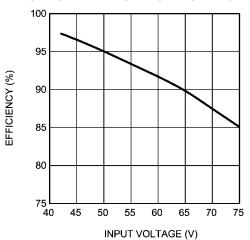
LM3409HV Evaluation Board

National Semiconductor Application Note 1953 James Patterson November 20, 2009

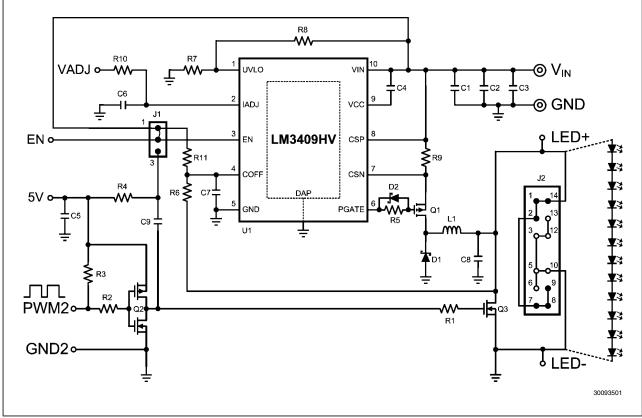
Introduction


This evaluation board showcases the LM3409HV PFET controller for a buck current regulator. It is designed to drive 12 LEDs (V $_{\rm O}$ = 42V) at a maximum average LED current (I $_{\rm LED}$ = 1.5A) from a DC input voltage (V $_{\rm IN}$ = 48V). The switching frequency (f $_{\rm SW}$ = 400 kHz) is targeted for the nominal operating point, however f $_{\rm SW}$ varies across the entire operating range. The circuit can accept an input voltage of 6V-75V. However, if the input voltage drops below the regulated LED string voltage, the converter goes into dropout and V $_{\rm O}$ = V $_{\rm IN}$ ideally.

The PCB is made using 4 layers of 2 oz. copper with FR4 dieletric. The evaluation board showcases all features of the LM3409HV including analog dimming using the IADJ pin and internal PWM dimming using the EN pin. High frequency external parallel FET shunt PWM dimming can also be evaluated. The board has a header (J1) with a removable jumper, which is used to select the PWM dimming method.

The evaluation board has a right angle connector (J2) which can mate with an external LED load board allowing for the LEDs to be mounted close to the driver. This reduces potential ringing when there is no output capacitor. Alternatively, the LED+ and LED- turrets can be used to connect the LED load.

This board can be easily modified to demonstrate other operating points as shown in the *Alternate Designs* section. The LM3409/09HV datasheet *Design Procedure* can be used to design for any set of specifications.


EFFICIENCY WITH 12 SERIES LEDS AT 1.5A

30093549

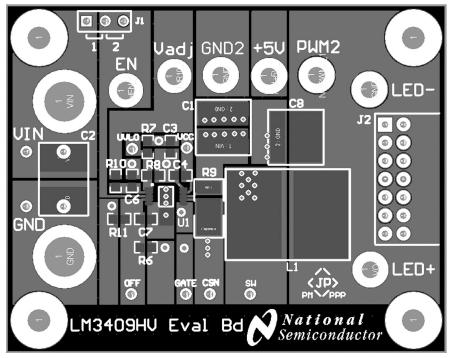
Since the board contains a buck regulator designed for 48V input, the efficiency is very high at input voltages near or less than 48V. The switching frequency increases as input voltage increases, yielding lower efficiency at higher input voltages. Note that increasing the off-time resistor (R6) will increase the efficiency at high input voltage.

