RF AMPLIFIER FOR CD PLAYER

■ GENERAL DESCRIPTION

NJM2117 is designed for CD player, which contains RF amplifier for 3 spot system optical PICK-UP output, FOCUS error amplifier and APC circuit.

■ FEATURES

- Dual Supply ±5V Operation
- Single Supply +5V Operation Available
- Package Outline

SSOP20

Bipolar Technology

■ PIN FUNCTION

I. LD	20. V
2. PD	19. LD ON
3. PD1	18. RF1
4. PD2	17. RFO
5. V-	16. FE
6. F	15. FE BIAS
7. E	14. TE
8. VR	13. EI
9. VC	12. EO
10. NC	II. NC

■ PACKAGE OUTLINE

NJM2117V

■ BLOCK DIAGRAM

LD RFI ON RFO FE FE BIAS TE **≨** 200 **∮** ≸ 30k ≨60k 13.43k ₹96k 15.1k ≸ Q VC \$13.43k 96K 4 30k Qvc O-VC ₹10.7k 10.7k **⋛**15k 7.9k § 26k 13k 1.7p 260k ≩ 12p Vre 1.25 V 31.6k 12p 15.8k \$ 27.9k ₹100k 10 PD PD1 PD2 VR vс NC NJM2117V

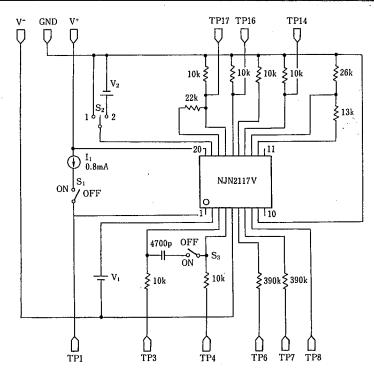
■ ABSOLUTE MAXIMUM RATINGS

(Ta=25℃)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V*/V	±6	V
Power Dissipation	: P _D	(SSOP8) 300	mW
Operating Temperature Range	Topr	-20~+75	°C
Storage Temperature Range	Tstg	-40~+125	°C

