence is 3, 0, 1, 6, 7, 4, and 5.

Full page burst operation is only possible using the sequential burst type and page length is a function of the I/O organisation and column addressing. Full page burst operation do not self terminate once the burst length has been reached. In other words, unlike burst length of 2, 4 and 8, full page burst continues until it is terminated using another command.

INFINEON Technologies AG

Similar to the page mode of conventional DRAM's, burst read or write accesses on any column address are possible once the RAS cycle latches the sense amplifiers. The maximum t_{RAS} or the refresh interval time limits the number of random column accesses. A new burst access can be done even before the previous burst ends. The interrupt operation at every clock cycle is supported. When the previous burst is interrupted, the remaining addresses are overridden by the new address with the full burst length. An interrupt which accompanies an operation change from a read to a write is possible by exploiting DQM to avoid bus contention.

When two or more banks are activated sequentially, interleaved bank read or write operations are possible. With the programmed burst length, alternate access and precharge operations on two or more banks can realize fast serial data access modes among many different pages. Once two or more banks are activated, column to column interleave operation can be performed between different pages. When the partial array activation is set, data will get lost when self-refresh is used in all non activated banks.

Burst Length	Starting Address (A2 A1 A0)	Sequential Burst Addressing (decimal)						I		leav Idre deci	ssi	ng	t				
2	xx0				0,	1							0,	1			
	xx1				1,	0							1,	0			
4	x00			C), 1,	2, 3	3					(), 1,	2, 3	3		
	x01			1	, 2,	3, ()					1	, 0,	3, 2	2		
	x10			2	2, 3,	0, 1				2, 3, 0, 1							
	x11			З	8, 0,	1, 2	2			3, 2, 1, 0							
8	000	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7
	001	1	2	3	4	5	6	7	0	1	0	3	2	5	4	7	6
	010	2	3	4	5	6	7	0	1	2	3	0	1	6	7	4	5
	011	3	4	5	6	7	0	1	2	3	2	1	0	7	6	5	4
	100	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3
	101	5	6	7	0	1	2	3	4	5	4	7	6	1	0	3	2
	110	6	7	0	1	2	3	4	5	6	7	4	5	2	3	0	1
	111	7	0	1	2	3	4	5	6	7	6	5	4	3	2	1	0
Full Page	nnn	Cn, Cn+1, Cn+2							not	sup	por	ted					

Burst Length and Sequence

Refresh Mode

Mobile-RAM has two refresh modes, Auto Refresh and Self Refresh.

Auto-Refresh

Auto Refresh is similar to the CAS-before-RAS refresh of earlier DRAMs. All banks must be precharged before applying any refresh mode. An on-chip address counter increments the word and the bank addresses. No bank information is required for both refresh modes.

The chip enters the Auto Refresh mode, when \overline{RAS} and \overline{CAS} are held low and CKE and \overline{WE} are held high at a clock edge. The mode restores word line after the refresh and no external precharge

INFINEON Technologies AG

command is necessary. A minimum $t_{\rm RC}$ time is required between two automatic refreshes in a burst refresh mode. The same rule applies to any access command after the automatic refresh operation.

In Auto-Refresh mode all banks are refreshed, independed if the partial activation has been set.

Self-Refresh

The chip has an on-chip timer that is used when the Self Refresh mode is entered. The self-refresh command is asserted with RAS, CAS, and CKE low and WE high at a clock edge. All external control signals including the clock are disabled. Returning CKE to high enables the clock and initiates the refresh exit operation. After the exit command, at least one t_{RC} delay is required prior to any command. After self refresh exit an autorefresh command is recommended due to the chance of an exit just before the next internal refresh is executed.

DQM Function

DQMx has two functions for data I/O read and write operations. During reads, when it turns to "high" at a clock edge, data outputs are disabled and become high impedance after two clock periods (DQM Data Disable Latency t_{DQZ}). It also provides a data mask function for writes. When DQM is activated, the write operation at the next clock is prohibited (DQM Write Mask Latency t_{DQW} = zero clocks).

