| **有关敝公司产品的注意事项 【**高度安全性,可靠性的应用设备(汽车室内 / 产业机器)】

请务必在使用敝司产品之前阅读。

⚠ 注意

本产品目录中所记载的内容为2017年10月之内容。因改良等原因,可能会不经预告而变更记载内容,所以请务必在 使用前先确认最新的产品信息。未按照本产品目录中所记载的内容或交货规格说明书使用敝公司产品的,即便其致 使使用设备发生损害、瑕疵等时,敝公司也不承担任何责任,敬请悉知。

■ 就规格相关的详细内容, 敝公司备有交货规格说明书, 详情请向敝公司咨询。

■使用敝公司产品时,请务必事先安装到设备之后,在实际使用的环境下进行评估和确认。

本产品目录中所记载的产品可使用于一般电子设备(音像设备、办公自动化设备、家电产品、办公设备、信息/通讯设备)、医疗设备(国际(IMDRF)第一类,第二类)、产业机器、室内电灯等。若考虑将本产品目录中所记载的产品使用于可能会直接危及生命或身体的设备[运输用设备(汽车驱动控制设备、火车控制设备、船舶控制设备等)、交通用信号设备、医疗设备(国际(IMDRF)第三类)]等的,请务必事先向敝公司咨询。

另外,请勿将敝公司产品使用于对安全性和可靠性要求较高的设备(航天设备、航空设备^{**}、医疗设备(国际(IMDRF) 第四类)、原子能控制设备、海底设备、军事设备等)。

※ 注释 : 仅限于对航空设备的安全运行不产生直接干扰的设备[机内娱乐设备、机内照明设备、电动座椅、餐饮设备等], 在满足敝公司另行指定的相关 条件时, 亦可将敝公司产品用于以上用途。在贵公司考虑将敝公司的产品用于以上用途时, 请务必事先向敝公司咨询相关的信息。

且即便属于一般电子设备,使用于对安全性和可靠性要求较高的设备、电路上时,敝公司建议进行充分的安全评估, 并根据需要,在设计时追加保护电路等。

未经敝公司的事先书面同意,把本产品目录中所记载的产品使用于前述需要向敝公司咨询的设备或敝公司禁止使用的设备,从而给客户或第三方造成损害的,敝公司不承担任何责任,敬请悉知。

本产品目录中所记载的信息是用于说明相关产品的典型操作以及相关应用。此类信息的使用不代表对于敝公司以及 第三方的知识产权以及其他权利的使用许可或是不侵权保证。

- 敝公司产品的保证范围仅限于交付的敝公司产品单品,就敝公司产品的故障或瑕疵所誘発的损害,敝公司不承担任何责任,敬请悉知。但是,以书面形式另行签署了交易基本合同书,品质保证协定书等时,敝公司将根据该合同等的条件提供保证。
- 本产品目录中所记载的内容适用于从敝公司营业所、销售子公司、销售代理店(即"正规销售渠道")购买的敝公司产品,并不适用于从上述以外的渠道购买的敝公司产品,敬请悉知。

■出口相关注意事项

本产品目录中所记载的部分产品在出口时须事先确认《外汇和对外贸易法》以及美国出口管理的相关法规,并办理 相关手续。如有不明之处,请向敝公司咨询。

TAIYO YUDEN 2018

多层高频片状电感器(HK系列)

※N=nH 的小数/	※N=nH 的小数点					
④电感量公差						
代码	电感量公差					
J	$\pm 5\%$					
S	±0.3nH					
⑤包装 代码	包装					
—T	卷盘带装					
代码	本公司管理记号					
V	产业机器/车内用途					

■标准外型尺寸 / 标准数量

Tumo		w	т		标准数量 [pcs]				
Туре	L	٧٧	1	e	纸带	压纹带			
HK 1005	1.0 ± 0.05	0.5 ± 0.05	0.5 ± 0.05	0.25±0.10	10000	_			
(0402)	(0.039 ± 0.002)	(0.020 ± 0.002)	(0.020 ± 0.002)	(0.010 ± 0.004)	10000	—			
					单位	立: mm (inch)			

for High Quality Equipment

■型号一览

·产品目录中的多层高频片状电感器全部属于RoHS对应品。

注) · 根据使用电路和机器,需要按照相应规格处理。请务必咨询正规销售渠道。

*1:面向汽车室内用途(AEC-Q200 Qualified)的产品。

 ▲EC-Q200 qualified>
 标注了*1的高周波多层片状电感器为其代表性产品已通过了应对AEC-Q200标准之评估测试的产品。
 125℃ products: AEC-Q200 Grade1 (Grade1的测试条件下的评价实施已完成。)
 85℃ products: AEC-Q200 Grade3 (Grade3的测试条件下的评价实施已完成。)
 关于本产品的详细规格和评估测试结果等信息,请咨询官方销售渠道。
 此外,订购时请家取产品规格书。
 *22:面向工业设备、医疗设备的产品。