Schematic

© 2009 National Semiconductor Corporation

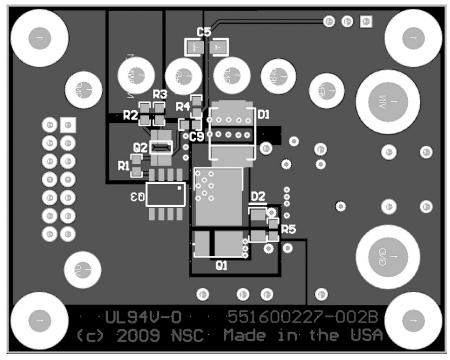
300935

Pin Descriptions


Pin(s)	Name	Description	Application Information
1	UVLO	Input under-voltage lockout	Connect to a resistor divider from V _{IN} and GND. Turn-on threshold is
			1.24V and hysteresis for turn-off is provided by a 22µA current source.
2	IADJ	Analog LED current adjust	Apply a voltage between 0 - 1.24V, connect a resistor to GND, or leave open to set the current sense threshold voltage.
3	EN	Logic level enable / PWM dimming	Apply a voltage >1.74V to enable device, a PWM signal to dim, or a voltage <0.5V for low power shutdown.
4	COFF	Off-time programming	Connect resistor to V _O , and capacitor to GND to set the off-time.
5	GND	Ground	Connect to the system ground.
6	PGATE	Gate drive	Connect to the gate of the external PFET.
7	CSN	Negative current sense	Connect to the negative side of the sense resistor.
8	CSP	Positive current sense	Connect to the positive side of the sense resistor (V _{IN}).
9	VCC	V _{IN} - referenced	Connect at least a $1\mu F$ ceramic capacitor to V_{IN} . The regulator provides
		linear regulator output	power for the PFET drive.
10	VIN	Input voltage	Connect to the input voltage.
DAP	DAP	Thermal pad on bottom of IC	Connect to pin 5 (GND). Place 4-6 vias from DAP to bottom GND plane.

Bill of Materials

Qty	Part ID	Part Value	Manufacturer	Part Number
1	U1	Buck controller	NSC	LM3409HVMY
2	C1, C2	2.2µF X7R 10% 100V	MURATA	GRM43ER72A225KA01L
1	C3	0.1µF X7R 10% 100V	MURATA	GRM188R72A104KA35D
1	C4	1.0µF X7R 10% 16V	TDK	C1608X7R1C105K
1	C5	0.1μF X7R 10% 50V	MURATA	GRM319R71H104KA01D
1	C6	0.1µF X7R 10% 50V	MURATA	GCM188R71H104KA57D
1	C7	470pF X7R 10% 50V	TDK	C1608X7R1H471K
3	C8, D2, R11	No Load		
1	C9	2200pF X7R 10% 50V	MURATA	GRM188R71H222KA01D
1	Q1	PMOS 100V 3.8A	ZETEX	ZXMP10A18KTC
1	Q2	CMOS 30V 2A	FAIRCHILD	FDC6333C
1	Q3	NMOS 100V 7.5A	FAIRCHILD	FDS3672
1	D1	Schottky 100V 3A	VISHAY	SS3H10-E3/57T
1	L1	33 μH 20% 3.2A	TDK	SLF12575T-330M3R2
2	R1, R2	1Ω 1%	VISHAY	CRCW06031R00FNEA
1	R3	10kΩ 1%	VISHAY	CRCW060310K0FKEA
1	R4	100Ω 1%	VISHAY	CRCW0603100RFKEA
1	R5	0Ω 1%	VISHAY	CRCW06030000Z0EA
1	R6	16.5kΩ 1%	VISHAY	CRCW060316K5FKEA
1	R7	6.98kΩ 1%	VISHAY	CRCW06036K98FKEA
1	R8	49.9kΩ 1%	VISHAY	CRCW060349K9FKEA
1	R9	0.15Ω 1% 1W	VISHAY	WSL2512R1500FEA
1	R10	1kΩ 1%	VISHAY	CRCW06031K00FKEA
1	J1	3 pin header	MOLEX	22-28-4033
1	J2	2x7 pin RA shrouded	SAMTEC	TSSH-107-01-S-D-RA
2	VIN, GND	banana jack	KEYSTONE	575-8
7	EN, Vadj, +5V, GND2, PWM2, LED+, LED-	turret	KEYSTONE	1502-2


PCB Layout

The 2 inner planes are GND and $V_{\rm IN}$.