Suspend Mode

During normal access, CKE is held high enabling the clock. When CKE is low, it freezes the internal clock and extends data read and write operations. One clock delay is required for mode entry and exit (Clock Suspend Latency t_{CSL}).

Power Down

In order to reduce standby power consumption, a power down mode is available. All banks must be precharged before the Mobile-RAM can enter the Power Down mode. Once the Power Down mode is initiated by holding CKE low, all receiver circuits except for CLK and CKE are gated off. The Power Down mode does not perform any refresh operations, therefore the device can't remain in Power Down mode longer than the Refresh period (t_{REF}) of the device. Exit from this mode is performed by taking CKE "high". One clock delay is required for power down mode entry and exit.

Auto Precharge

Two methods are available to precharge Mobile-RAMs. In an automatic precharge mode, the CAS timing accepts one extra address, CA10, to determine whether the chip restores or not after the operation. If CA10 is high when a Read Command is issued, the Read with Auto-Precharge function is initiated. If CA10 is high when a Write Command is issued, the Write with Auto-Precharge function is initiated. The Mobile-RAM automatically enters the precharge operation after $t_{\rm WR}$ (Write recovery time) following the last data in.

INFINEON Technologies AG

12

Precharge Command

There is also a separate precharge command available. When \overrightarrow{RAS} and \overrightarrow{WE} are low and \overrightarrow{CAS} is high at a clock edge, it triggers the precharge operation. Three address bits, BA0, BA1 and A10 are used to define banks as shown in the following list. The precharge command can be imposed one clock before the last data out for \overrightarrow{CAS} latency = 2 and two clocks before the last data out for \overrightarrow{CAS} latency = 3. Writes require a time delay t_{WR} from the last data out to apply the precharge command.

A10	BA0	BA1	
0	0	0	Bank 0
0	0	1	Bank 1
0	1	0	Bank 2
0	1	1	Bank 3
1	х	х	all Banks

Bank Selection by Address Bits

Burst Termination

Once a burst read or write operation has been initiated, there are several methods used to terminate the burst operation prematurely. These methods include using another Read or Write Command to interrupt an existing burst operation, using a Precharge Command to interrupt a burst cycle and close the active bank, or using the Burst Stop Command to terminate the existing burst operation but leave the bank open for future Read or Write Commands to the same page of the active bank. When interrupting a burst with another Read or Write Command care must be taken to avoid DQ contention. The Burst Stop Command, however, has the fewest restrictions making it the easiest method to use when terminating a burst write operation before it has been completed. If a Burst Stop command is issued during a burst write operation, then any residual data from the burst write cycle will be ignored. Data that is presented on the DQ pins before the Burst Stop Command is registered will be written to the memory.

INFINEON Technologies AG

13

Electrical Characteristics

Absolute Maximum Ratings

Operating Case Temperature Range (commercial)	0 to +70°C
Storage Temperature Range	−55 to +150°C
Input/Output Voltage $V_{\rm IN}, V_{\rm OUT}$	-1.0 to $V_{\rm DD}$ + 0.5V
Input/Output Voltage $V_{\rm IN}, V_{\rm OUT}$	1.0 to +4.6V
Power Supply Voltages V_{DD} , V_{DDQ}	–1.0 to +4.6V
Power Dissipation	0.7W
Data out Current (short circuit)	50 mA
Note: Stresses above those listed under "Absolute Maximum Ratings" ma	av cause permanent

ove those listed under "Absolute Maximum Ratings" may cause permanent damage of the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Recommended Operation and DC Characteristics