●HK 1005

●НК 1005	标称电感值		Q值	LQ	Q (*	Гуріс	al) 频	率 [MI	Hz]	自共振频	率 [MHz]	直流 DC			电流 (max.)	厚度	
型号	[nH]	电感量公差	(min.)	测试频率 [MHz]	100	300	500	800	1000	(min.)	(typ.)	(max.)	(typ.)	-55∼ +125°C	-55∼ +85°C	[mm]	注释
HK 1005 1N0S-TV	1.0	±0.3nH	8	100	11	25	34	43	52	10000	> 13000	0.08	0.04	300	900	0.50 ± 0.05	*1 ,*2
HK 1005 1N2S-TV	1.2	±0.3nH	8	100	11	25	35	44	52	10000	> 13000	0.09	0.04	300	900	0.50 ± 0.05	*1 ,*2
HK 1005 1N5S-TV	1.5	±0.3nH	8	100	11	24	33	44	48	6000	> 13000	0.10	0.05	300	850	0.50 ± 0.05	*1 ,*2
HK 1005 1N8S-TV	1.8	±0.3nH	8	100	11	23	30	36	42	6000	11000	0.12	0.06	300	700	0.50 ± 0.05	*1 ,*2
HK 1005 2N0S-TV	2.0	±0.3nH	8	100	11	21	27	34	39	6000	10500	0.12	0.06	300	700	0.50 ± 0.05	*1 ,*2
HK 1005 2N2S-TV	2.2	±0.3nH	8	100	10	18	25	31	36	6000	10000	0.13	0.07	300	700	0.50 ± 0.05	*1 ,*2
HK 1005 2N4S-TV	2.4	±0.3nH	8	100	10	18	24	31	35	6000	9500	0.13	0.07	300	650	0.50 ± 0.05	*1 ,*2
HK 1005 2N7S-TV	2.7	±0.3nH	8	100	10	18	24	31	34	6000	9000	0.13	0.08	300	650	0.50 ± 0.05	*1 ,*2
HK 1005 3N0S-TV	3.0	±0.3nH	8	100	10	18	24	31	35	6000	8500	0.16	0.09	300	600	0.50 ± 0.05	*1 ,*2
HK 1005 3N3S-TV	3.3	±0.3nH	8	100	10	18	24	31	35	6000	8000	0.16	0.10	300	550	0.50 ± 0.05	*1 ,*2
HK 1005 3N6S-TV	3.6	±0.3nH	8	100	10	18	24	31	35	5000	7500	0.20	0.11	300	500	0.50 ± 0.05	*1 ,*2
HK 1005 3N9S-TV	3.9	±0.3nH	8	100	10	18	24	31	35	4000	7000	0.21	0.12	300	500	0.50 ± 0.05	*1 ,*2
HK 1005 4N3S-TV	4.3	±0.3nH	8	100	10	18	24	31	35	4000	6500	0.20	0.12	300	500	0.50 ± 0.05	*1 ,*2
HK 1005 4N7S-TV	4.7	±0.3nH	8	100	10	18	24	31	34	4000	6000	0.21	0.12	300	500	0.50 ± 0.05	*1 ,*2
HK 1005 5N1S-TV	5.1	±0.3nH	8	100	10	18	24	31	34	4000	5800	0.21	0.13	300	450	0.50 ± 0.05	*1 ,*2
HK 1005 5N6S-TV	5.6	±0.3nH	8	100	10	18	24	30	35	4000	5700	0.23	0.15	300	430	0.50 ± 0.05	*1 ,*2
HK 1005 6N2S-TV	6.2	±0.3nH	8	100	10	18	24	30	34	3900	5600	0.25	0.16	300	430	0.50 ± 0.05	*1 ,*2
HK 1005 6N8J-TV	6.8	±5%	8	100	10	18	23	29	32	3900	5500	0.25	0.17	300	430	0.50 ± 0.05	*1 ,*2
HK 1005 7N5J-TV	7.5	±5%	8	100	10	18	23	29	32	3700	5200	0.25	0.18	300	400	0.50 ± 0.05	*1 ,*2
