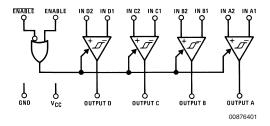


DS26C32AT/DS26C32AM Quad Differential Line Receiver

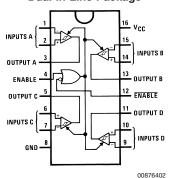
General Description

The DS26C32A is a quad differential line receiver designed to meet the RS-422, RS-423, and Federal Standards 1020 and 1030 for balanced and unbalanced digital data transmission, while retaining the low power characteristics of CMOS.


The DS26C32A has an input sensitivity of 200 mV over the common mode input voltage range of ± 7 V. The DS26C32A features internal pull-up and pull-down resistors which prevent output oscillation on unused channels.

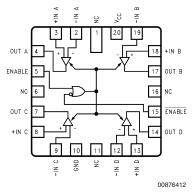
The DS26C32A provides an enable and disable function common to all four receivers, and features TRI-STATE ® outputs with 6 mA source and sink capability. This product is pin compatible with the DS26LS32A and the AM26LS32.

Features


- CMOS design for low power
- ±0.2V sensitivity over input common mode voltage range
- Typical propagation delays: 19 ns
- Typical input hysteresis: 60 mV
- Inputs won't load line when V_{CC} = 0V
- Meets the requirements of EIA standard RS-422
- TRI-STATE outputs for connection to system buses
- Available in Surface Mount
- Mil-Std-883C compliant

Logic Diagram

Connection Diagrams


Dual-In-Line Package

Top View

Order Number DS26C32ATM or DS26C32ATN
See NS Package M16A or N16E
For Complete Military Product Specifications,
refer to the appropriate SMD or MDS.
Order Number DS26C32AME/883, DS26C32AMJ/883 or
DS26C32AMW/883
See NS Package E20A, J16A or W16A

20-Lead Ceramic Leadless Chip Carrier

TRI-STATE® is a registered trademark of National Semiconductor Corporation.

Absolute Maximum Ratings (Notes 2,

1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage (V _{CC})	7V
Common Mode Range (V _{CM})	±14V
Differential Input Voltage (V DIFF)	±14V
Enable Input Voltage (V IN)	7V
Storage Temperature Range (T _{STG})	-65°C to +150°C
Lead Temperature (Soldering 4 sec.)	260°C
Maximum Power Dissipation at 25°C (N	Note 5)

Ceramic "J" Pkg. 2308 mW Plastic "N" Pkg. 1645 mW

SOIC "M" Pkg.	1190 mW
Ceramic "E" Pkg.	2108 mW
Ceramic "W" Pkg.	1215 mW
Maximum Current Per Output	±25 mA

This device does not meet 2000V ESD rating. (Note 4)

Operating Conditions

	Min	Max	Units
Supply Voltage (V _{CC})	4.50	5.50	V
Operating Temperature Range (T _A)			
DS26C32AT	-40	+85	°C
DS26C32AM	-55	+125	°C
Enable Input Rise or Fall Times		500	ns

DC Electrical Characteristics

 V_{CC} = 5V ±10% (unless otherwise specified) (Note 1)

Symbol	Parameter	Condition	Min	Тур	Max	Units	
V _{TH}	Minimum Differential	V _{OUT} = V _{OH} or V _{OL}		-200	35	+200	mV
	Input Voltage	$-7V < V_{CM} < +7V$					
R _{IN}	Input Resistance	$V_{IN} = -7V, +7V$	DS26C32AT	5.0	6.8	10	kΩ
		(Other Input = GND)	DS26C32AM	4.5	6.8	11	kΩ
I _{IN}	Input Current	$V_{IN} = +10V,$	DS26C32AT		+1.1	+1.5	mA
		Other Input = GND	DS26C32AM		+1.1	+1.8	mA
		$V_{IN} = -10V$,	DS26C32AT		-2.0	-2.5	mA
		Other Input = GND	DS26C32AM		-2.0	-2.7	mA
V _{OH}	Minimum High Level	V _{CC} = Min, V _{DIFF} = +1V	•	3.8	4.2		V
	Output Voltage	$I_{OUT} = -6.0 \text{ mA}$	I _{OUT} = -6.0 mA				
V _{OL}	Maximum Low Level	$V_{CC} = Max, V_{DIFF} = -1V$	V _{CC} = Max, V _{DIFF} = -1V			0.3	V
	Output Voltage	I _{OUT} = 6.0 mA					
V _{IH}	Minimum Enable High			2.0			V
	Input Level Voltage						
V _{IL}	Maximum Enable Low					0.8	V
	Input Level Voltage						
l _{oz}	Maximum TRI-STATE®	$V_{OUT} = V_{CC}$ or GND,					
	Output Leakage Current	ENABLE = V _{IL} ,			±0.5	±5.0	μΑ
		ENABLE = V _{IH}					
I _I	Maximum Enable Input	V IN = V _{CC} or GND				±1.0	μA
	Current						
I _{cc}	Quiescent Power	V _{CC} = Max,	DS26C32AT		16	23	mA
	Supply Current	$V_{DIF} = +1V$	V _{DIF} = +1V DS26C32AM		16	25	mA
V _{HYST}	Input Hysteresis	V _{CM} = 0V			60		mV