 $T_{\text{CASE}} = 0$ to 70°C (commercial),

V _{SS} =	0V
-------------------	----

Parameter	Symbol	Limit	/alues	Unit	Notes
		min.	max.		
DRAM Core Supply Voltage	V_{DD}	2.7	3.6	V	
I/O Supply Voltage	V_{DDQ}	2.7	3.6	V	
Input High Voltage (CMD, Addr.)	V_{IH}	2.0	$V_{\rm DDQ}$ +0.3	V	1, 2
Input Low Voltage (CMD, Addr.)	$V_{\rm IL}$	- 0.3	+ 0.3	V	1, 2
Data Input High (Logic 1) Voltage	V_{IH}	2.0	$V_{\rm DDQ}$ +0.3	V	
Data Input Low (Logic 0) Voltage	V_{IL}	- 0.3	+ 0.3	V	
Data Output High (Logic 1) Voltage	V _{OH}	2.4	-	V	$I_{OH} = -0.1 \text{ mA}$
Data Output Low (Logic 0) Voltage	V_{OL}	-	0.2	V	I _{OL} =-0.1mA
Input Leakage Current, any input ($0V < V_{IN} < V_{DDQ}$, all other inputs = $0V$)	I _{I(L)}	- 5	5	μA	
Output Leakage Current (DQ is disabled, 0 V < $V_{OUT} < V_{DD}$)	I _{O(L)}	- 5	5	μA	

Notes

All voltages are referenced to V_{SS}.
 V_{IH} may overshoot to V_{DDQ}+2.0V for pulse width of <4ns with V_{DDQ}=3.3V. V_{IL} may undershoot to -2.0V for pulse width <4.0ns with V_{DDQ}=3.3V. Pulse width measured at 50% points with amplitude measured peak to DC reference.

INFINEON Technologies AG

Capacitance

 $T_{CASE} = 0$ to 70 °C (commercial), f = 1 MHz

Parameter	Symbol	Va	Unit	
		min.	max.	
Input Capacitance (CLK)	C _{I1}	-	3.5	pF
Input Capacitance (A0 - A12, BA0, BA1, RAS, CAS, WE, CS, CKE, DQM)	C _{l2}	-	3.8	pF
Input/Output Capacitance (DQ)	CIO	-	6.0	pF

Operating Currents

 T_{CASE} = 0 to 70 °C (commercial) (Recommended Operating Conditions unless otherwise noted)

Parameter & Test Condition		Symbol	-7.5	-8	Unit	Note	
			max.	max.			
Operating current single bank access cycles	$t_{\rm RC} = t_{\rm RC,MIN}$	I _{DD1}	65	60	mA	3	
Precharge standby current in Power Down Mode	$\overline{\text{CS}} = V_{\text{IH,MIN}},$ $\text{CKE} \le V_{\text{IL,MAX}}$	I _{DD2P}	0.6	0.5	mA	3	
Precharge standby current in Non Power Down Mode	$\overline{\text{CS}} = V_{\text{IH,MIN}},$ CKE $\geq V_{\text{IH,MIN}}$	I _{DD2N}	20	18	mA	3	
No operatin <u>g cu</u> rrent	$CKE \ge V_{IH,MIN}$	$I_{\rm DD3N}$	25	20	mA	3	
$t_{CK} = t_{CK,MIN}, CS = V_{IH,MIN},$ active state (max. 4 banks)	$CKE \leq V_{IL,MAX}$	I _{DD3P}	3.5	3.5	mA	3	
Burst Operating Current Read command cycling		I _{DD4}	80	60	mA	3, 4	
Auto Refresh Current Auto Refresh command cycling	$t_{\rm RC} = t_{\rm RC,MIN}$	I _{DD5}	155	140	mA		
Self refresh current	$t_{\rm CK}$ =infinity	I _{DD6}	475	475	μA		

Notes

3. These parameters depend on the frequency. These values are measured at 133MHz for -7.5 and at 100MHz for -8 parts. Input signals are changed once during t_{CK} . If the devices are operating at a frequency less than the maximum operation frequency, these current values are reduced.

4. These parameters are measured with continuous data stream during read access and all DQ toggling. CL = 3 and BL = 4 is used and the V_{DDQ} current is excluded.

