
Features

- Extremely Low Static Current Draw from Power Supply
- Two-State Control
- Low-Voltage Operation $(V_{CC} = 2.5V)$
- Low Output Transistor Leakage
- 8-Pin, 150mil SOIC-N Package

Applications

- · Portable Battery Equipment
- Telephony
- Instrumentation

CPC5608 Block Diagram

Output	Input = 0	Input = 1
NC ₁	On	Off
NC ₂	On	Off
NC ₃	On	Off
NO ₁	Off	On
NO ₂	Off	On

On = Low Impedance

Description

The CPC5608 is a 5-channel, low-power transistor array IC with a simple 2-state logic control input. A logic-low input turns on the switches NC_1 , NC_2 , and NC_3 while a logic high turns on the switches NO_1 and NO_2 . Output transistors are capable of sinking 20mA in low output voltage (<7V) circuits. The IC features a supply voltage range of 2.5V to 5.5V and extremely low static supply bias current draw making it ideal for portable battery and on-hook telephony applications. In addition, the maximum output transistor leakage is a low $1\mu A$.

The device logic input threshold is compatible with standard optocoupler output levels for isolation applications.

Ordering Information

Part #	Description
CPC5608N	8-Pin SOIC-N Package, (50/tube)
CPC5608NTR	8-Pin SOIC-N Package, Tape & Reel, (1000/Reel)

1.0 Specifications

1.1 Pin Description

Pin #	Name	Description
1	V _{CC}	Supply Voltage
2	INPUT	Logic Input
3	GND	Ground
4	NO ₂	Output, Active* with INPUT = 1
5	NO ₁	Output, Active* with INPUT = 1
6	NC ₃	Output, Active* with INPUT = 0
7	NC ₂	Output, Active* with INPUT = 0
8	NC ₁	Output, Active* with INPUT = 0

^{*} Active = Low Impedance

1.2 Absolute Maximum Ratings @ 25°C

Parameter	Min	Max	Unit
Operating Temperature	0	70	°C
Storage Temperature	-55	+125	°C
Positive Supply Voltage	-0.5	7	V
Max Power Dissipation	-	0.33	W
Package Thermal Conduction (Estimate)	-	165	°C/W
Output Voltage (ONX)	-0.5	7	V

1.3 Electrical Characteristics

Unless otherwise specified, minimum and maximum values are guaranteed by production testing requirements. Typical values are characteristic of the device and are the result of engineering evaluations. In addition, typical values are provided for informational purposes only and are not part of the testing requirements.

All electrical specifications are provided for T_A =25°C and 3.0V < V_{CC} < 5.5V.

1.3.1 Electrical Characteristics

Parameter	Conditions	Symbol	Min	Тур	Max	Units
Input Parameters						
Logic "1" Voltage	$V_{CC} = 2.8V, V_{CC} = 3.5V$	V _{IH}	2.4	-	-	V
Logic "0" Voltage	$V_{CC} = 2.8V, V_{CC} = 3.5V$	V_{IL}	-	-	0.8	V
Logic "1" Current	$V_{CC} = 3.5V, V_{IN} = 2.4V$	I _{IH}	-	2.6	20	μΑ
Logic "0" Current	$V_{CC} = 3.5V, V_{IN} = 0.4V$	I _{IL}	-	0.4	2	μΑ
Output Parameters						
Output Leakage Current	$V_{CC} = 3.0V$, $V_{SW} = 6.0V$ Switch Off	I _{LKG}	-	0.3	1	μΑ
Output Resistance	V _{CC} = 2.8V, V _{CC} = 3.2V Switch On	R _{ON}	5	10	15	Ω
Maximum Output Current	V _{CC} = 3.0V, V _{OUT} = 2.0V Switch On	l _{out}	50	-	-	mA
Power Supply						
Operational Range	-	V _{CC}	2.5	3.0	5.5	V
Quiescent Power Supply Current	$V_{CC} = 5.5V,$ $V_{IN} = 0.0V, V_{IN} = 5.5V$	I _{cc}	-	2	100	nA
Timing						
Turn-On Time	V _{CC} = 3.0V	t _{on}	-	1	3	μS
Turn-Off Time		t _{off}	-	1	3	μ\$

Absolute Maximum Ratings are stress ratings. Stresses in excess of these ratings can cause permanent damage to the device. Functional operation of the device at conditions beyond those indicated in the operational sections of this data sheet is not implied.

