

HI-516

16-Channel/Differential 8-Channel, CMOS High Speed Analog Multiplexer

The HI-516 is a monolithic, dielectrically isolated, high-speed, high-performance CMOS analog multiplexer. It offers unique built-in channel selection decoding plus an inhibit for disabling all channels. The dual function of address input A_3 enables the HI-516 to be user programmed either as a single ended 16-Channel multiplexer by connecting 'out A' to 'out B' and using A_3 as a digital address input, or as an 8-Channel differential multiplexer by connecting A3 to the V- supply. The substrate leakages and parasitic capacitances are reduced substantially by using the Harris Dielectric Isolation process to achieve optimum performance in both high and low level signal applications. The low output leakage current ($I_{D(OFF)}$ < 100pA at 25C) and fast settling (I_{SETTLE} = 800ns to 0.01%) characteristics of the device make it an ideal choice for high speed data acquisition systems, precision instrumentation, and industrial process control.

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
 - Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

Data Sheet June 1999 File Number 3146.2

16-Channel/Differential 8-Channel, CMOS High Speed Analog Multiplexer

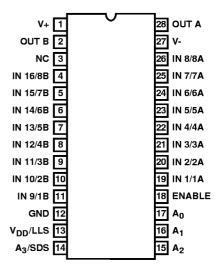
The HI-516 is a monolithic, dielectrically isolated, highspeed, high-performance CMOS analog multiplexer. It offers unique built-in channel selection decoding plus an inhibit input for disabling all channels. The dual function of address input A₃ enables the HI-516 to be user programmed either as a single ended 16-Channel multiplexer by connecting 'out A' to 'out B' and using A3 as a digital address input, or as an 8-Channel differential multiplexer by connecting A₃ to the V- supply. The substrate leakages and parasitic capacitances are reduced substantially by using the Harris Dielectric Isolation process to achieve optimum performance in both high and low level signal applications. The low output leakage current (I_{D(OFF)} < 100pA at 25°C) and fast settling (t_{SETTLE} = 800ns to 0.01%) characteristics of the device make it an ideal choice for high speed data acquisition systems, precision instrumentation, and industrial process

For MIL-STD-883 compliant parts, request the HI-516/883 data sheet.

Ordering Information

PART NUMBER	TEMP. RANGE (°C)	PACKAGE	PKG. NO.
HI3-0516-5	0 to 75	28 Ld PDIP	E28.6
HI1-0516-2	-55 to 125	28 Ld CERDIP	F28.6

Features


Access Time (Typical)
• Settling Time
• Low Leakage (Typical) - I _{S(OFF)}
• Low Capacitance (Max) - C _{S(OFF)}
Off Isolation at 500kHz
Low Charge Injection Error
Single Ended to Differential Selectable (SDS)
Logic Level Selectable (LLS)

Applications

- · Data Acquisition Systems
- · Precision Instrumentation
- · Industrial Control

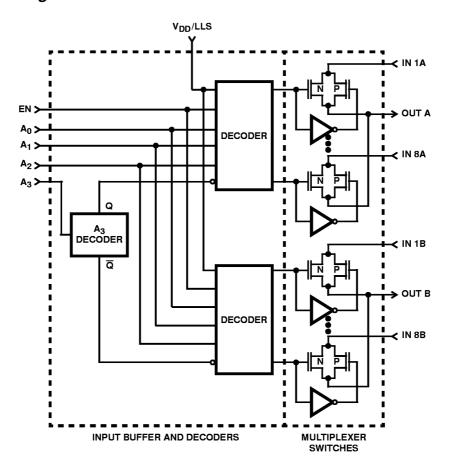
Pinout

HI-516 (CERDIP, PDIP) TOP VIEW

Truth Tables

HI-516 USED AS A 16-CHANNEL MULTIPLEXER OR **DUAL 8-CHANNEL MULTIPLEXER (NOTE 1)**

USE A ₃ AS	ON CHAN	NEL TO				
ENABLE	A ₃	$A_2 A_1 A_0$		OUT A	OUT B	
L	Х	Х	х	х	None	None
Н	L	L	L	L	1A	None
Н	L	L	L	Н	2A	None
Н	L	L	Н	L	зА	None
Н	L	L	Н	Н	4A	None
Н	L	Н	L	L	5A	None
Н	L	Н	L	Н	6A	None
Н	L	Н	Н	L	7A	None
Н	L	Н	Н	Н	8A	None
Н	Н	L	L	L	None	1B
Н	Н	L	L	Н	None	2B
Н	Н	L	Н	L	None	3B
Н	Н	L	Н	Н	None	4B
Н	Н	Н	L	L	None	5B
Н	Н	Н	L	Н	None	6B
Н	Н	Н	Н	L	None	7B
Н	Н	Н	Н	Н	None	8B