INFINEON Technologies AG

AC Characteristics ^{1, 2} $T_{CASE} = 0$ to 70 °C (commercial), (Recommended Operating Conditions unless otherwise noted)

Parameter	Symbol	Values				Unit	Note
		-7.5		-7.5 -8			
		min.	max.	min.	max.		

Clock and Clock Enable

Clock Cycle Time								-
	CAS Latency = 3	t _{CK3}	7.5	-	8	-	ns	
	CAS Latency = 2	t _{CK2}	9.5	-	9.5	-	ns	
Clock frequency								-
	CAS Latency = 3	f_{CK3}	—	133	-	125	MHz	
	CAS Latency = 2	$f_{\rm CK2}$	-	105	-	105	MHz	
Access Time from Clock								2, 3, 6
	CAS Latency = 3	t _{AC3}	-	5.4	-	6	ns	
	CAS Latency = 2	t _{AC2}	-	6	-	6	ns	
Clock High Pulse Width		t _{CH}	2.5	-	3	-	ns	-
Clock Low Pulse Width		t _{CL}	2.5	-	3	-	ns	-
Transition Time		t _T	0.3	1.2	0.5	1.5	ns	-

Setup and Hold Times

Input Setup Time	t _{IS}	1.5	-	2	_	ns	4
Input Hold Time	t _{IH}	0.8	-	1	-	ns	4
CKE Setup Time	t _{CKS}	1.5	-	2	-	ns	4
CKE Hold Time	t _{CKH}	0.8	-	1	_	ns	4
Mode Register Set-up Time	t _{RSC}	2	-	2	_	CLK	-
Power Down Mode Entry Time	t _{SB}	0	7.5	0	8	ns	-

Common Parameters

Row to Column Delay Time	t _{RCD}	19	-	19	Ι	ns	5
Row Precharge Time	t _{RP}	19	-	19	-	ns	5
Row Active Time	t _{RAS}	45	100k	48	100k	ns	5
Row Cycle Time	t _{RC}	67	-	70	Ι	ns	5
Activate(a) to Activate(b) Command Period	t _{RRD}	15	-	16	Ι	ns	5
CAS(a) to CAS(b) Command Period	t _{CCD}	1	-	1	_	CLK	-

Refresh Cycle

INFINEON Technologies AG

AC Characteristics $(\text{cont'd})^{1, 2}$ $T_{\text{CASE}} = 0 \text{ to } 70 \,^{\circ}\text{C}$ (commercial), (Recommended Operating Conditions unless otherwise noted)

Parameter	Symbol		Va	ues	Unit		Note	
	mi	-7.5		-8		1		
		min.	max.	min.	max.			
Refresh Period (8192 cycles)	t _{REF}	-	64	-	64	ms	-	
Self Refresh Exit Time	t _{SREX}	1	-	1	-	CLK		
Read Cycle								
Data Out Hold Time	t _{OH}	3	-	3	-	ns	2, 5, 6	

Data Out to Low Impedance Time	t _{LZ}	1	-	0	-	ns	-
Data Out to High Impedance Time	t _{HZ}	3	7	3	8	ns	-
DQM Data Out Disable Latency	t _{DQZ}	-	2	-	2	CLK	-

Write Cycle

Write Recovery Time	t _{WR}	14	-	14	-	ns	7
DQM Write Mask Latency	t _{DQW}	0	-	0	-	CLK	-

INFINEON Technologies AG

17

Notes

- 1. For proper power-up see the operation section of this data sheet.
- 2. AC timing tests are referenced to the 0.9V crossover point. The transition time is measured between $V_{\rm IH}$ and $V_{\rm IL}$. All AC measurements assume $t_{\rm T}$ = 1 ns with the AC output load circuit (details will be defined later). Specified $t_{\rm AC}$ and $t_{\rm OH}$ parameters are measured with a 30 pF only, without any resistive termination and with a input signal of 1V/ns edge rate.

