

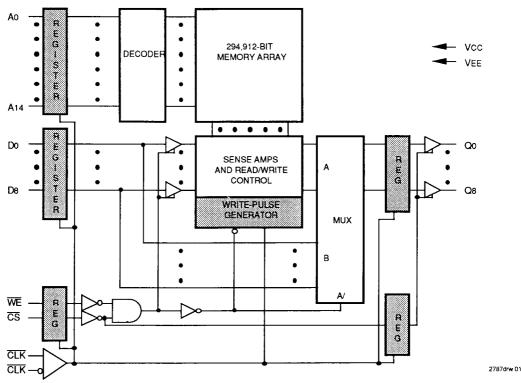
SELF-TIMED BICMOS ECL STATIC RAM 256K (32K x 9-BIT) SRAM

ADVANCE INFORMATION IDT10596RR IDT100596RR IDT101596RR

FEATURES:

- 32,768-words x 9-bit organization
- · Self-Timed Write, with registers on inputs and outputs
- Balanced Read/Write cycle time: 10/12/15 ns
- Wide word for reduced address loading
- · Differential clock input
- · Fully compatible with ECL logic levels
- · Separate data input and output
- · JEDEC standard pinouts

DESCRIPTION:

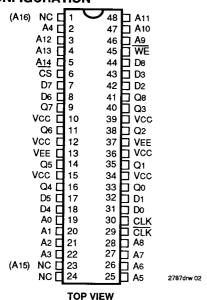

The IDT10596RR, IDT100596RR, and IDT101596RR are 294,912-bit high-speed BiCEMOS™ ECL self-timed static random access memories (STRAM) organized as 32Kx9, with inputs and outputs fully compatible with ECL levels. Clocked registers on inputs and outputs, and the self-timed write operation, provide enhanced system performance over con-

ventional RAMs, providing easier design and improved system level cycle times.

These devices are part of a family of nine-bit-wide ECL SRAMs. The devices have been configured to follow the proposed ECL SRAM JEDEC pinout. Because they are manufactured in BiCEMOS™ technology, however, power dissipation is similar to CMOS devices of equivalent density. Inputs are captured and outputs gated by the rising edge of an externally supplied differential clock. The small input valid window required means more margin for system skews. Logic-to-memory propagation delay is included in device cycle time calculation, allowing this device to deliver better system performance than asynchronous SRAMs and glue logic.

Write timing is controlled internally based on the clock. Write Enable has no special requirements. The device allows balanced read and write cycle times, and reads and writes can be inserted in any order.

FUNCTIONAL BLOCK DIAGRAM



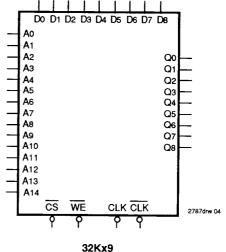
BICEMOS is a trademark of Integrated Device Technology, Inc.

COMMERCIAL TEMPERATURE RANGES

MAY 1991

PIN CONFIGURATION

PIN DESCRIPTIONS


Symbol	Pin Name
A0 through A14	Address Inputs
D0 through D8	Data Inputs
Q0 through Q8	Data Outputs
CS	Chip Select Input (Internal pull down)
WE	Write Enable Input
CLK, CLK	Differential Clock Imputs
VEE	More Negative Supply Voltage
Vcc	Less Negative Supply Voltage
VCCA	Less Negative Supply Voltage for Output
NC	No Connect (Not internally bonded)

2787 tbl 01

THE REPORT OF THE PART OF THE

300-Mil-Wide Plastic SSOP Package 48

LOGIC SYMBOL

SRAM

AC OPERATING RANGES⁽¹⁾

1/0	VEE	Temperature
10K	-5.2V ±5%	0 TO 75°C, air flow exceeding 2 m/sec
100K	-4.5V ±5%	0 TO 85°C, air flow exceeding 2 m/sec
101K	-4.75V to -5.46V	0 TO 75°C, air flow exceeding 2 m/sec
NOTE:		2787 tbl

1. Referenced to Vcc

CAPACITANCE (TA=+25°C, f=1.0MHz)

		SSOP		
Symbol	Parameter	Тур.	Max.	Unit
CIN	Input Capacitance	TBD	-	pF
Соит	Output Capacitance	TBD	_	pF

TRUTH TABLE(1)

ĊS	WE	CLK	DATAouT ⁽²⁾	Function
Н	Х	1	L	Deselected
L	Н	1	RAM Data	Read
L	L	1	WRITE Data	Write

NOTES:

- 1. H=High, L=Low, X=Don't Care.
- 2. DATAOUT initiated by next rising CLK.