HK 1005 8N2J-TV	8.2	±5%	8	100	10	18	23	29	31	3600	4900	0.28	0.21	300	380	0.50 ± 0.05	*1 ,*2
HK 1005 9N1J-TV	9.1	±5%	8	100	10	18	23	29	31	3400	4500	0.30	0.22	300	360	0.50 ± 0.05	*1 ,*2
HK 1005 10NJ-TV	10	±5%	8	100	10	18	23	29	31	3200	4300	0.31	0.23	300	340	0.50 ± 0.05	*1 ,*2
HK 1005 12NJ-TV	12	±5%	8	100	11	18	23	29	31	2700	3900	0.40	0.28	300	330	0.50 ± 0.05	*1 ,*2
HK 1005 15NJ-TV	15	±5%	8	100	11	18	23	28	30	2300	3500	0.46	0.31	300	320	0.50 ± 0.05	*1 ,*2
HK 1005 18NJ-TV	18	±5%	8	100	11	18	23	28	30	2100	3100	0.55	0.35	300	310	0.50 ± 0.05	*1 ,*2
HK 1005 22NJ-TV	22	±5%	8	100	11	17	22	26	27	1900	2800	0.60	0.42	300	300	0.50 ± 0.05	*1 ,*2
HK 1005 27NJ-TV	27	±5%	8	100	11	17	21	25	26	1600	2300	0.70	0.47	300	300	0.50 ± 0.05	*1 ,*2
HK 1005 33NJ-TV	33	±5%	8	100	11	16	20	23	22	1300	1900	0.80	0.50	200	250	0.50 ± 0.05	*1 ,*2
HK 1005 39NJ-TV	39	±5%	8	100	11	16	20	23	21	1200	1700	0.90	0.52	200	250	0.50 ± 0.05	*1 ,*2
HK 1005 47NJ-TV	47	±5%	8	100	11	16	19	21	18	1000	1500	1.00	0.58	200	230	0.50 ± 0.05	*1 ,*2
HK 1005 56NJ-TV	56	±5%	8	100	11	16	18	18	16	750	1300	1.00	0.61	200	220	0.50 ± 0.05	*1 ,*2
HK 1005 68NJ-TV	68	±5%	8	100	11	15	17	18	11	750	1200	1.20	0.70	180	200	0.50 ± 0.05	*1 ,*2
HK 1005 82NJ-TV	82	±5%	8	100	10	14	16	15	6	600	1100	1.30	0.81	150	200	0.50 ± 0.05	*1 ,*2
HK 1005 R10J-TV	100	±5%	8	100	10	14	14	12	-	600	1000	1.50	0.94	150	200	0.50 ± 0.05	*1 ,*2
HK 1005 R12J-TV	120	±5%	8	100	10	12	10	-	-	600	800	1.60	1.10	150	200	0.50 ± 0.05	*1 ,*2
HK 1005 R15J-TV	150	±5%	8	100	12	17	17	—	-	550	920	3.20	2.57	140	200	0.50 ± 0.05	*1 ,*2
HK 1005 R18J-TV	180	±5%	8	100	12	16	-	-	-	500	810	3.70	2.97	130	200	0.50 ± 0.05	*1 ,*2
HK 1005 R22J-TV	220	±5%	8	100	12	16	-	-	-	450	700	4.20	3.29	120	200	0.50 ± 0.05	*1 ,*2
HK 1005 R27J-TV	270	±5%	8	100	12	14	—	-	-	400	600	4.80	3.92	110	200	0.50 ± 0.05	*1 ,*2

※)针对初始L值施加了直流重叠电流后,L值会降至5%以内。此外,元件温度上升到20℃以内时的值作为额定电流。

▶ 由于篇幅有限,本产品目录中只记载了有代表性的产品规格,若考虑使用弊司产品时,请确认交货规格说明书中的详细规格。 另外,有关各产品的详细信息(特性图、可靠性信息、使用时的注意事项等),请参阅弊司网站(http://www.ty-top.com/)。