Top Layer

30093540

Bottom Layer

30093541

Design Procedure

SPECIFICATIONS

$$V_{IN} = 48V; V_{IN-MAX} = 75V$$

$$V_0 = 42V$$

$$f_{SW} = 400kHz$$

$$I_{LED} = 1.5A$$

$$\Delta i_{LED-PP} = \Delta i_{L-PP} = 300 \text{mA}$$

$$\Delta v_{IN-PP} = 1.44V$$

$$V_{\text{TURN-ON}} = 10V; V_{\text{HYS}} = 1.1V$$

$$\eta = 0.97$$

1. NOMINAL SWITCHING FREQUENCY

Assume C7 = 470pF and η = 0.97. Solve for R6:

R6 =
$$\frac{-\left(1 - \frac{V_{O}}{\eta x V_{IN}}\right)}{(C7 + 20 \text{ pF}) x f_{SW} x \ln\left(1 - \frac{1.24V}{V_{O}}\right)}$$

$$R6 = \frac{-\left(1 - \frac{42V}{0.97 \times 48V}\right)}{490 \text{ pF} \times 400 \text{ kHz} \times \ln\left(1 - \frac{1.24V}{42V}\right)} = 16.7 \text{ k}\Omega$$

The closest 1% tolerance resistor is 16.5 $k\Omega$ therefore the actual t_{OFF} and target f_{SW} are:

$$t_{OFF} = -(C7 + 20pF) \times R6 \times ln \left(1 - \frac{1.24V}{V_O}\right)$$

 $t_{OFF} = -490 pF \times 16.5 k\Omega \times ln \left(1 - \frac{1.24V}{42V}\right) = 242 ns$

$$f_{SW} = \frac{1 - \left(\frac{V_O}{\eta \times V_{IN}}\right)}{t_{OFF}} = \frac{1 - \left(\frac{42V}{0.97 \times 48V}\right)}{242 \text{ ns}} = 404 \text{ kHz}$$

The chosen components from step 1 are:

$$C7 = 470 \text{ pF}$$

 $R6 = 16.5 \text{ k}\Omega$

2. INDUCTOR RIPPLE CURRENT

Solve for L1:

$$L1 = \frac{V_0 \times t_{OFF}}{\Delta i_{L-PP}} = \frac{42V \times 242 \text{ ns}}{300 \text{ mA}} = 33.9 \,\mu\text{H}$$

The closest standard inductor value is 33 μH therefore the actual $\Delta i_{L\text{-}PP}$ is:

$$\Delta i_{\text{L-PP}} = \frac{V_{\text{O}} \times t_{\text{OFF}}}{L1} = \frac{42V \times 242 \, ns}{33 \, \mu H} = 308 \, mA$$

The chosen component from step 2 is:

3. AVERAGE LED CURRENT

Determine I_{L-MAX}:

$$I_{L-MAX} = I_{LED} + \frac{\Delta i_{L-PP}}{2} = 1.5A + \frac{308 \text{ mA}}{2} = 1.65A$$

Assume $V_{ADJ} = 1.24V$ and solve for R9:

$$R9 = \frac{V_{ADJ}}{5 \, x \, I_{L-MAX}} = \frac{1.24 V}{5 \, x \, 1.65 A} = 0.15 \, \Omega$$

The closest 1% tolerance resistor is 0.15 Ω therefore the I_{LED} is:

$$I_{LED} = \frac{V_{ADJ}}{5 \times R9} - \frac{\Delta I_{L-PP}}{2}$$

$$I_{LED} = \frac{1.24V}{5 \times 0.15 \Omega} - \frac{308 \text{ mA}}{2} = 1.5 \text{ A}$$

The chosen component from step 3 is:

$$R9 = 0.15\Omega$$

4. OUTPUT CAPACITANCE

No output capacitance is necessary.

5. INPUT CAPACITANCE

Determine t_{ON}:

$$t_{ON} = \frac{1}{f_{SW}} - t_{OFF} = \frac{1}{404 \text{ kHz}} - 242 \text{ ns} = 2.23 \,\mu\text{s}$$

Solve for C_{IN-MIN}:

$$C_{\text{IN-MIN}} = \frac{I_{\text{LED}} \times t_{\text{ON}}}{\Delta V_{\text{IN-PR}}} = \frac{1.5 \text{ A} \times 2.23 \mu \text{s}}{1.44 \text{V}} = 2.32 \,\mu\text{F}$$

Choose C_{IN}:

$$C_{IN} = C_{IN-MIN} \times 1.75 = 4.07 \,\mu\text{F}$$

Determine I_{IN-RMS}:

$$I_{\text{IN-RMS}} = I_{\text{LED}} \times f_{\text{SW}} \times \sqrt{t_{\text{ON}} \times t_{\text{OFF}}}$$

$$I_{IN-RMS} = 1.5 \text{ A x } 404 \text{ kHz x} \sqrt{2.32 \,\mu\text{s x } 242 \,\text{ns}} = 446 \,\text{mA}$$

