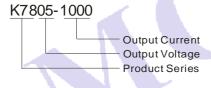
MORNSUN®

K78XX-1000(L) Series

WIDE INPUT NON-ISOLATED & REGULATED

SINGLE OUTPUT


FEATURES

- Efficiency up to 97%
- Operating temperature: -40°C ~ +85°C
- Pin-out compatible with LM78XX Linear
- Short circuit protection, thermal shutdown
- Low ripple and noise
- Micro miniature SIP package
- No heatsink required
- Industry standard pinout
- MTBF>2,000,000 hours

AP	DI	10	۸ТІ		NIC
AΡ	ᆫ	IL	4 I I	U	IJЭ

The K78xx-1000(L) series high efficiency switching regulators are ideally suited to replace 78xx linear regulators and are pin compatible. The efficiency of up to 97% means that very little energy is wasted as heat so there is no need for any heatsinks with their additional space and mounting costs.

MODEL SELECTION

MORNSUN Science & Technology Co., Ltd.

Address: No. 5, Kehui St. 1, Kehui development center, Science Ave., Guangzhou Science City, Luogang district, Guangzhou,P.R.China.

Tel: 86-20-28203030 Fax:86-20-28203068

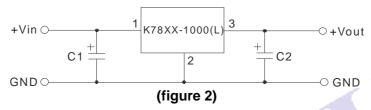
Http://www.mornsun-power.com

RoHS

	Input Volta	Input Voltage(VDC)		Output		Efficiency (%)(Typ)	
Part Number	Nominal	Range	Voltage (VDC)	Current (mA)	Vin (min.)	Vin (max.)	
K7801-1000(L)	12	4.75-26	1.5	1000	80	71	
K78X2-1000(L)	12	4.75-26	1.8	1000	83	74	
K7802-1000(L)	12	4.75-28	2.5	1000	88	80	
K7803-1000(L)	24	4.75~28	3.3	1000	90	83	
K7805-1000(L)	24	6.5~32	5.0	1000	93	88	
K78X6-1000(L)	24	9.0~32	6.5	1000	94	90	
K7809-1000(L)	24	12~32	9.0	1000	95	92	
K7812-1000(L)	24	16~32	12	1000	96	94	
K7815-1000(L)	24	20~32	15	1000	97	94	

ns					
Test conditions		Min.	Тур.	Max.	Units
100% full load			±2	±3	
Vin=min. to max. at full load			±0.2	±0.4	%
10% to 100% load			±0.4	±0.6	
20MHz bandwidth (refer to figure 3)			25	35	mVp-p
			0.5	1.8	W
		Cor	Continuous, automatic recovery		
Internal IC junction			150		°C
100% full load		280	330	450	KHz
Vin= min. to max. (at full load)	Vout: 1.5V~3.3V			3000	mA
	Vout: 5V~15V			2000	IIIA
			5	8	mA
-40°C ~ +85°C ambient				±0.02	%/°C
				1000	μF
* K78X2-1000 is ±0.75%(Max), ** K7801-1000 is 4W(Max).					
	Test conditions 100% full load Vin=min. to max. a 10% to 100% load 20MHz bandwidth (refer to figure 3) Internal IC junction 100% full load Vin= min. to max. (at full load) -40°C ~ +85°C am	Test conditions 100% full load Vin=min. to max. at full load 10% to 100% load 20MHz bandwidth (refer to figure 3) Internal IC junction 100% full load Vin= min. to max. (at full load) Vout: 1.5V~3.3V Vout: 5V~15V -40°C ~ +85°C ambient	Test conditions Min. 100% full load Vin=min. to max. at full load 10% to 100% load 20MHz bandwidth (refer to figure 3) Coll Internal IC junction 100% full load Vin= min. to max. (at full load) Vout: 1.5V~3.3V Vout: 5V~15V -40°C ~ +85°C ambient	Test conditions Min. Typ. 100% full load Vin=min. to max. at full load ±0.2 10% to 100% load 20MHz bandwidth (refer to figure 3) Continuous reco	Test conditions Min. Typ. Max. 100% full load ±2 ±3 ±3.4 ±0.2 ±0.4 ±0.4 ±0.6 ±0.4 ±0.6 ±0.5 35 = 25 35 = 25 35 = 25

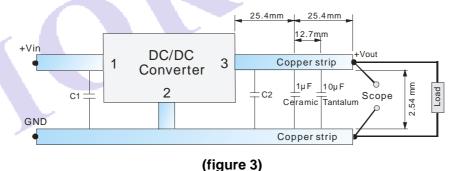
COMMON SPECIFICATIONS					
Item	Test conditions	Min.	Тур.	Max.	Units
Storage humidity				95	%
Operating temperature	Power derating (above 71°C)	-40		85	
Operating case temp.				100	°C
Storage temperature		-55		125	
Lead temperature	1.5mm from case for 10 seconds			300	
Cooling		F	ree air c	onvection	on
Case material		Plastic (UL94-V0)))	
MTBF	25℃ (MIL-HDBK-217F)	2000			k hours
Weight			3.7		g