Manufacturing Information

Moisture Sensitivity

All plastic encapsulated semiconductor packages are susceptible to moisture ingression. IXYS Integrated Circuits Division classified all of its plastic encapsulated devices for moisture sensitivity according to the latest version of the joint industry standard, IPC/JEDEC J-STD-020, in force at the time of product evaluation. We test all of our products to the maximum conditions set forth in the standard, and guarantee proper operation of our devices when handled according to the limitations and information in that standard as well as to any limitations set forth in the information or standards referenced below.

Failure to adhere to the warnings or limitations as established by the listed specifications could result in reduced product performance, reduction of operable life, and/or reduction of overall reliability.

This product carries a **Moisture Sensitivity Level (MSL) rating** as shown below, and should be handled according to the requirements of the latest version of the joint industry standard **IPC/JEDEC J-STD-033**.

Device	Moisture Sensitivity Level (MSL) Rating
CPC5608N	MSL 1

ESD Sensitivity

This product is ESD Sensitive, and should be handled according to the industry standard JESD-625.

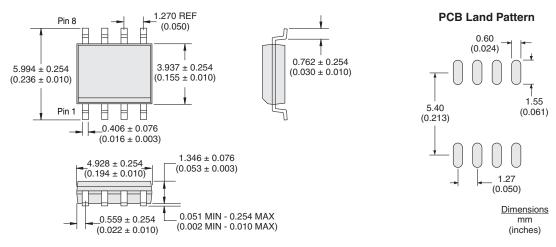
Reflow Profile

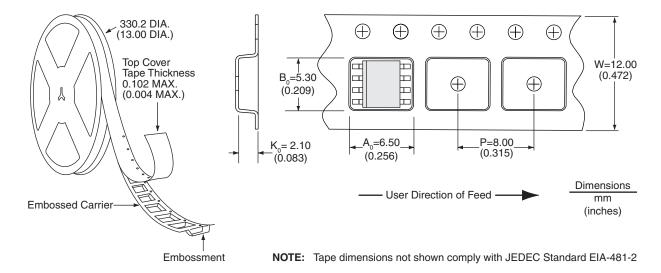
This product has a maximum body temperature and time rating as shown below. All other guidelines of **J-STD-020** must be observed.

Device	Maximum Temperature x Time
CPC5608N	260°C for 30 seconds

Board Wash

IXYS Integrated Circuits Division recommends the use of no-clean flux formulations. However, board washing to remove flux residue is acceptable, and the use of a short drying bake may be necessary. Chlorine-based or Fluorine-based solvents or fluxes should not be used. Cleaning methods that employ ultrasonic energy should not be used.





MECHANICAL DIMENSIONS

CPC5608N

CPC5608N

For additional information please visit our website at: www.ixysic.com

IXYS Integrated Circuits Division makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication and reserves the right to make changes to specifications and product descriptions at any time without notice. Neither circuit patent licenses nor indemnity are expressed or implied. Except as set forth in IXYS Integrated Circuits Division's Standard Terms and Conditions of Sale, IXYS Integrated Circuits Division assumes no liability whatsoever, and disclaims any express or implied warranty, relating to its products including, but not limited to, the implied warranty of merchantability, these for a particular purpose, or infringement of any intellectual property right.

The products described in this document are not designed, intended, authorized or warranted for use as components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or where malfunction of IXYS Integrated Circuits Division's product may result in direct physical harm, injury, or death to a person or severe property or environmental damage. IXYS Integrated Circuits Division reserves the right to discontinue or make changes to its products at any time without notice.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

IXYS:

CPC5608N CPC5608NTR