В

2787 tol 04

ECL-10K ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Rating		Value	Unit
VTERM	Terminal Voltage With Respect to GND		+0.5 to -7.0	٧
TA	Operating Temperature		0 to +75	°C
TBIAS	Temperature Under Bias		-55 to +125	°C
Tstg	Storage Temperature	Ceramic	-65 to +150	°C
Рт	Power Dissipation	n	2.0	w
lout	DC Output Curre High)	DC Output Current (Output		mA

NOTE:

2787 tbl 05

ECL-10K DC ELECTRICAL CHARACTERISTICS

(VEE = -5.2V, RL = 50Ω to -2.0V, TA = 0 to +75°C, air flow exceeding 2 m/sec)

Symbol	Parameter	Test C	onditions	Min. (B)	Typ. ⁽¹⁾	Max. (A)	Unit	TA
Vон	Output HIGH Voltage	V IN = V IHA O	-1000 -960 -900	-885	-840 -810 -720	mV	0°C 25°C 75°C	
Vol	Output LOW Voltage	V IN = V IHA O	-1870 -1850 -1830	-	-1665 -1650 -1625	mV	0°C 25°C 75°C	
Vонс	Output Threshold HIGH Voltage	V IN = V IHB O	-1020 -980 -920	_	-	mV	0°C 25°C 75°C	
Volc	Output Threshold LOW Voltage	V IN = V IHB O	_	-	-1645 -1630 -1605	mV	0°C 25°C 75°C	
ViH	Input HIGH Voltage	Guaranteed I High for All In	-1145 -1105 -1045	_	-840 -810 -720	mV	0°C 25°C 75°C	
VIL	Input LOW Voltage	Guaranteed I Low for All In		-1870 -1850 -1830	_	-1490 -1475 -1450	mV	0°C 25°C 75°C
LIH	Input HIGH Current	V IN = V IHA	CS	-	-	220	μА	_
			Others	_	_	110	μА	_
l IL	Input LOW Current	V IN = V ILB CS		0.5	-	170	μА	_
			Others	-50	_	90	μА	_
IEE	Supply Current	All Inputs and Outputs Open		-280	-220		mA	

1. Typical parameters are specified at VEE = -5.2V, TA = +25°C and maximum loading.

^{1.} Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this

ECL-100K ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Rating		Value	Unit
VTERM	Terminal Voltage With Respect to GND		+0.5 to -7.0	٧
TA	Operating Temperature		0 to +85	°C
TBIAS	Temperature Under Bias		-55 to +125	°C
TSTG	Storage Temperature	Ceramic	-65 to +150	°C
PT	Power Dissipat	ion	2.0	w
lout	DC Output Curr (Output High)	DC Output Current		mA

NOTE:

2787 tol 07

ECL-100K DC ELECTRICAL CHARACTERISTICS

(VEE = -4.5V, RL = 50Ω to -2.0V. TA = 0 to +85°C, air flow exceeding 2 m/sec)

Symbol	Parameter	Test C	onditions	Min. (B)	Typ. ⁽¹⁾	Max. (A)	Unit
Vон	Output HIGH Voltage	V IN = V IHA O	r VILB	-1025	-955	-880	m۷
Vol	Output LOW Voltage	V IN = V IHA O	r VILB	-1810	-1715	-1620	mV
Vонс	Output Threshold HIGH Voltage	V IN = V IHB o	r VILA	-1035	-	-	mV
Volc	Output Threshold LOW Voltage	V IN = V IHB O	r VILA	_	-	-1610	mV
VIH	Input HIGH Voltage	Guaranteed Input Voltage High for All Inputs		-1165	_	-880	mV
VIL	Input LOW Voltage	Guaranteed Input Voltage Low for All Inputs		-1810	-	-1475	mV
Lін	Input HIGH Current	V IN = V IHA	cs	_	-	220	μА
			Others		_	110	1
l IL	Input LOW Current	V IN = V ILB	CS	0.5	_	170	μА
		ľ	Others	-50	_	90	1
IEE	Supply Current	All Inputs and	Outputs Open	-260	-200	-	mA
OTE:							2787 tol

NOTE:

^{1.} Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

^{1.} Typical parameters are specified at VEE = -4.5V, TA = +25°C and maximum loading.