TYPICAL CHARECTERISTICS

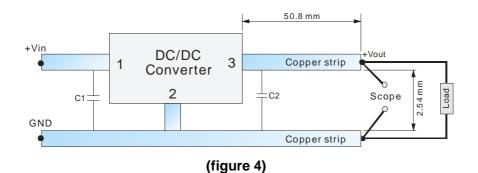
Temperature Derating Graph 120 100 Output Power (%) 80 60 Safe Operating Area 40 20 0 0 40 71 85 -40 120 Operating Temp.(°C) (figure1)

EXTERNAL CAPACITOR TABLE

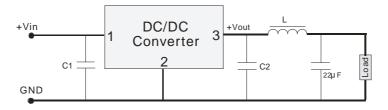
Part Number	C1	C2		
T dit i validoi	(Ceramic capacitor)	(Ceramic capacitor)		
K7801-1000(L)	10μF/50V	22µF/6.3V		
K78X2-1000(L)	10μF/50V	22µF/6.3V		
K7802-1000(L)	10μF/50V	22μF/6.3V		
K7803-1000(L)	10μF/50V	22µF/6.3V		
K7805-1000(L)	10μF/50V	22μF/16V		
K78X6-1000(L)	10μF/50V	10μF/16V		
K7809-1000(L)	10μF/50V	10μF/16V		
K7812-1000(L)	10μF/50V	10μF/25V		
K7815-1000(L)	10μF/50V	10μF/25V		


TYPICAL APPLICATION CIRCUIT

- 1. C1 and C2 are required and should be fitted close to the converter pins.
- 2. The capacitance of C1, C2 sees external capacitor table, it can be increased properly if required, and tantalum or low ESR electrolytic capacitors may also suffice.
- 3. No parallel connection or plug and play.


TEST CONFIGURATIONS (TA=25°C)

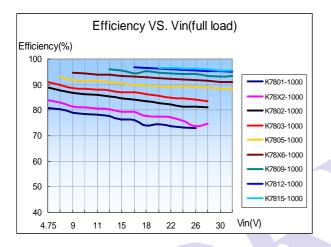
1 Efficiency and Output Voltage Ripple Test



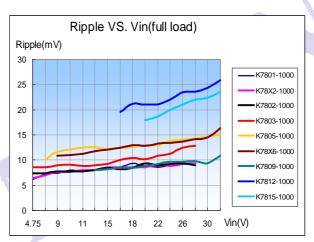
Start-up and Load Transient Response Test

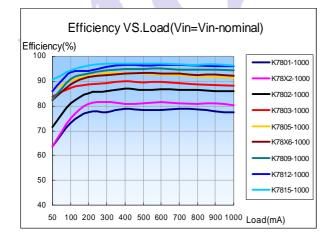
2

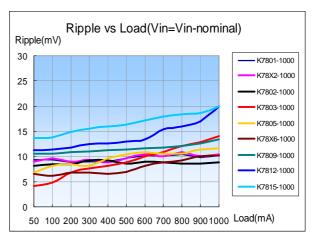
OUTPUT RIPPLE REDUCTION

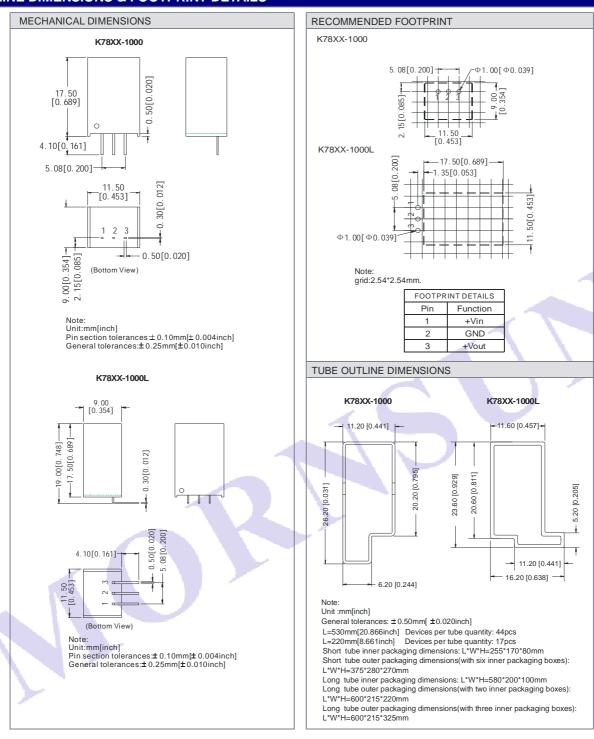

To reduce output ripple, it is recommended to add a LC filter in output port.

L: Recommended parameter $10\mu H \sim 47\mu H$.


(figure 5)


CHARACTERISTICS CURVE


Efficiency


Ripple

OUTLINE DIMENSIONS & FOOTPRINT DETAILS

Note:

- 1. All specifications measured at Ta=25°C, humidity<75%, nominal input voltage and rated output load unless otherwise specified.
- 2. In this datasheet, all the test methods of indications are based on corporate standards.