NOTE:

HI-516 USED AS A DIFFERENTIAL 8-CHANNEL MULTIPLEXER

A ₃ CONNE	CTED T	ON CHA	NNEL TO		
ENABLE	A ₂	A ₁	A ₀	OUT A	OUT B
L	Х	Х	Х	None	None
Н	L	L	L	1A	1B
Н	L	L	Н	2A	2B
Н	L	Н	L	ЗА	3B
Н	L	Н	Н	4A	4B
Н	Н	L	L	5A	5B
Н	Н	L	Н	6A	6B
Н	Н	Н	L	7A	7B
Н	Н	Н	Н	8A	8B

^{1.} For 16-channel single-ended function, tie 'out A' to 'out B'; for dual 8-channel function use the A_3 address pin to select between MUX A and MUX B, where MUX A is selected with A₃ low.

Functional Block Diagram

A ₃ DECODE							
A ₃	Q	Ø					
Н	Н						
L	L	н					
V-	L	L					

Absolute Maximum Ratings

V+ to V- 33V Analog Signal (V _{IN} , V _{OUT})
(V-) -2V to (V+) +2V
Digital Input Voltage:
TTL Levels Selected (V _{DD} /LLS Pin = GND or Open)
V _{A0-2} 6V to +6V
V _{A3/SDS} (V-) -2V to (V+) +2V
CMOS Levels Selected (VDD/LLS Pin = VDD)
V _{A0-3} 2V to (V+) +2V

Thermal Information

Thermal Resistance (Typical, Note 2)	θ _{JA} (^o C/W)	θ _{JC} (°C/W)
PDIP Package	60	N/A
CERDIP Package		18
Maximum Junction Temperature		
Ceramic Package		175 ⁰ C
Plastic Package		150 ⁰ C
Maximum Storage Temperature Range	65	^o C to 150 ^o C
Maximum Lead Temperature (Soldering 1	0s)	300°C

Operating Conditions

remperature Hanges	
HI-516-2	-55°C to 125°C
HI-516-5	0°C to 75°C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

2. $\theta_{\mbox{\scriptsize JA}}$ is measured with the component mounted on an evaluation PC board in free air.

Supplies = +15V, -15V; V_{AH} (Logic Level High) = 2.4V, V_{AL} (Logic Level Low) = 0.8V; V_{DD}/LLS = GND. (Note 3) Unless Otherwise Specified **Electrical Specifications**

	TEST	TEMP		-2			-5		
PARAMETER	CONDITIONS	(°C)	MIN	TYP	МАХ	MIN	TYP	MAX	UNITS
DYNAMIC CHARACTERISTICS									
Access Time, t _A		25	-	130	175	-	130	175	ns
		Full	-	-	225	-	-	225	ns
Break-Before-Make Delay, t _{OPEN}		25	10	20	-	10	20	-	ns
Enable Delay (ON), t _{ON(EN)}		25	-	120	175	-	120	175	ns
Enable Delay (OFF), t _{OFF(EN)}		25	-	140	175	-	140	175	ns
Settling Time	To 0.1%	25	-	250	-	-	250	-	ns
	To 0.01%	25	-	800	-	-	800	-	ns
Charge Injection Error	Note 6	25	-	-	20	-	-	20	mV
Off Isolation	Note 7	25	55	-	-	55	-	-	dB
Channel Input Capacitance, C _{S(OFF)}		25	-	-	10	-	-	10	pF
Channel Output Capacitance, CD(OFF)		25	-	-	25	-	-	25	pF
Digital Input Capacitance, CA		25	-	-	10	-	-	10	pF
Input to Output Capacitance, CDS(OFF)		25	-	0.02	-	-	0.02	-	pF
DIGITAL INPUT CHARACTERISTIC	DIGITAL INPUT CHARACTERISTICS								
Input Low Threshold, V _{AL} (TTL)	Note 3	Full	-	-	0.8	-	-	0.8	٧
Input High Threshold, V _{AH} (TTL)	Note 3	Full	2.4	-	-	2.4	-	-	٧
Input Low Threshold, V _{AL} (CMOS)	Note 3	Full		-	0.3V _{DD}	-	-	0.3V _{DD}	٧
Input High Threshold, V _{AH} (CMOS)	Note 3	Full	0.7V _{DD}	-	-	0.7V _{DD}	-	-	٧