The chosen components from step 5 are:

6. P-CHANNEL MOSFET

Determine minimum Q1 voltage rating and current rating:

$$V_{T-MAX} = V_{IN-MAX} = 75V$$

$$I_T = DxI_{LED} = \frac{V_OxI_{LED}}{V_{IN}x\eta} = \frac{42Vx1.5A}{48Vx0.97} = 1.35A$$

A 100V 3.8A PFET is chosen with $R_{DS\text{-}ON}$ = 190m Ω and Q_g = 20nC. Determine $I_{T\text{-}RMS}$ and P_T :

$$I_{T-RMS} = I_{LED} \times \sqrt{D \times \left(1 + \frac{1}{12} \times \left(\frac{\Delta i_{L-PP}}{I_{LED}}\right)^{2}\right)}$$

$$I_{T-RMS} = 1.5A \times \sqrt{\frac{42V}{48V \times 0.97} \times \left(1 + \frac{1}{12} \times \left(\frac{308mA}{1.5A}\right)^{2}\right)}$$

$$I_{T-RMS} = 1.43A$$

$$P_T = I_{T-RMS}^2 x R_{DSON} = 1.43 A^2 x 190 m\Omega = 387 mW$$

The chosen component from step 6 is:

$$Q1 \rightarrow 3.8A,100V, DPAK$$

7. RE-CIRCULATING DIODE

Determine minimum D1 voltage rating and current rating:

$$V_{D-MAX} = V_{IN-MAX} = 75V$$

$$I_{D} = (1-D) \times I_{LED} = \left(1 - \frac{V_{O}}{V_{IN} \times \eta}\right) \times I_{LED}$$

$$I_{D} = \left(1 - \frac{42V}{48V \times 0.97}\right) \times 1.5 \text{ A} = 147 \text{ mA}$$

A 100V 3A diode is chosen with $V_D = 750$ mV. Determine P_D :

$$P_D = I_D \times V_D = 147 \text{ mA} \times 750 \text{ mV} = 110 \text{ mW}$$

The chosen component from step 7 is:

8. INPUT UNDER-VOLTAGE LOCKOUT (UVLO)

Solve for R8:

$$R8 = \frac{V_{HYS}}{22 \,\mu A} = \frac{1.1 V}{22 \,\mu A} = 50 \,k\Omega$$

The closest 1% tolerance resistor is 49.9 k Ω so V_{HYS} is:

$$V_{HYS} = R8 \times 22 \,\mu A = 49.9 \,k\Omega \times 22 \,\mu A = 1.1 V$$

Solve for R7:

$$R7 = \frac{1.24V \times R8}{V_{\text{TURN-ON}} - 1.24V} = \frac{1.24V \times 49.9 \,\text{k}\Omega}{10V - 1.24V} = 7.06 \,\text{k}\Omega$$

The closest 1% tolerance resistor is 6.98 $k\Omega$ so $V_{TURN\text{-}ON}$ is:

$$V_{\text{TURN-ON}} = \frac{1.24 \text{V x (R7+R8)}}{\text{R7}}$$

$$V_{\text{TURN-ON}} = \frac{1.24 \text{V x (6.98 k}\Omega + 49.9 k}\Omega)}{6.98 k}\Omega = 10.1 \text{V}$$

The chosen components from step 8 are:

$$R7 = 6.98 \,\mathrm{k}\Omega$$
$$R8 = 49.9 \,\mathrm{k}\Omega$$

9. IADJ CONNECTION METHOD

The IADJ pin controls the high-side current sense threshold in three ways outlined in the datasheet. The LM3409HV evaluation board allows for all three methods to be evaluated using C6, R10, and the VADJ terminal.

Method #1: If the VADJ terminal is not connected to the power supply, then the internal Zener diode biases the pin to 1.24V and the current sense threshold is nominally 248mV.