■ ELECTRICAL CHARACTERISTICS

 $(V^+/V = \pm 5.0V, Ta = 25^{\circ}C)$

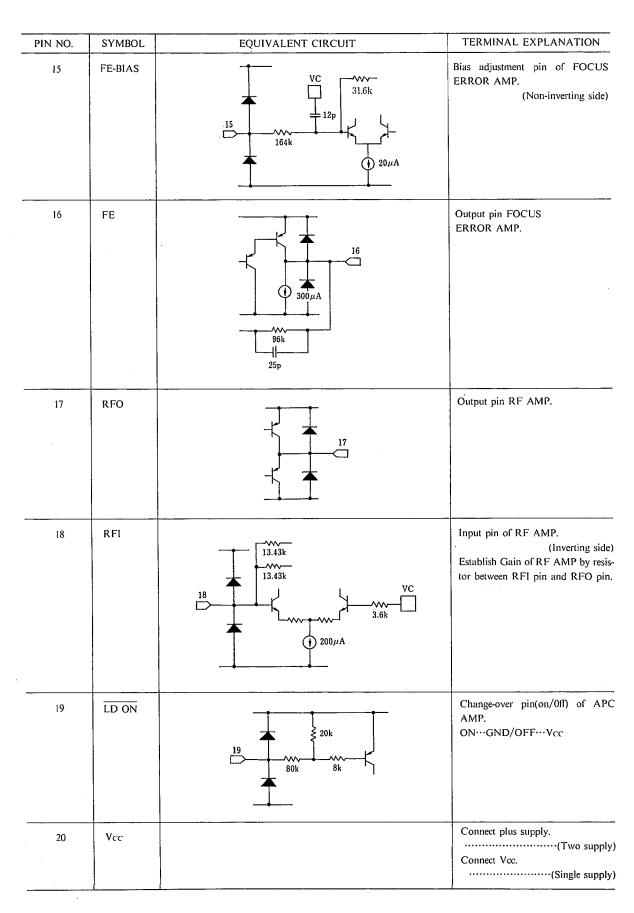

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Current	lcc	20pin		8.0	12.0	mA
Operating Current	lee	5pin	-12.0	-8.0	<u> </u>	mA
<rf amplifier=""></rf>						
Output Offset Voltage	V ₀₀ 1	TP17 Voltage	-50		50	mV
Voltage Gain	Gv 1	TP3/4=2KHz, 30mVppINPUT	28.2	31.2	34.2	dB
Frequency Characteristic	FGv I	Frequency at Gv 1=-3dB	1.50	3.75	_	MHZ
Maximum Output Voltage H	+V _{OM} 1	TP3=0.6V	3.5	_	_	ν
Maximum Output Voltage L	-V _{OM} I	TP3=-0.6V	-	_	-0.3	V
〈FE Amplifier〉						
Output Offset Voltage	V ₀₀ 2	TP16 Voltage	-120	0	120	mV
Output Noise	VNOISE	S3=ON-TP16Noise (100KHZ LPF)		15	30	mV _{rms}
Voltage Gain 1	Gv 2-1	TP3=1KHz, 10mVppInput	39.1	42.1	45.1	dB
Voltage Gain 2	Gv 2-2	TP4=1KHz, 10mVppInput	39.1	42.1	45.1	dB
Frequency Characteristic 1	FGv 2-1	Frequency at $Gv 2-1 = -3dB$	-	27		KHZ
Frequency Characteristic 2	FGv 2-2	Frequency at Gv 2-2=-3dB		27	_	KHZ
Difference Voltage Gain	Gvb2	$G_{VD}2=(G_{V}2-1)-(G_{V}2-2)$	-3.0	0	3.0	dB
Maximum Output Voltage H	+V _{OM} 2	TP3=0.3V	4.2	_	_	V
Maximum Output Voltage L	-V _{OM} 2	TP4=0.3V	-	_	-2.2	v
<te amplifier=""></te>						
Output Offset Voltage	Voo3	TP14 Voltage	-50	0	50	mV
Voltage Gain 1	Gv 3-1	TP6=1KHz, 100mVppInput	16.4	19.4	22.4	dB
Voltage Gain 2	Gy 3-2	TP7=1KHz, 100mVppInput	16.4	19.4	22.4	dB
Frequency Characteristic 1	FGv 3-1	Frequency at Gv 3-1=-3dB	_	34	<u> </u>	KHZ
Frequency Characteristic 2	FGv 3-2	Frequency at Gv 3-2=-3dB		34	-	KHZ
Difference Voltage Gain	GvD3	G _{VD} 3=(G _V 3-1)-(G _V 3-2)	-3.0	0	3.0	dB
Maximum Output Voltage H	+V _{OM} 3	TP7=1.5V	4.2	_	_	V
Maximum Output Voltage L	$-V_{OM}3$	TP6=1.5V	-	_	-2.2	v
⟨APC⟩						
Output Voltage 1	Vo I	$S_2 = 2 \text{ V1} = 69 \text{mV V}_2 = 0.5 \text{V}$		-1,7	-0.4	V
Output Voltage 2	Vo2	$S_2 = 2 V1 = 123 \text{mV} V_2 = 0.5 \text{V}$	-1.0	0.3	1.6	v .
Output Voltage 3	Vo3	$S_2 = 2 \text{ V1} = 177 \text{mV V}_2 = 0.5 \text{V}$	1.0	2.3	-	v .
Output Voltage 4	Vo4	$S_2 = 2 V = 0V V_2 = 4.5V$	4.6	4.8		v
Output Voltage 5	Vo 5	$S_1 = ON S_2 = 2 V_1 = 0V V_2 = 0.5V$	-	—	2.0	V
<center amp.="" voltage=""></center>						
Output Voltage 6	Vo6	TP8 Voltage	-100	0	100	mV