ECL-101K ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Ratin	Value	Unit	
VTERM	Terminal Voltage With Respect to GND		+0.5 to -7.0	٧
TA	Operating Temp	0 to +75	°C	
TBIAS	Temperature Un	-55 to +125	°C	
Тѕтс	Storage Temperature	Ceramic	-65 to +150	°C
Рт	Power Dissipation	n	2.0	w
Іоит	DC Output Curre High)	ent (Output	-50	mA

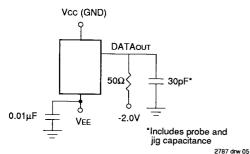
NOTE:

2787 tbl 09

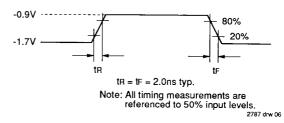
ECL-101K DC ELECTRICAL CHARACTERISTICS

(VEE = -5.2V, RL = 50Ω to -2.0V, TA = 0 to +75°C, air flow exceeding 2 m/sec)

Symbol	Parameter	Test C	Condition	Min. (B)	Typ. ⁽¹⁾	Max. (A)	Unit
Vон	Output HIGH Voltage	V IN = V IHA O	r V ILB	-1025	-955	-880	mV
Vol	Output LOW Voltage	V IN = V IHA O	r VILB	-1810	-1715	-1620	mV
Vonc	Output Threshold HIGH Voltage	V IN = V IHB O	r VILA	-1035	-	-	mV
Volc	Output Threshold LOW Voltage	VIN = VIHBOT VILA		_	_	-1610	m∨
ViH	Input HIGH Voltage	Guaranteed Input Voltage High for All Inputs		-1165	-	-880	mV
VIL	Input LOW Voltage	Guaranteed Input Voltage Low for All Inputs		-1810	-	-1475	mV
Lін	Input HIGH Current	V IN = V IHA	CS	_	_	220	μА
			Others	_	-	110	1
FIL	Input LOW Current	V IN = V ILB	CS	0.5	-	170	μΑ
		Others		-50	_	90	1
lee	Supply Current	All Inputs and	Outputs Open	-280	-220	-	mA


NOTE:

2787 tbl 10


Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS
may cause permanent damage to the device. This is a stress rating only
and functional operation of the device at these or any other conditions
above those indicated in the operational sections of this specification is not
implied. Exposure to absolute maximum rating conditions for extended
periods may affect reliability.

^{1.} Typical parameters are specified at VEE = -5.2V, TA = +25°C and maximum loading.

AC TEST LOAD CONDITION

AC TEST INPUT PULSE

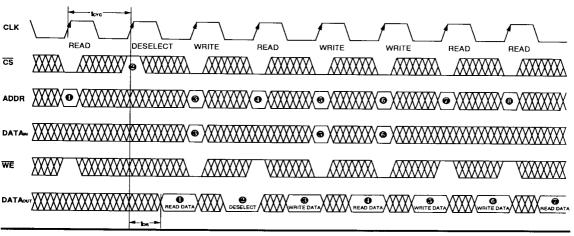
RISE/FALL TIME

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
tR	Output Rise Time	_	_	2		ns
tF	Output Fall Time	_	_	2	_	ns
	· · · · · · · · · · · · · · · · · · ·	-				2787 tol 11

FUNCTIONAL DESCRIPTION

The IDT10596RR, IDT100596RR, and IDT101596RR Self-Timed BiCMOS ECL static RAMs (STRAM) provide high speed with low power dissipation typical of BiCMOS ECL. On-chip logic additionally helps improve system performance.

As can be seen in the Functional Block Diagram on the title page, this device contains clocked input registers to sample and hold addresses, input data, and control status. Inputs are sampled on the rising edge of the clock (CLK) input (falling edge of $\overline{\text{CLK}}$). In the case of a write cycle, the memory cell is written by an internal timer initiated by the rising edge of CLK, and write data conducted to the outputs. Output data is clocked out the output register and is held through the next cycle.


READ TIMING

In a typical read cycle, the read address is captured by the rising edge of clock, as at **0** below. Then, after access occurs internally, the read data for the read address clocked in at **0** is clocked through the output register to the output pins by the next rising edge of clock (for this example, at **0**). There is a short delay from rising clock to output ready, called tDR (see Read Cycle Timing).

The output register takes some time to change state for the next output, but this time is very short. Therefore, data hold time from clock high (tDH) is specified as zero minimum hold time.

FUNCTIONAL DESCRIPTION TIMING EXAMPLE

DESELECT TIMING

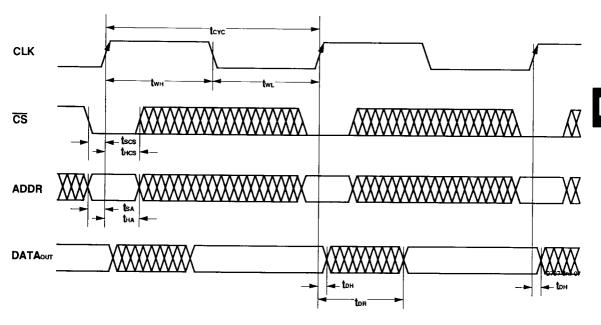
Because the outputs are registered, they will continue to drive the output pins until a disable state is clocked through the device. The deselected state is achieved by de-asserting chip select (\overline{CS} high) at rising edge of clock. This case occurs at \bullet below. Outputs then attain the disable state (low) after the next rising clock edge. Status of other inputs do not effect the disabling of the device when chip select is de-asserted with the proper relation to clock.