PACKAGING

①Minimum Quantity

Turne	Thickness	Standard Q	uantity [pcs]
Туре	mm(inch)	Paper Tape	Embossed Tape
CK1608(0603)	0.8 (0.031)	4000	-
CK2125(0805)	0.85(0.033)	4000	-
01(2123(0003)	1.25(0.049)	—	2000
CKS2125(0805)	0.85(0.033)	4000	-
01(32123(0003)	1.25(0.049)	—	2000
CKP1608(0603)	0.8 (0.031)	4000	—
CKP2012(0805)	0.9 (0.035)	_	3000
CKP2016(0806)	0.9 (0.035)	—	3000
	0.7 (0.028)	—	3000
CKP2520(1008)	0.9 (0.035)	_	3000
	1.1 (0.043)	—	2000
NM2012(0805)	0.9 (0.035)	—	3000
NIM 2520 (1000)	0.9 (0.035)	—	3000
NM2520(1008)	1.1 (0.043)	—	2000
LK1005(0402)	0.5 (0.020)	10000	-
LK1608(0603)	0.8 (0.031)	4000	-
	0.85(0.033)	4000	_
LK2125(0805)	1.25(0.049)	—	2000
HK0603(0201)	0.3 (0.012)	15000	_
HK1005(0402)	0.5 (0.020)	10000	-
HK1608(0603)	0.8 (0.031)	4000	_
	0.85(0.033)	_	4000
HK2125(0805)	1.0 (0.039)	_	3000
HKQ0402(01005)	0.2 (0.008)	20000	40000
HKQ0603W(0201)	0.3 (0.012)	15000	_
HKQ0603S(0201)	0.3 (0.012)	15000	_
HKQ0603U(0201)	0.3 (0.012)	15000	_
AQ105(0402)	0.5 (0.020)	10000	_
BK0402(01005)	0.2 (0.008)	20000	_
BK0603(0201)	0.3 (0.012)	15000	_
BK1005(0402)	0.5 (0.020)	10000	_
BKH0603(0201)	0.3 (0.012)	15000	
BKH1005(0402)	0.5 (0.012)	10000	_
BK1608(0603)	0.8 (0.031)	4000	_
BK1000(0003)		4000	
BK2125(0805)	0.85(0.033)	4000	2000
BK2010(0804)		4000	2000
BK3216(1206)	0.45(0.018)	4000	4000
		20000	4000
BKP0402(01005)	0.2 (0.008)	20000	_
BKP0603(0201)	0.3 (0.012)	15000	
BKP1005(0402)	0.5 (0.020)	10000	
BKP1608(0603)	0.8 (0.031)	4000	
BKP2125(0805)	0.85(0.033)	4000	_
MCF0605(0202)	0.3 (0.012)	15000	-
MCF0806(0302)	0.4 (0.016)	—	10000
MCF1210(0504)	0.55(0.022)	—	5000
MCF2010(0804)	0.45(0.018)	—	4000
MCFK1608(0603)	0.6 (0.024)	4000	-
MCFE1608(0603)	0.65(0.026)	4000	-
MCKK1608(0603)	1.0(0.039)		3000
MCHK2012(0806)	0.8 (0.031)	4000	-
MCKK2012(0805)	1.0(0.039)	-	3000

> This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) .