AC Electrical Characteristics

 $V_{CC} = 5V \pm 10\%$ (Note 3)

Symbol	Parameter	Conditions	Min	Тур	Max		Units
					DS26C32AT	DS26C32AM	
t _{PLH} ,	Propagation Delay	C _L = 50 pF					
t _{PHL}	Input to Output	$V_{DIFF} = 2.5V$	10	19	30	35	ns
		$V_{CM} = 0V$					

AC Electrical Characteristics (Continued)

 $V_{CC} = 5V \pm 10\%$ (Note 3)

Symbol	Parameter	Conditions	Min	Тур	Max		Units
					DS26C32AT	DS26C32AM	
t _{RISE} ,	Output Rise and	C _L = 50 pF					
t _{FALL}	Fall Times	$V_{DIFF} = 2.5V$		4	9	9	ns
		$V_{CM} = 0V$					
t _{PLZ} ,	Propagation Delay	C _L = 50 pF					
t _{PHZ}	ENABLE to Output	$R_L = 1000\Omega$		13	22	29	ns
		$V_{DIFF} = 2.5V$					
t _{PZL} ,	Propagation Delay	C _L = 50 pF					
t _{PZH}	ENABLE to Output	$R_L = 1000\Omega$		13	23	29	ns
		$V_{DIFF} = 2.5V$					

Note 1: Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Unless otherwise specified, all voltages are referenced to ground.

Note 3: Unless otherwise specified, Min/Max limits apply over recommended operating conditions. All typicals are given for $V_{CC} = 5V$ and $T_A = 25^{\circ}C$.

Note 4: ESD Rating: HBM (1.5 k Ω , 100 pF)

Inputs ≥2000V

All other pins ≥1000V

EIAJ (0Ω, 200 pF) ≥350V

Note 5: Ratings apply to ambient temperature at 25°C. Above this temperature derate N Package 13.16 mW/°C, J Package 15.38 mW/°C, M Package 9.52 mW/°C, E Package 12.04 mW/°C, and W package 6.94 mW/°C.

Comparison Table of Switching Characteristics into "LS-Type" Load

(Figures 4, 5, 6) (Note 6)

Symbol	Parameter	Conditions	DS26C32A	DS26LS32A	Units
			Тур	Тур	
t _{PLH}	Input to Output	C _L = 15 pF	17	23	ns
t _{PHL}			19	23	ns
t _{LZ}	ENABLE to Output	$C_L = 5 pF$	13	15	ns
t _{HZ}			12	20	ns
t _{ZL}	ENABLE to Output	C _L = 15 pF	13	14	ns
t _{zH}			13	15	ns

Note 6: This table is provided for comparison purposes only. The values in this table for the DS26C32A reflect the performance of the device, but are not tested or guaranteed.

Test and Switching Waveforms

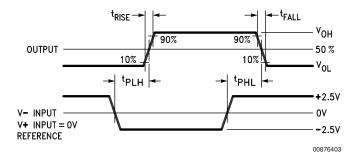
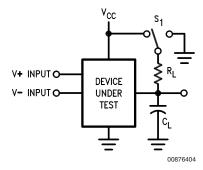



FIGURE 1. Propagation Delay

Test and Switching Waveforms (Continued)

 C_L includes load and test jig capacitance.

 $S_1 = V_{CC}$ for t _{PZL}, and t_{PLZ} measurements.

 $S_1 = Gnd$ for t_{PZH} and t_{PHZ} measurements.