WRITE TIMING

Write cycles are identical to read cycles, except that write enable and write data need also be supplied, with the appropriate setup and hold timing. The device has on-chip timing that handles all aspects of writing data into the addressed RAM cell without the need for external write-pulse generation. The timing logic uses an internal timer as the write pulse, and thus only one edge of clock need be determined (de-skewed) exactly.

In addition to writing to the RAM cell, the write data is fed to the output register by a multiplexer, so that write data is available on the output pins in the appropriate time slot (i.e. after the next clock high edge). This function is sometimes called "Transparent Write," and is useful for write-through cache applications. Thus the input data sampled at \mathfrak{G} is available on the output in the next cycle.

There are no restrictions on the order of read cycles and write cycles.


AC ELECTRICAL CHARACTERISTICS (Over the AC Operating Range)

		Test	10596RR10 100596RR10 101596RR10		10596RR12 100596RR12 101596RR12		10596RR15 100596RR15 101596RR15		
Symbol	Parameter ⁽¹⁾	Condition	Min.	Max.	Min.	Max.	Min.	Max.	Unit
READ CY	CLE					1	L		Ш
tcyc	Cycle Time	_	10	<u> </u>	12		15		ns
twL	Clock Low Pulse Width		4	_	5		6		ns
twn	Clock High Pulse Width		4	<i>~</i> -	5		6	8-	ns
tscs	Setup Time for Chip Select	_	1	<i>2</i> –	1	% –	1		ns
tsa	Setup Time for Address	_	1	_	1	_	1 .	** _	ns
tHCS	Hold Time for Chip Select	_	2 🎉	-	2		2		ns
tHA	Hold Time for Address		2	_	2	1	2		ns
tDH	Data Hold from Clock High		0		0	 	0		ns
ton	Data Ready from Clock High		0	4	0	4	0	4	ns

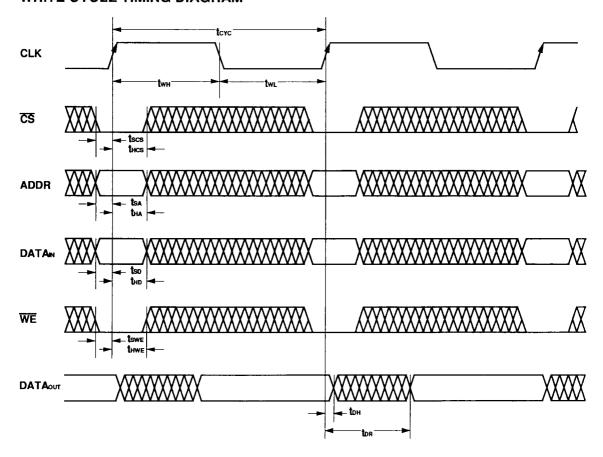
NOTE:

2787 tol 12

READ CYCLE TIMING DIAGRAM

1-B-101

^{1.} Input and Output reference level is 50% point of waveform.

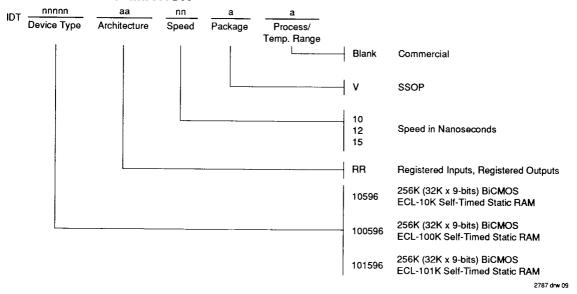

AC ELECTRICAL CHARACTERISTICS (Over the AC Operating Range)

Symbol	Parameter ⁽¹⁾	Test Condition	10596RR10 100596RR10 101596RR10		10596RR12 100596RR12 101596RR12		10596RR15 100596RR15 101596RR15		
			Min.	Max.	Min.	Max.	Min.	Max.	Unit
WRITE C	YCLE	1		L					
tswe	Setup Time for Write Enable	_	1 ,	P -	1 ,	l –	1	. —	ns
tsD	Setup Time for Data In	_	1 🎇	· —	1 4	<u> </u>	1	_	ns
tHWE	Hold Time for Write Enable	_	2		2	-	2	_	ns
tHD	Hold Time for Data In		2		2 💥	1 -	2	_	ns

NOTES:

2787 tbl 12

WRITE CYCLE TIMING DIAGRAM



2787 drw 08

^{1.} Input and Output reference level is 50% point of waveform.

^{2.} All Setup, Hold, and access timing is the same as the Read Cycle with the addition of the above requirements. Write Data appears on the output pins after the next rising edge of CLK.

ORDERING INFORMATION