Method #2: Applying an external voltage to the VADJ terminal between 0 and 1.24V linearly scales the current sense threshold between 0 and 248mV nominally. It can be necessary to have an RC filter when using an external power supply in order to remove any high frequency noise or oscillations created by the power supply and the connecting cables. The filter is chosen by assuming a standard value of C6 = 0.1 μ F and solving for a cut-off frequency $f_{\text{C}} < 2 \text{kHz}$:

$$R10 > \frac{1}{2\pi \, x \, f_C \, x \, C6} = \frac{1}{2\pi \, x \, 2 \, kHz \, x \, 0.1 \mu F} = 796 \Omega$$

Since an exact f_C is not critical, a standard value of $1k\Omega$ is used. The $\emph{Typical Waveforms}$ section shows a typical LED current waveform when analog dimming using an external voltage source.

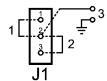
Method #3: (This method requires modification of the received evaluation board). The internal $5\mu A$ current source can be used to bias the voltage across an external resistor to ground (R_{EXT}) across C6 on the evaluation board. The resistor is sized knowing the desired average LED current I_{LED} (must be < 1.5A which is default using method #1):

$$R_{EXT} = \frac{\left(I_{LED} + \frac{\Delta i_{L-PP}}{2}\right) x R9}{1 \mu A} = \frac{\left(I_{LED} + \frac{308 \text{ mA}}{2}\right) x 150 \text{ m}\Omega}{1 \mu A}$$

The chosen components from step 9 are:

$$C6 = 0.1 \,\mu\text{F}$$

R10 = 1k Ω


10. PWM DIMMING METHOD

The LM3409HV evaluation board allows for PWM dimming to be evaluated as follows:

1: No PWM, $EN = V_{IN}$

2: External PWM, EN coupled

3: Internal PWM, using EN

30093502

Method #1: If no PWM dimming is desired, a jumper should be placed in position 1 (shorts pins 1 and 2) on header J1. This shorts VIN and EN which ensures the controller is always enabled if an input voltage greater than 1.74V is applied.

Method #2: External parallel FET shunt dimming can be evaluated by placing the jumper in position 2 (shorts pins 2 and 3) on header J1. This connects the capacitive coupling circuit to the EN pin as suggested in the datasheet. The resistor (R4) can be solved for assuming a standard capacitor value C9 = 2.2nF and a desired time constant (t_{C} = 220ns < t_{OFF}) as follows:

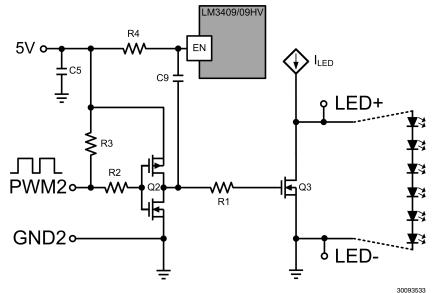
$$R4 = \frac{t_C}{C9} = \frac{220 \text{ ns}}{2.2 \text{ nF}} = 100\Omega$$

The external shunt FET dimming circuit shown below is designed using an N-channel MosFET (Q3), a CMOS FET (Q2), two gate current limiting resistors (R1 and R2), a pull-up resistor (R3), and a bypass capacitor (C5). With an external 5V power supply attached to the 5V terminal and an external PWM signal attached to the PWM2 terminal, the shunt dimming circuit is complete. Q3 is the shunt dimFET which conducts the LED current when turned on and blocks the LED voltage when turned off. Q3 needs to be fast and rated for $\rm V_O$ and $\rm I_{LED}$. For design flexibility, a fast 100V, 7.5A NFET is chosen. Q2 is necessary to invert the PWM signal so it prop-

erly translates the duty cycle to the shunt dimming FET. Q2 also needs to be fast and rated for 5V and fairly small current, therefore a 30V, 2A fast CMOS FET was chosen. R1 and R2 are 1Ω resistors to slow down the rising edge of the FETs slightly to prevent the gate from ringing. R3 is a $10 k\Omega$ pull-up resistor to ensure the CMOS gate is pulled all the way to 5V if a sub-5V PWM signal is applied to PWM2. The bypass capacitor (C5) for the 5V power supply is chosen to be $0.1 \mu F$. See the <code>Shunt FET Circuit Modification</code> section for an improvement that can be made to this circuit.

Method #3: Internal PWM dimming using the EN pin can be evaluated by removing the jumper from header J1. An external PWM signal can then be applied to the EN terminal to provide PWM dimming.

The *Typical Waveforms* section shows typical LED current waveforms during both types of PWM dimming.


