HALOGEN

FREE

GREEN (5-2008)

www.vishay.com

Vishay Vitramon

Surface Mount Multilayer Ceramic Chip Capacitors for High Temperature Applications

FEATURES

- Specialty: high temperature applications
- High operating temperature dielectric, up to +150 °C
- Maintains capacitance at high temperature for frequency stability
- · Wet build process
- Reliable Noble Metal Electrode (NME) system
- Material categorization: for definitions of compliance please see <u>www.vishav.com/doc?99912</u>

APPLICATIONS

· High temperature modules

ELECTRICAL SPECIFICATIONS

Note

Electrical characteristics at +25 °C unless otherwise specified.

Operating Temperature: -55 °C to +150 °C

Capacitance Range: 330 pF to 220 nF

Voltage Range: 25 V_{DC} to 100 V_{DC}

Temperature Coefficient of Capacitance (TCC):

± 15 % from -55 °C to +150 °C

Dissipation Factor (DF):

25 V ratings: 3.5 % maximum at 1.0 V_{RMS} and 1 kHz > 25 V ratings: 2.5 % maximum at 1.0 V_{RMS} and 1 kHz

Aging Rate: 1 % maximum per decade

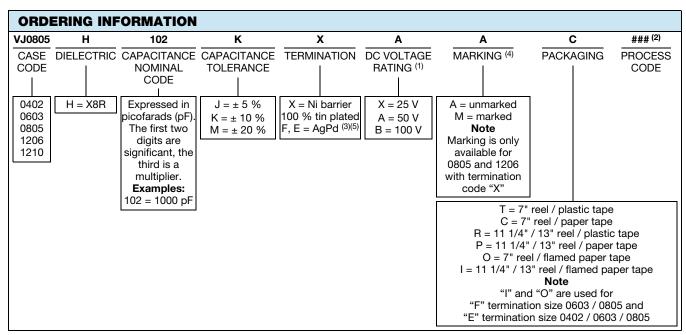
Insulation Resistance (IR):

at +25 °C and rated voltage 100 000 M Ω minimum or 1000 Ω F, whichever is less at +125 °C and rated voltage 10 000 M Ω minimum or 100 Ω F, whichever is less

Dielectric Strength Test:

performed per method 103 of EIA-198-2-E Applied test voltage: \leq 100 V_{DC}-rated: 250 % of rated voltage

Revision: 26-Aug-14 1 Document Number: 45006

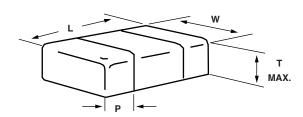

www.vishay.com

Vishay Vitramon

QUICK REFERENCE DATA							
DIELECTRIC	CASE	MAXIMUM VOLTAGE (V)	CAPACITANCE				
			MINIMUM	MAXIMUM			
X8R	0402	100	330 pF	6.8 nF			
	0603	100	470 pF	33 nF			
	0805	100	470 pF	100 nF			
	1206	50	1.0 nF	220 nF			
	1210	50	10 nF	220 nF			

Note

· Detail ratings see "Selection Chart"


Notes

- DC voltage rating should not be exceeded in application. Other application factors may affect the MLCC performance. Consult for questions: mlcc@vishay.com
- (2) Process code may be added with up to three digits, used to control non-standard products and requirements.
- (3) Termination code "E" for conductive epoxy assembly.
- (4) Marking in reference to EIA198, see www.vishay.com/doc?45028
- (5) Termination code "F" not available for 0402, 0603 100 V, 0805 100 V.

ENVIRONMENTAL STATUS							
TERMINATION CODE	RoHS COMPLIANT	VISHAY GREEN					
X	Ni barrier 100 % tin plated matte finish	Yes	Yes				
E	AgPd	Yes	Yes				
F	AgPd	Yes	No				

Vishay Vitramon

DIMENSIONS in inches (millimeters)

CASE	STYLE	LENGTH	WIDTH	MAXIMUM THICKNESS	TERMINATION (P)		
CODE		(L)	(W)	(т)	MINIMUM	MAXIMUM	
0402	VJ0402	0.040 + 0.004/- 0.002 (1.00 + 0.10/- 0.05)	0.020 + 0.004/- 0.002 (0.50 + 0.10/- 0.05)	0.024 (0.60)	0.004 (0.10)	0.016 (0.41)	
0603	VJ0603	0.063 ± 0.006 (1.60 ± 0.15)	0.031 ± 0.006 (0.80 ± 0.15)	0.036 (0.92)	0.012 (0.30)	0.018 (0.46)	
0805	VJ0805	0.079 ± 0.008 (2.00 ± 0.20)	0.049 ± 0.008 (1.25 ± 0.20)	0.057 (1.45)	0.010 (0.25)	0.028 (0.71)	
1206	VJ1206	0.126 ± 0.010 (3.20 ± 0.25)	0.063 ± 0.010 (1.60 ± 0.25)	0.067 (1.70)	0.010 (0.25)	0.028 (0.71)	
1210	VJ1210	0.126 ± 0.010 (3.20 ± 0.25)	0.098 ± 0.010 (2.50 ± 0.25)	0.067 (1.70)	0.010 (0.25)	0.028 (0.71)	