Electrical Specifications

 $Supplies = +15 V, -15 V; V_{AH} \ (Logic \ Level \ High) = 2.4 V, V_{AL} \ (Logic \ Level \ Low) = 0.8 V; \\ V_{DD}/LLS = GND. \ (Note 3) \ Unless \ Otherwise \ Specified \ \ \textbf{(Continued)}$

	TEST 1	TEMP	-2			-5			
PARAMETER	CONDITIONS	(°C)	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Input Leakage Current, IAH (High)		Full	-	-	1	-	-	1	μА
Input Leakage Current, I _{AL} (Low)		Full	-	-	25	-	-	25	μА
ANALOG CHANNEL CHARACTER	RISTICS								
Analog Signal Range, V _{IN}	Note 4	Full	-14	-	+14	-15	-	+15	٧
On Resistance, r _{ON}	Note 5	25	-	620	750	-	620	750	Ω
		Full	-	-	1,000	-	-	1,000	Ω
Off Input Leakage Current, IS(OFF)		25	-	0.01	-	-	0.01	-	nA
		Full	-	-	50	-	-	50	nA
Off Output Leakage Current,		25	-	0.03	-	-	0.03	-	nA
ID(OFF)		Full	-	-	100	-	-	100	nA
On Channel Leakage Current, ID(ON)		25	-	0.04	-	-	0.04	-	nA
POWER SUPPLY CHARACTERIST	POWER SUPPLY CHARACTERISTICS								
Power Dissipation, P _D		Full	-	-	750	-	-	900	mW
I+, Current	V _{EN} = 2.4V	Full	-	-	25	-	-	30	mA
I-, Current		Full	-	-	25	-	-	30	mA

NOTES:

- 3. V_{DD}/LLS pin = open or grounded for TTL compatibility. V_{DD}/LLS pin = V_{DD} for CMOS compatibility.
- 4. At temperatures above 90° C, care must be taken to assure V_{IN} remains at least 1V below the V_{SUPPLY} for proper operation.
- 5. $V_{IN} = \pm 10V$, $I_{OUT} = -100\mu A$.
- 6. $V_{IN} = 0V$, $C_L = 100pF$, enable input pulse = 3V, f = 500kHz.
- 7. V_{EN} = 0.8V, V_{IN} = 3 V_{RMS} , f = 500kHz, C_L = 40pF, R_L = 1K, Pin 3 grounded.

Test Circuits and Waveforms V_{DD}/LLS = GND, Unless Otherwise Specified.

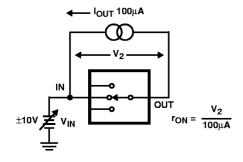


FIGURE 1. ON RESISTANCE TEST CIRCUIT

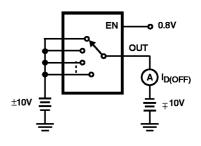


FIGURE 2. ID(OFF) TEST CIRCUIT (NOTE 8)

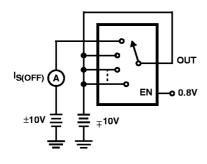


FIGURE 3. I_{S(OFF)} TEST CIRCUIT (NOTE 8)

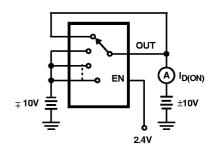


FIGURE 4. ID(ON) TEST CIRCUIT (NOTE 8)

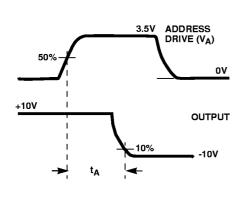
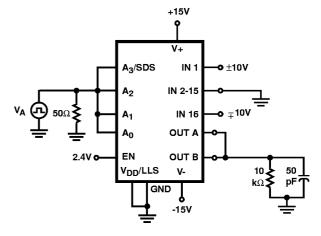