■ ELECTRICAL CHARACTERISTICS

 $(V^+/V^- = \pm 2.5V, Ta = 25^{\circ}C)$

.,					
SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
lcc	20pin	_	6.0	12.0	mA
IEE	5pin	-12.0	-6.0	-	mA
Vool	TP17 Voltage	50	-	50	mV
Gv I	TP3/4=2KHz, 30mVppINPUT	28.2	31.2	34.2	dB
+Vom1	TP3=0.4V	V+-0.5	-	-	V
-V _{OM} I	TP3=-0.4V			V-+2.2	V
Voo2	TP16 Voltage	-120	. 0	120	mV
Gv 2-1	TP3=1KHz, I0mVpp INPUT	39.1	42.1	45.1	dB
Gv 2-2	TP4=1KHz, 10mVpp INPUT	39.1	42.1	45.1	dB
G _{VD} 2	$G_{VD}2=(G_{V}2-1)-(G_{V}2-2)$	-3.0	0	3.0	dB
+V _{OM} 2	TP3=0.3V	V+-0.5	-	-	V
-V _{ОМ} 2	TP4=0.3V	_		V-+0.5	V
Voo3	TP14 Voltage	-50	0	50	mV
Gv 3-1	TP6=1KHz, 100mVPP INPUT	16.4	19.4	22.4	dB
Gv 3-2	TP7=1KHz, 100mVpp INPUT	16.4	19.4	22.4	dB
G _{VD} 3	$G_{VD}3=(G_{V}3-1)-(G_{V}3-2)$	-3.0	0	3.0	dB
+V _{OM} 3	TP7=1.5V	V+-0.5	_	-	V
—V _{ОМ} 3	TP6=1.5V	-	_	V~+0.5	V
Vo I	$S_2 = 2 V_1 = 110 \text{mV} V_2 = -20.\text{V}$		-1.6	-0.3	V
Vo2	$S_2 = 2 V_1 = 160 \text{mV} V_2 = -20.\text{V}$	-1.1	0.2	1.5	v
Vo3	$S_2 = 2 V_1 = 210 \text{mV} V_2 = -20.\text{V}$	0.8	2.1		v
Vo4	$S_2 = 2 V_1 = 0V V_2 = -20.V$	2.1	2.3	-	v
Vo 5	$S_1 = ON S_2 = 2 V_1 = 0V_2 = 2.0V$	-	—	1.0	v
Vo6	$V_2 = -2.5V$ TP8 Voltage	-70	0	70	mV
	Icc IEE	1cc	Icc	Icc 20pin	Icc

■ TEST CIRCUIT

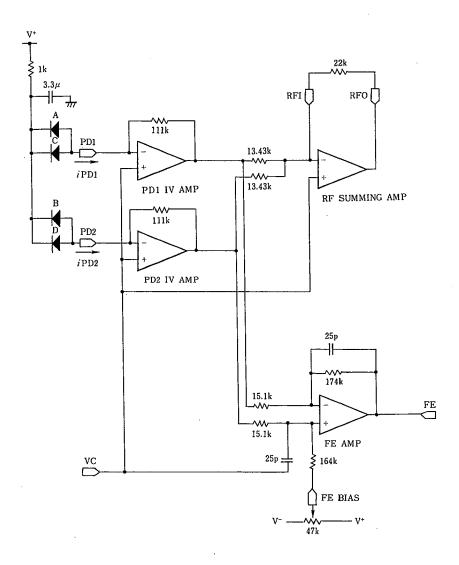

5-80

-New Japan Radio Co.,Ltd.

■ TERMINAL EXPLANATION

PIN NO.	SYMBOL	EQUIVALENT CIRCUIT	TERMINAL EXPLANATION
1	LD		Output pin of APC AMP.
2.	PD	20µA	Input pin of APC AMP.
3 4	PDI PD2	15.8k VC 22.6k 20μΑ 100μΑ 20μΑ	Input pin of RF I-V AMP. Connect A+C pin, B+D pin of each photo-diode and current input.
5	VEE		Connect minus supply(Two supply) Connect GND(Single supply)
6 7	F E	15.8k VC 500 2μΑ 10μΑ 2μΑ	Input pin of TE I-V AMP. Connect E pin, F pin of each photo-diode and current input.

PIN NO.	SYMBOL	EQUIVALENT CIRCUIT	TERMINAL EXPLANATION
8	VR	150	Output pin of direct current<(V cc+Vee)/2>.
9	VC		Input pin of internal center point voltage. Connect GND(±5V) Connect VR pin. (Single supply)
12	EO	12 98k 98k 20µA	Output pin for monitor of I-V AMP E.
13	EI	13 260k	Gain adjustment pin of I-V AMP E.
14	TE	14 300µA 96k	Output pin of TRACKING ERROR AMP. Output of E-F signal.


■ RF AMP

RFO-OUTPUT

 $V_{RFO} = (iPD1 + iPD2)(A) \times 111(k\Omega) \times \frac{22(k\Omega)}{13.43(k\Omega)}$

= $181.8(k\Omega)\times(iPD1+iPD2)(A)$

Establish Gain of RF AMP by resistor (22kΩ) between RFI pin and RFO pin.

