PC Beads (Through Hole)

Part Number: 2944770301

44 PC BEAD

Explanation of Part Numbers:

- Digits 1 & 2 = Product Class
- − Digits 3 & 4 = Material Grade
- Last digit 1 = Standard Wire Length 2.4 mm (0.095") Minimum, 2 = Wire Length 3.1 mm (0.122□) Minimum

Multiple single turn or multi- turn printed circuit EMI suppression beads are available in two Fair- Rite materials. The broadband 44 material and in the high frequency 52 material grade.

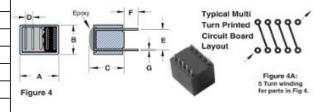
Wires are oxygen free high conductivity copper with 100% matte tin plating over a nickel undercoating. Wires on top of the beads are covered with a layer of epoxy.

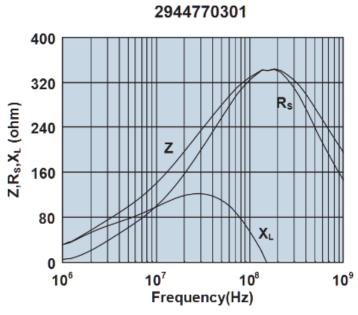
□ Recommended operating and storage temperature for the PC Beads is -55 °C to +125 °C.

 \Box PC Beads can be supplied with lower component heights "C". Also, the wire length "F" can be modified to specific requirements.

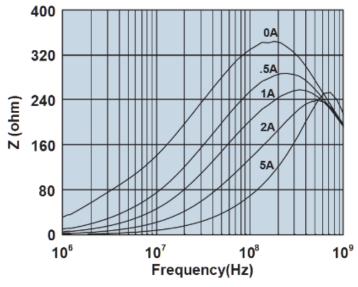
Weight: 7.4 (g)

Dım	mm	mm tol	nominal inch	inch misc.
A	13.45	±0.25	0.53	_
В	11.2	-0.50	0.43	
С	11.8	Max	0.464	Max
D	2.54	±0.10	0.1	_
Е	7.6	±0.20	0.3	
F	2.4	Min	0.095	Min
G	0.65		0	22 AWG




Chart Legend

+ Test frequency


Typical Impedance (Ω)				
10 MHz	142			
25 MHz ⁺	219			
100 MHz ⁺	338			
250 MHz	335			

 \Box PC Beads are controlled for impedance only. Minimum impedance values are specified for the + marked frequencies. The minimum impedance is typically the listed impedance less 20%.

The PC Beads in 44 material are measured on the 4193A Vector Impedance Analyzer. The 52 PC Beads are tested for impedance on the 4291A RF Impedance Analyzer.

Impedance, reactance, and resistance vs. frequency.

Impedance vs. frequency with dc bias.