The chosen components from step 10 are:

$$C6 = 0.1 \, \mu F$$

$$C9 = 2.2 \, n F$$

$$R1 = R2 = 1 \Omega$$

$$R3 = 10 \, k \Omega$$

$$R4 = 100 \Omega$$

$$Q2 \rightarrow 30 \text{V}, 20 \text{A}, \text{SOT-6}, \text{CMOS}$$

$$Q3 \rightarrow 100 \text{V}, 7.5 \text{A}, \text{SOIC-8}, \text{NMOS}$$

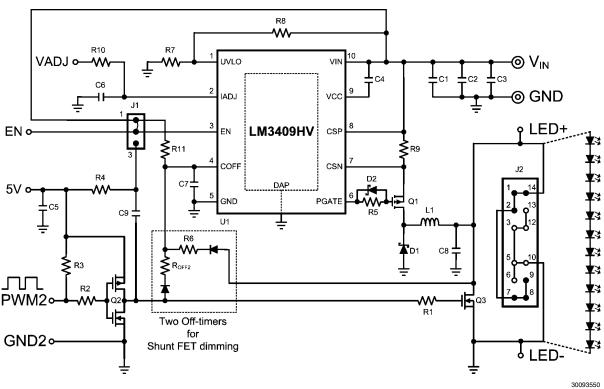
11. BYPASS CAPACITOR

The internal regulator requires at least $1\mu F$ of ceramic capacitance with a voltage rating of 16V.

The chosen component from step 11 is:

External shunt FET dimming circuit with EN pin coupling

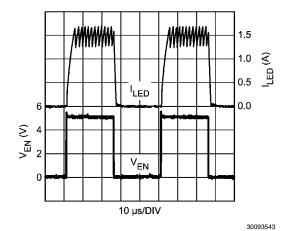
Shunt FET Circuit Modification

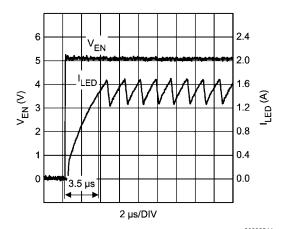

When the shunt FET (Q3) is on, the LM3409 is driving current into a short, therefore a maximum off-time (typical 300 µs) occurs followed by a minimum on-time. Maximum off-time followed by minimum on-time continues until Q3 is turned off. At low dimming frequencies and depending on the duty cycle, the inductor current may be at a very low level when the Q3 turns off. This will eliminate the benefits of using the shunt FET over the EN pin because the inductor will have to slew the current back to the nominal value anyways.

A simple modification to the external parallel FET dimming circuit will keep the inductor current close to its nominal value when Q3 is turned off. This modification will ensure that the rise time of the LED current is only limited by the turn-off time of the shunt FET as desired. The following circuit additions

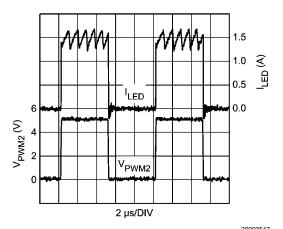
allow for two different off-times to occur. When Q3 is off, the standard off-timer referenced from $\rm V_{\rm O}$ is set. However when the Q3 is on, a second off-timer referenced to the gate signal of the Q3 is enabled and a controlled (non-maximum) off-time is set.

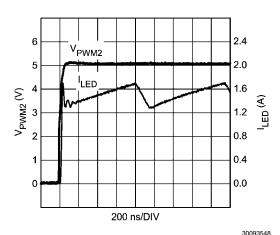
This modification includes 2 extra diodes (i.e. BAT54H) and one resistor (R_{OFF2}) and is only relevant when shunt FET PWM dimming below 10 kHz or so. In general, this second off-timer should be set to allow the inductor current to fall no more than 10% of its nominal value. A simple approximation can be used to find R_{OFF2} :

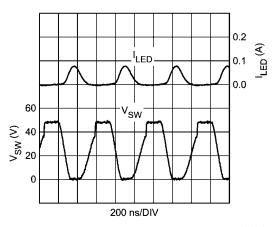

$$R_{OFF2} < \frac{0.1 \, x \, L \, x \, I_{LED}}{C7 \, x \, V_O}$$


Multiple off-timers for shunt FET dimming circuit

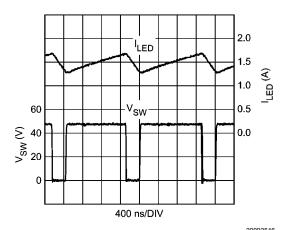
Typical Waveforms


 $T_A = +25^{\circ}C$, $V_{IN} = 48V$ and $V_O = 42V$.