5

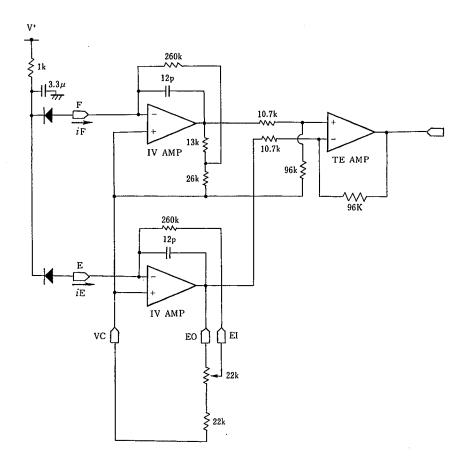
FE AMP

FE OUTPUT

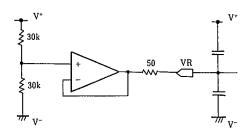
$$V_{FE} = (iPD1 - iPD2)(A) \times 111(k\Omega) \times \frac{174(k\Omega)}{15.1 (k\Omega)}$$

= $1279(k\Omega)\times(iPD1-iPD2)(A)$

It is possible to controll FE Output Offset by variable resistor with FE BIAS pin.

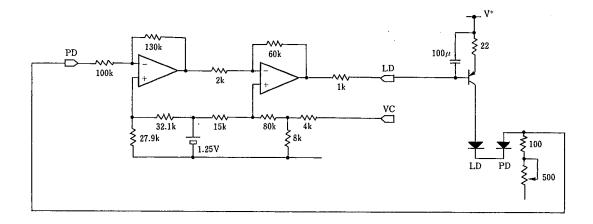

TE AMP

TE OUTPUT

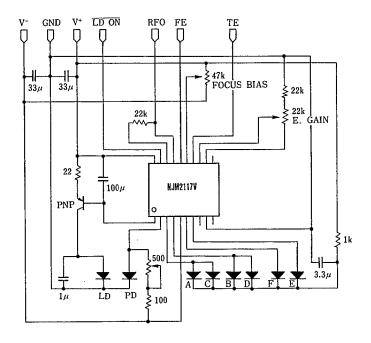

$$V_{TE} = (iE - iF)(A) \times 403(k\Omega) \times \frac{96(k\Omega)}{10.7(k\Omega)}$$

=3616 $(k\Omega)\times(iE-iF)(A)$

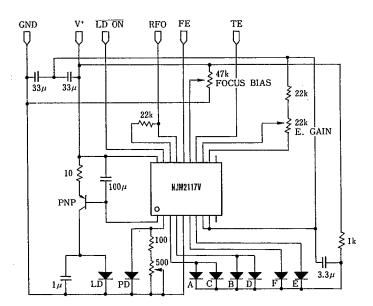
It is possible to trim 1-V Gain by resistor with ED pin.



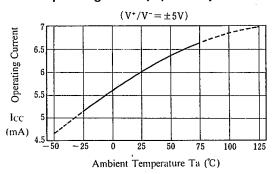
CENTER VOLTAGE GENERATION CIRCUIT

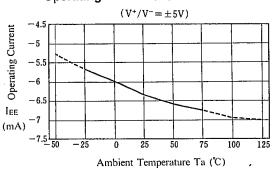

APC CIRCUIT

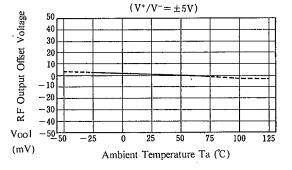
LD ON pin: connect to GND···APC (Auto Power Controll) ON connect to $V^+\cdots APC$ (") OFF:

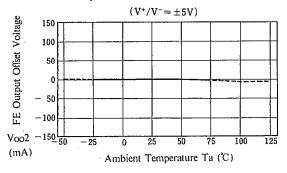


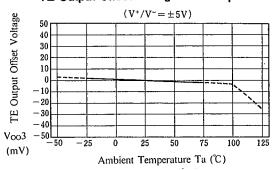
■ TYPICAL APPLICATION

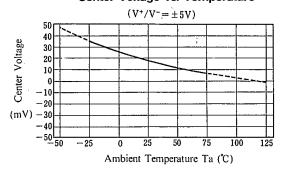

1) ±5V (TWO SUPPLY VOLTAGE)


2) +5V (SINGLE SUPPLY VOLȚAGE)