FIGURE 2. Test Circuit for TRI-STATE Output Tests



FIGURE 3. TRI-STATE® Output Enable and Disable Waveforms

AC Test Circuit and Switching Time Waveforms

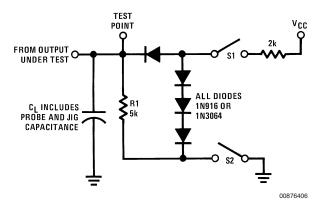


FIGURE 4. Load Test Circuit for TRI-STATE Outputs for "LS-Type" Load

AC Test Circuit and Switching Time Waveforms (Continued)

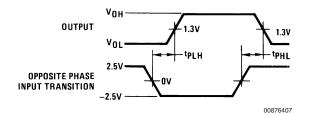


FIGURE 5. Propagation Delay for "LS-Type" Load (Notes 7, 9)

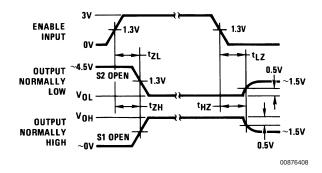
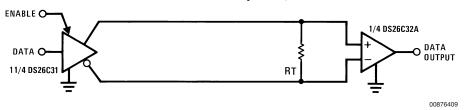


FIGURE 6. Enable and Disable Times for "LS-Type" Load (Notes 8, 9)

Note 7: Diagram shown for ENABLE low.

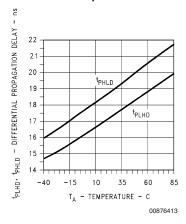
Note 8: S1 and S2 of load circuit are closed except where shown.

Note 9: Pulse generator for all pulses: Rate \leq 1.0 MHz; Z_O = 50 $\!\Omega;\,t_r$ $\!\leq$ 15 ns; t_f $\!\leq$ 6.0 ns.

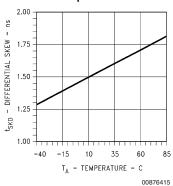

Truth Table

ENABLE	ENABLE	Input	Output
L	Н	X	Z
All Other		V _{ID} ≥ V _{TH} (Max)	Н
Combinations of		$V_{ID} \le V_{TH}$ (Min)	L
Enable Inputs		Open	Н

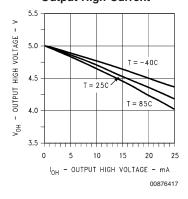
Z = TRI-STATE

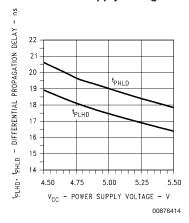

Typical Applications

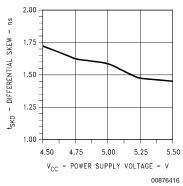
Two-Wire Balanced Systems, RS-422

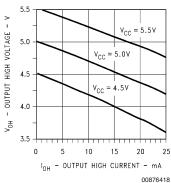


Typical Performance Characteristics

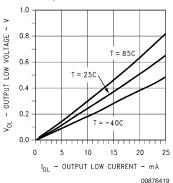

Differential Propagation Delay vs Temperature


Differential Skew vs Temperature


Output High Voltage vs Output High Current


Differential Propagation Delay vs Power Supply Voltage

Differential Skew vs Power Supply Voltage

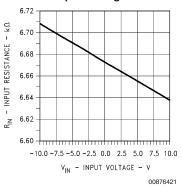


Output High Voltage vs Output High Current

Typical Performance Characteristics (Continued)

Output Low Voltage vs Output Low Current

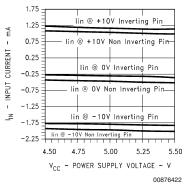
V_{OL} - OUTPUT LOW VOLTAGE - V V_{CC} = 4.5\ 0.6 0.4 V_{CC} = 5.0\ 0.2

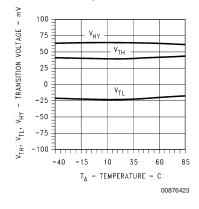

0.8

0.0

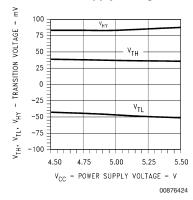
Output Low Voltage vs

Output Low Current

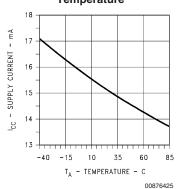

Input Resistance vs Input Voltage


Input Current vs Power Supply Voltage

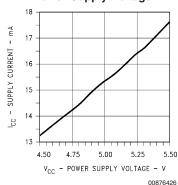
10 15


I_{OL} - OUTPUT LOW CURRENT - mA

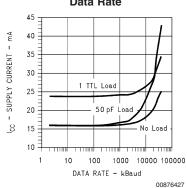
Hysteresis & Differential Transition Voltage vs Temperature



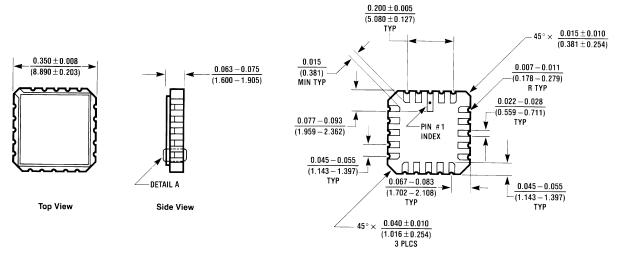
Hysteresis & Differential Transition Voltage vs **Power Supply Voltage**