- 3. If clock rising time is longer than 1 ns, a time ($t_T/2 0.5$) ns has to be added to this parameter.
- 4. If $t_{\rm T}$ is longer than 1 ns, a time ($t_{\rm T}$ 1) ns has to be added to this parameter.
- 5. These parameter account for the number of clock cycle and depend on the operating frequency of the clock, as follows: the number of clock cycle = specified value of timing period (counted in fractions as a whole

number)

- 6. Access time from clock t_{AC} is 4.6ns for -7.5 components with no termination and 0pF load, Data out hold time t_{OH} is 1.8ns for -7.5 components with no termination and 0pF load.
- 7. The write recovery time of t_{WR} = 14ns cycles allows the use of one clock cycle for the write recovery time when the memory operation frequency is equal or less than 72MHz. For all memory operation frequencies higher than 72MHz two clock cycles for t_{WR} are mandatory. INFINEON recommends to use two clock cycles for the write recovery time in all applications.

18

INFINEON Technologies AG

Timing Diagrams

1. Bank Activate Com	
2. Burst Read Operati	on
Read Interrupted by	
4. Read to Write Interv	val
4	4.1 Read to Write Interval
4	4.2 Minimum Read to Write Interval
4	4.3 Non-Minimum Read to Write Interval
5. Burst Write Operati	on
6. Write and Read Inte	errupt
6	6.1 Write Interrupted by a Write
6	6.2 Write Interrupted by Read
7. Burst Write & Read	with Auto-Precharge
-	7.1 Burst Write with Auto-Precharge
	7.2 Burst Read with Auto-Precharge
8. AC- Parameters	2 Buist Read with Auto-Frecharge
	8.1 AC Parameters for a Write Timing
	8.2 AC Parameters for a Read Timing
	5.2 AC Falameters for a Read Timing
9. Mode Register Set	as and Auto Defreek (CDD)
11. Clock Suspension	ce and Auto Refresh (CBR)
	11. 1 Clock Suspension During Burst Read CAS Latency = 2
	11. 2 Clock Suspension During Burst Read CAS Latency = 3
	11. 3 Clock Suspension During Burst Write CAS Latency = 2
	11. 4 Clock Suspension During Burst Write \overline{CAS} Latency = 3
12. Power Down Mod	•
13. Self Refresh (Ent	, , , , , , , , , , , , , , , , , , ,
14. Auto Refresh (CB	,
	Read (Page within same Bank)
	15.1 \overline{CAS} Latency = 2
	15.2 CAS Latency = 3
	Write (Page within same Bank)
	16.1 \overline{CAS} Latency = 2
	16.2 CAS Latency = 3
	ad (Interleaving Banks) with Precharge
	17.1 \overline{CAS} Latency = 2
	17.2 CAS Latency = 3
	te (Interleaving Banks) with Precharge
	18.1 CAS Latency = 2
	18.2 CAS Latency = 3