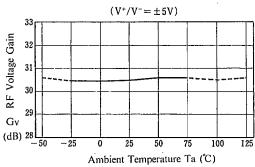

Operating Current(Icc)vs. Temperature

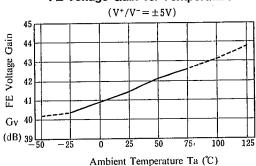

Operating Current (IEE) vs. Temperature


RF Output Offset Voltage vs. Temperature

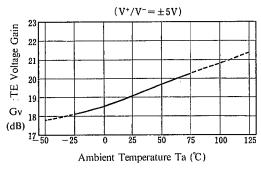

FE Output Offset Voltage vs. Temperature

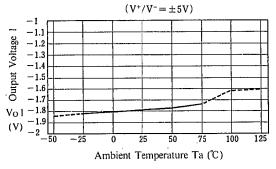
TE Output Offset Voltage vs. Temperature

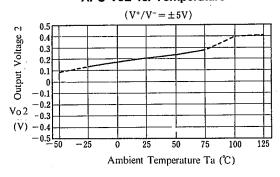

Center Voltage vs. Temperature

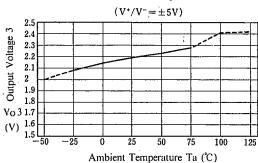

5

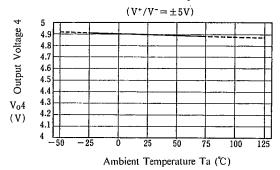
TYPICAL CHARACTERISTICS

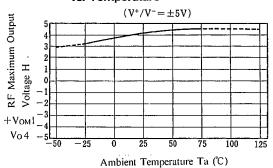

RF Voltage Gain vs. Temperature

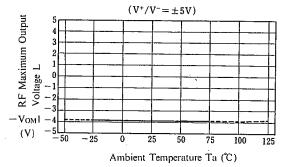

FE Voltage Gain vs. Temperature

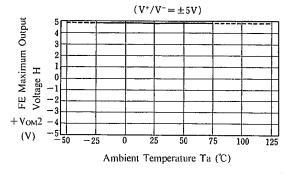

TE Voltage Gain vs. Temperature

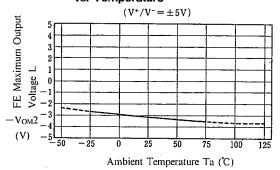

APC Vol vs. Temperature

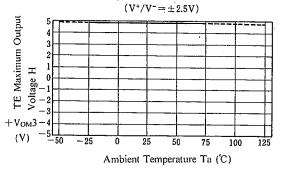

APC Vo2 vs. Temperature

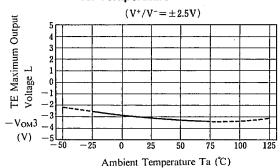

APC Vo3 vs. Temperature

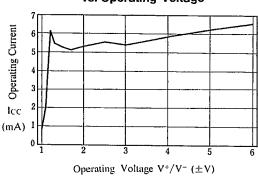

APC Vo4 vs. Temperature

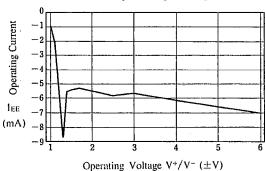

RF Maximum Output Voltage H vs. Temperature

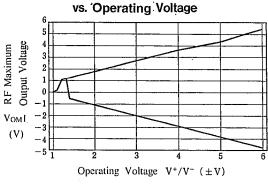

RF Maximum Output Voltage L vs. Temperature

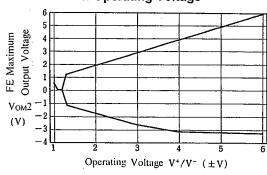

FE Maximum Output Voltage H vs. Temperature

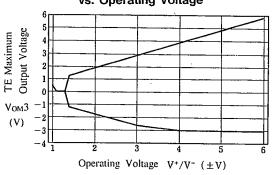

FE Maximum Output Voltage L vs. Temperature

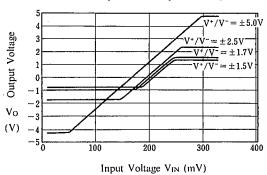

TE Maximum Output Voltage H vs. Temperature


TE Maximum Output Voltage L vs. Temperature


Operating Current(Icc) vs. Operating Voltage


Operating Current(IEE) vs. Operating Voltage


RF Maximum Output Voltage


FE Maximum Output Voltage vs. Operating Voltage

TE Maximum Output Voltage vs. Operating Voltage

APC Input vs. Output Voltage

N		M	121	11	7
	v		_		

MEMO

[CAUTION]
The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.