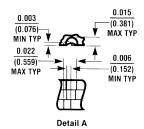
Typical Performance Characteristics (Continued)


Supply Current vs Temperature

Disabled Supply Current vs Power Supply Voltage

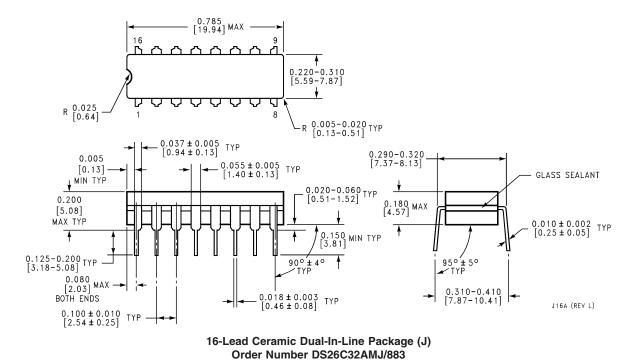


Supply Current vs Data Rate

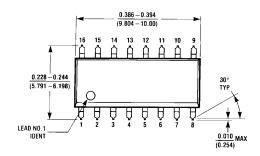


Physical Dimensions inches (millimeters)

unless otherwise noted

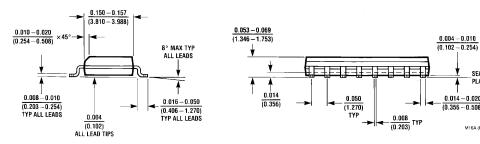


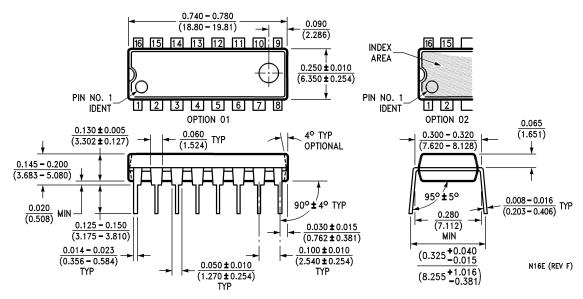
Bottom View


E20A (REV D)

20-Lead Ceramic Leadless Chip Carrier (E) Order Number DS26C32AME/883 NS Package Number E20A

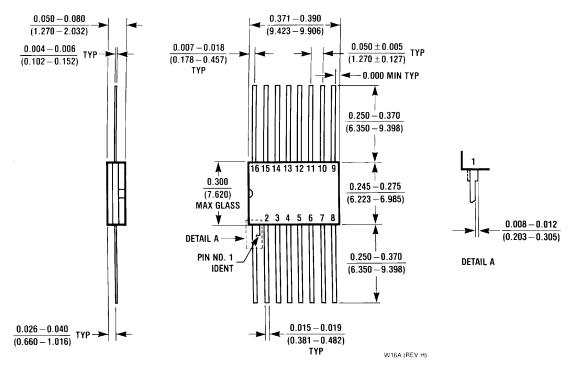
NS Package Number J16A


Physical Dimensions inches (millimeters) unless otherwise noted (Continued)


SEATING PLANE

M16A (REV H)

 $\frac{0.014 - 0.020}{(0.356 - 0.508)} \text{TYP}$



16-Lead Molded Small Outline Package (M) Order Number DS26C32ATM **NS Package Number M16A**

16-Lead Molded Dual-In-Line Package (N) Order Number DS26C32ATN **NS Package Number N16E**

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

16-Lead Ceramic FlatPak (W) Order Number DS26C32AMW/883 **NS Package Number W16A**

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

BANNED SUBSTANCE COMPLIANCE

National Semiconductor certifies that the products and packing materials meet the provisions of the Customer Products Stewardship Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification (CSP-9-111S2) and contain no "Banned Substances" as defined in CSP-9-111S2.

National Semiconductor Americas Customer Support Center

Email: new.feedback@nsc.com Tel: 1-800-272-9959

www.national.com

National Semiconductor Europe Customer Support Center Fax: +49 (0) 180-530 85 86

Email: europe.support@nsc.com Deutsch Tel: +49 (0) 69 9508 6208 English Tel: +44 (0) 870 24 0 2171

Français Tel: +33 (0) 1 41 91 8790

National Semiconductor Asia Pacific Customer Support Center Email: ap.support@nsc.com **National Semiconductor** Japan Customer Support Center Fax: 81-3-5639-7507 Email: jpn.feedback@nsc.com Tel: 81-3-5639-7560