FIGURE 5A. MEASUREMENT POINTS



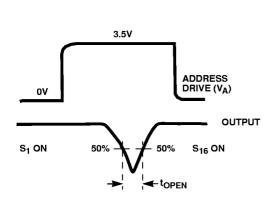

FIGURE 5B. TEST CIRCUIT

FIGURE 5. ACCESS TIME

NOTE:

8. Two measurements per channel: $\pm 10V$ and $\mp 10V$. (Two measurements per device for $I_{D(OFF)} \pm 10V$ and $\mp 10V$).

$\textit{Test Circuits and Waveforms} \ \, \text{$V_{DD}/\text{LLS} = GND$, Unless Otherwise Specified.} \ \, \textit{$(\textbf{Continued})$}$

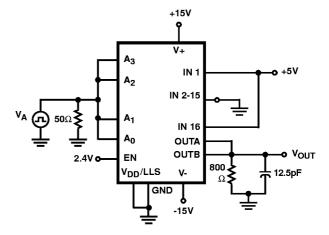
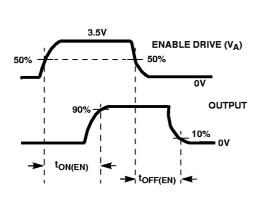



FIGURE 6A. MEASUREMENT POINTS

FIGURE 6B. TEST CIRCUIT

FIGURE 6. BREAK-BEFORE-MAKE DELAY

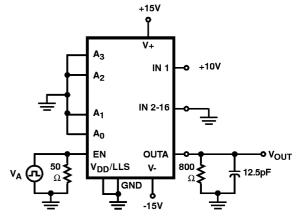
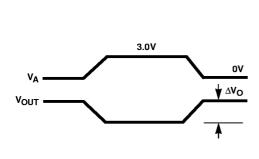
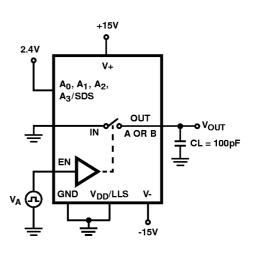




FIGURE 7A. MEASUREMENT POINTS

FIGURE 7B. TEST CIRCUIT

FIGURE 7. ENABLE DELAYS

FIGURE 8A. MEASUREMENT POINTS

FIGURE 8B. TEST CIRCUIT

 ΔV_O is the measured voltage error due to charge injection. The error in coulombs is Q = $C_L \times \Delta V_O$.

FIGURE 8. CHARGE INJECTION

Die Characteristics

DIE DIMENSIONS:

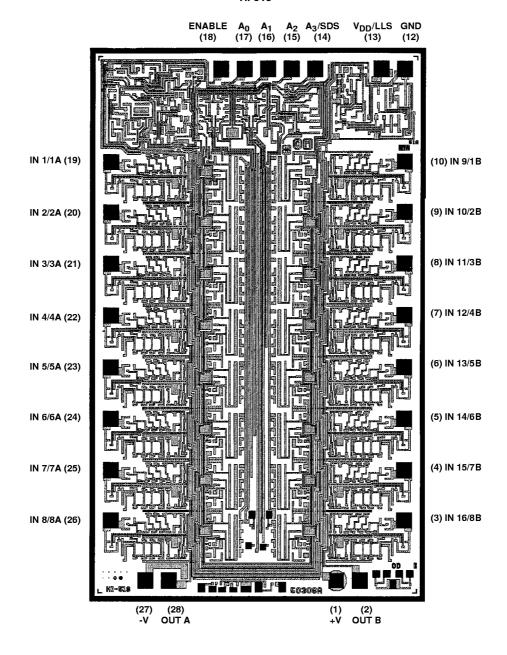
2250µm x 3720µm x 485µm

METALLIZATION:

Type: CuAl

Thickness: 16kÅ ±2kÅ

PASSIVATION:


Type: Nitride Over Silox Nitride Thickness: 3.5kÅ ±1kÅ Silox Thickness: 12kÅ ±2kÅ

WORST CASE CURRENT DENSITY:

1.64 x 10⁵ A/cm²

Metallization Mask Layout

HI-516