DIELECTRIC	<u> </u>	T						X8R						
STYLE	,	VJ0402			VJ0603		VJ0805			VJ1206 ⁽¹⁾		VJ1210 ⁽¹⁾		
CASE CODE			0402			0603			0805		1206		1210	
VOLTAGE (V		25	50	100	25	50	100	25	50 100		25 50		25	50
VOLTAGE (VDC)		X	A	В	X	A	В	X	A	В	X	A	X	A
CAP. CODE	CAP.	1												
331	330 pF	••	••	••										
391	390 pF	••	••	••										
471	470 pF	••	••	••		••	••	••	••	••				
561	560 pF	••	••	••		••	••	••	••	••				
681	680 pF	••	••	••	••	••	••	••	••	••				
821	820 pF	••	••	••	••	••	••	••	••	••				
102	1.0 nF	••	••	••	••	••	••	••	••	••	•	•		
122	1.2 nF	••	••	••	••	••	••	••	••	••	•	•		
152	1.5 nF	••	••		••	••	••	••	••	••	•	•		
182	1.8 nF	••	••		••	••	••	••	••	••	•	•		
222	2.2 nF	••	••		••	••	••	••	••	••	•	•		
272	2.7 nF	••			••	••	••	••	••	••	•	•		
332	3.3 nF	••			••	••	••	••	••	••	•	•		
392	3.9 nF	••			••	••	••	••	••	••	•	•		
472	4.7 nF	••			••	••	••	••	••	••	•	•		
562	5.6 nF	••			••	••		••	••	••	•	•		
682	6.8 nF	••			••	••		••	••	••	•	•		
822	8.2 nF				••	••		••	••	••	•	•		
103	10 nF				••	••		••	••	••	•	•	•	•
123	12 nF				••	••		••	••	••	•	•	•	•
153	15 nF				••	••		••	••	••	•	•	•	•
183	18 nF				••	••		••	••	••	•	•	•	•
223	22 nF				••			••	••	•	•	•	•	•
273	27 nF				••			••	•	•	•	•	•	•
333	33 nF				••			••	•		•	•	•	•
393	39 nF							••	•		•	•	•	•
473	47 nF							•	•		•	•	•	•
563	56 nF							•	•		•	•	•	•
683	68 nF							•			•	•	•	•
823	82 nF							•			•	•	•	•
104	100 nF							•			•	•	•	•
124	120 nF										•	•	•	•
154	150 nF										•		•	•
184	180 nF										•		•	
224	220 nF										•		•	
274	270 nF													
334	330 nF													
394	390 nF													

Notes

RoHS-compliant

X8R PACKAGING QUANTITIES (1)									
7" REEL QUANTITIES 11 1/4" AND 13" REEL Q									
CASE CODE	TAPE SIZE	PACKA	SING CODE	PACKAGING CODE					
		"C" / "O"	"T"	"P" / "I"	"R"				
0402	8 mm	5000	n/a	10 000	n/a				
0603	8 mm	4000	n/a	10 000	n/a				
0805 ⁽²⁾	8 mm	3000	3000	10 000	10 000				
1206 ⁽²⁾	8 mm	n/a	2500 / 3000	10 000	9000 / 10 000				
1210 ⁽²⁾	8 mm	n/a	2000 / 2500 / 3000	10 000	9000 / 10 000				

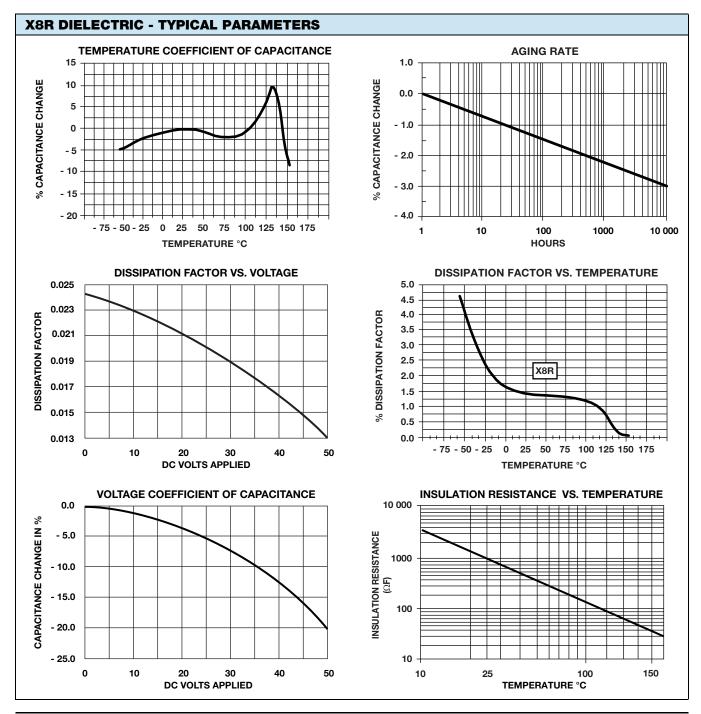
Notes

⁽¹⁾ See soldering recommendations within this data book, or visit www.vishay.com/doc?45034

[•] Plastic tape, •• Paper tape

⁽¹⁾ Reference: EIA standard RS481 - "Taping of Surface Mount Components for Automatic Placement"

 $^{^{(2)}}$ Packaging "C" / "P" / "O" / "I" and "T" / "R" or lower quantities can depend from product thickness



STORAGE AND HANDLING CONDITIONS

- (1) Store the components at 5 $^{\circ}$ C to 40 $^{\circ}$ C ambient temperature and \leq 70 % relative humidity conditions.
- (2) The product is recommended to be used within a time-frame of 2 years after shipment. Check solderability in case extended shelf life beyond the expiry date is needed.

Precautions:

- a. Do not store products in an environment containing corrosive elements, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. This may cause corrosion or oxidization of the terminations, which can easily lead to poor soldering.
- b. Store products on the shelf and avoid exposure to moisture or dust.
- c. Do not expose products to excessive shock, vibration, direct sunlight and so on.

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Revision: 13-Jun-16 1 Document Number: 91000