19. Precharge Termination of a Burst

INFINEON Technologies AG

1. Bank Activate Command Cycle

2. Burst Read Operation

INFINEON Technologies AG

20

3. Read Interrupted by a Read

4. Read to Write Interval

4.1 Read to Write Interval

INFINEON Technologies AG

4. 2 Minimum Read to Write Interval

INFINEON Technologies AG

5. Burst Write Operation

INFINEON Technologies AG

23

6. Write and Read Interrupt

6.1 Write Interrupted by a Write

6.2 Write Interrupted by a Read

INFINEON Technologies AG

7. Burst Write and Read with Auto Precharge

7.1 Burst Write with Auto-Precharge

7.2 Burst Read with Auto-Precharge

INFINEON Technologies AG

8. AC Parameters

8.1 AC Parameters for a Write Timing

INFINEON Technologies AG

26

8.2 AC Parameters for a Read Timing

INFINEON Technologies AG

27

9. Mode Register Set

INFINEON Technologies AG

28

10. Power on Sequence and Auto Refresh (CBR)

INFINEON Technologies AG

11. Clock Suspension (Using CKE)

11.1 Clock Suspension During Burst Read CAS Latency = 2

INFINEON Technologies AG

30

31

11.2 Clock Suspension During Burst Read CAS Latency = 3

INFINEON Technologies AG

11.3 Clock Suspension During Burst Write CAS Latency = 2

INFINEON Technologies AG

32

11.4 Clock Suspension During Burst Write3

INFINEON Technologies AG

33

12. Power Down Mode and Clock Suspend

INFINEON Technologies AG

34

13. Self Refresh (Entry and Exit)

INFINEON Technologies AG

35

14. Auto Refresh (CBR)

INFINEON Technologies AG

36

15. Random Column Read (Page within same Bank)

15.1 CAS Latency = 2

37

INFINEON Technologies AG

15.2 CAS Latency = 3

INFINEON Technologies AG

38

16. Random Column write (Page within same Bank)

16.1 CAS Latency = 2

39

INFINEON Technologies AG

16.2. CAS Latency = 3

INFINEON Technologies AG

40

17. Random Row Read (Interleaving Banks) with Precharge

17.1 CAS Latency = 2

INFINEON Technologies AG

41

17.2 CAS Latency = 3

INFINEON Technologies AG

42

18. Random Row Write (Interleaving Banks) with Precharge

18.1 CAS Latency = 2

INFINEON Technologies AG

43

18.2 CAS Latency = 3

INFINEON Technologies AG

44

19. Precharge termination of a Burst

19.1 CAS Latency = 2

INFINEON Technologies AG

45

Package Outline 1

INFINEON Technologies AG

46

Package Outline 2

INFINEON Technologies AG

47

Infineon technologies

HYB39L256160AC/T 256MBit 3.3V Mobile-RAM

Change History

Release Date	Change Details
2001-08-23	First Revision
2001-09-24	Introduced max. package height AC timing tests are referenced to the 0.9V crossover point Package outline defined: 8mm x 12mm Adjusted currents
2001-11-23	Availability of TSOP package included Jedec conforming package drawings included t_{RCD} and t_{RP} for -7.5 changed
2002-12-20	header lines: common paragraph format applied (bookmark in PDF) p. 4 and p.6: corrected chip organisation "16Mb x 16" p. 8: Table Operation Definition extended by twp rows "Clock Suspend Entry" and "Clock Suspend Exit" (see mode description on p. 12) p. 8 Note 5 extended by "When this command is asserted during a burst cycle the device enters Clock Suspend Mode." p. 12: "Self Refresh" description improved p. 14: "Absolute Recommended Ratings" for $V_{\rm IN}$, $V_{\rm OUT}$, $V_{\rm DD}$, $V_{\rm DDQ}$ extended p. 14: extended voltage range for $V_{\rm DD}$ and $V_{\rm DDQ} = [2.7V, 3.6V]$ p. 14ff: deleted $V_{\rm DD}$ and $V_{\rm DDQ}$ range above tables and partly replaced by note "(Recommended Operating Conditions unless otherwise noted)" p. 14: $V_{\rm IH,MIN}$ and $V_{\rm OH,MIN}$ redefined p. 14: note 2 clear wording for over- and undershoot as originally intended p. 15: table operating currents updated, symbols changed from $I_{\rm CC}$ to $I_{\rm DD}$, value type "max." added, $I_{\rm DD6}$ named "self refresh current" p. 15: $I_{\rm DD1}$ description ("activate precharge cycles with one bank") updated p. 15: $t_{\rm CK}$ defined by Note 3 or set to infinity p. 15: Note 3 corrected to " at 133 MHz for -7.5" and partly deleted (formula for $I_{\rm DD}(T_{\rm CK})$ incorrect) p. 16: table AC characteristics: clock frequency $f_{\rm CK}$ instead of $t_{\rm CK}$, CL index 2 and 3 for $t_{\rm CK}$ and $t_{\rm AC}$, unit CLK replaced by "used" p. 46: TFBGA package outline moved to end of data sheet p. 46: TFBGA outline now eps format, added "tolerance ± 0.1 mm for length and width" p. 47: TSOP package outline moved to end of data sheet

INFINEON Technologies AG