20kHz 50% EN pin PWM dimming


20kHz 50% EN pin PWM dimming (rising edge)

100kHz 50% External FET PWM dimming



100kHz 50% External FET PWM dimming (rising edge)

Analog dimming minimum $(V_{ADJ} = 0V)^{30093545}$

8

Analog dimming maximum (V_{ADJ} open)

Alternate Designs

Alternate designs with the LM3409HV evaluation board are possible with very few changes to the existing hardware. The evaluation board FETs and diodes are already rated higher than necessary for design flexibility. The input UVLO can remain the same and the input capacitance is sufficient for most designs, though the input voltage ripple will change. Other designs can evaluated by changing R6, R9, L1, and C8.

The table below gives the main specifications for five different designs and the corresponding values for R6, R9, L1 and C8. The RMS current rating of L1 should be at least 50% higher than the specified I_{LED} . Designs 3 and 5 are optimized for best analog dimming range, while designs 1, 2, and 4 are optimized for best PWM dimming range. These are just examples, however any combination of specifications can be achieved by following the *Design Procedure* in the LM3409/09HV datasheet.

Specification /	Design 1	Design 2	Design 3	Design 4	Design 5
Component					
Dimming Method	PWM	PWM	Analog	PWM	Analog
V _{IN}	24V	36V	48V	65V	75V
Vo	14V	24V	35V	56V	42V
f _{SW}	500 kHz	450 kHz	300 kHz	350 kHz	300 kHz
I _{LED}	1A	700 mA	2A	ЗА	1.5A
Δi_{LED}	450 mA	250 mA	70 mA	1A	80 mA
R6	15.4 kΩ	25.5 kΩ	46.4 kΩ	24.9 kΩ	95.3 kΩ
R9	0.2Ω	0.3Ω	0.12Ω	0.07Ω	0.15Ω
L1	22 µH	68 µH	150 µH	15 µH	330 µH
C8	None	None	2.2 µF	None	2.2 µF

For more National Semiconductor product information and proven design tools, visit the following Web sites at:

Pr	oducts	Design Support		
Amplifiers	www.national.com/amplifiers	WEBENCH® Tools	www.national.com/webench	
Audio	www.national.com/audio	App Notes	www.national.com/appnotes	
Clock and Timing	www.national.com/timing	Reference Designs	www.national.com/refdesigns	
Data Converters	www.national.com/adc	Samples	www.national.com/samples	
Interface	www.national.com/interface	Eval Boards	www.national.com/evalboards	
LVDS	www.national.com/lvds	Packaging	www.national.com/packaging	
Power Management	www.national.com/power	Green Compliance	www.national.com/quality/green	
Switching Regulators	www.national.com/switchers	Distributors	www.national.com/contacts	
LDOs	www.national.com/ldo	Quality and Reliability	www.national.com/quality	
LED Lighting	www.national.com/led	Feedback/Support	www.national.com/feedback	
Voltage Reference	www.national.com/vref	Design Made Easy	www.national.com/easy	
PowerWise® Solutions	www.national.com/powerwise	Solutions	www.national.com/solutions	
Serial Digital Interface (SDI)	www.national.com/sdi	Mil/Aero	www.national.com/milaero	
Temperature Sensors	www.national.com/tempsensors	SolarMagic™	www.national.com/solarmagic	
Wireless (PLL/VCO)	www.national.com/wireless	PowerWise® Design University	www.national.com/training	

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.

TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.

EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.

Copyright© 2009 National Semiconductor Corporation

For the most current product information visit us at www.national.com

National Semiconductor Americas Technical Support Center Email: support@nsc.com Tel: 1-800-272-9959 National Semiconductor Europe Technical Support Center Email: europe.support@nsc.com National Semiconductor Asia
Pacific Technical Support Center
Email: ap.support@nsc.com

National Semiconductor Japan Technical Support Center Email: jpn.feedback@nsc.com