TAIYO YUDEN

②Taping material

MC

2012

Chip Filled

Τ	Thickness	Chip	cavity	Insertion Pitch	Tape Thickness
Туре	mm(inch)	Α	В	F	Т
0/(1000 (0000)	0.0 (0.001)	1.0±0.2	1.8±0.2	4.0±0.1	1.1max
CK1608(0603)	0.8 (0.031)	(0.039 ± 0.008)	(0.071 ± 0.008)	(0.157 ± 0.004)	(0.043max)
	0.05(0.000)	1.5±0.2	2.3±0.2	4.0±0.1	1.1max
CK2125(0805)	0.85(0.033)	(0.059 ± 0.008)	(0.091 ± 0.008)	(0.157 ± 0.004)	(0.043max)
		1.5±0.2	2.3±0.2	4.0±0.1	1.1max
CKS2125(0805)	0.85(0.033)	(0.059 ± 0.008)	(0.091 ± 0.008)	(0.157 ± 0.004)	(0.043max)
	0.0 (0.001)	1.0±0.2	1.8±0.2	4.0±0.1	1.1max
CKP1608(0603)	0.8 (0.031)	(0.039 ± 0.008)	(0.071 ± 0.008)	(0.157 ± 0.004)	(0.043max)
	()	0.65±0.1	1.15±0.1	2.0±0.05	0.8max
LK1005(0402)	0.5 (0.020)	(0.026 ± 0.004)	(0.045 ± 0.004)	(0.079 ± 0.002)	(0.031max)
	/>	1.0±0.2	1.8±0.2	4.0±0.1	1.1max
LK1608(0603)	0.8 (0.031)	(0.039 ± 0.008)	(0.071 ± 0.008)	(0.157 ± 0.004)	(0.043max)
		1.5±0.2	2.3±0.2	4.0±0.1	1.1max
LK2125(0805)	0.85(0.033)	(0.059 ± 0.008)	(0.091 ± 0.008)	(0.157 ± 0.004)	(0.043max)
	/	0.40 ± 0.06	0.70 ± 0.06	2.0±0.05	0.45max
HK0603(0201)	0.3 (0.012)	(0.016 ± 0.002)	(0.028 ± 0.002)	(0.079 ± 0.002)	(0.018max)
		0.65±0.1	1.15±0.1	2.0±0.05	0.8max
HK1005(0402)	0.5 (0.020)	(0.026 ± 0.004)	(0.045 ± 0.004)	(0.079 ± 0.002)	(0.031max)
	/	1.0±0.2	1.8±0.2	4.0±0.1	1.1max
HK1608(0603)	0.8 (0.031)	(0.039 ± 0.008)	(0.071 ± 0.008)	(0.157 ± 0.004)	(0.043max)
		0.25±0.04	0.45±0.04	2.0±0.05	0.36max
HKQ0402(01005)	0.2 (0.008)	(0.010 ± 0.002)	(0.018 ± 0.002)	(0.079 ± 0.002)	(0.014max)
		0.40±0.06	0.70±0.06	2.0±0.05	0.45max
HKQ0603W(0201)	0.3 (0.012)	(0.016 ± 0.002)	(0.028 ± 0.002)	(0.079 ± 0.002)	(0.018max)
		0.40±0.06	0.70±0.06	2.0±0.05	0.45max
HKQ0603S(0201)	0.3 (0.012)	(0.016 ± 0.002)	(0.028 ± 0.002)	(0.079 ± 0.002)	(0.018max)
		0.40±0.06	0.70±0.06	2.0±0.05	0.45max
HKQ0603U(0201)	0.3 (0.012)	(0.016 ± 0.002)	(0.028 ± 0.002)	(0.079 ± 0.002)	(0.018max)
		0.75±0.1	1.15±0.1	2.0±0.05	0.8max
AQ105(0402)	0.5 (0.020)	(0.030 ± 0.004)	(0.045 ± 0.004)	(0.079 ± 0.002)	(0.031max)
		0.25±0.04	0.45±0.04	2.0±0.05	0.36max
BK0402(01005)	0.2 (0.008)	(0.010 ± 0.002)	(0.018 ± 0.002)	(0.079 ± 0.002)	(0.014max)
		0.40±0.06	0.70±0.06	2.0±0.05	0.45max
BK0603(0201)	0.3 (0.012)	(0.016 ± 0.002)	(0.028 ± 0.002)	(0.079 ± 0.002)	(0.018max)
		(0.018 ± 0.002) 0.65 ± 0.1			
BK1005(0402)	0.5 (0.020)		1.15 ± 0.1	2.0 ± 0.05	0.8max
		(0.026 ± 0.004)	(0.045 ± 0.004)	(0.079 ± 0.002)	(0.031max)
BK1608(0603)	0.8 (0.031)	1.0 ± 0.2	1.8 ± 0.2 (0.071 ± 0.008)	4.0 ± 0.1	1.1max (0.043max)
		(0.039±0.008)	, ,	(0.157 ± 0.004)	(,
BK2125(0805)	0.85(0.033)	1.5 ± 0.2	2.3 ± 0.2	4.0 ± 0.1	1.1max
		(0.059 ± 0.008)	(0.091 ± 0.008)	(0.157±0.004)	(0.043max)
BK2010(0804)	0.45(0.018)	1.2 ± 0.1	2.17 ± 0.1	4.0 ± 0.1	0.8max
		(0.047±0.004)	(0.085±0.004)	(0.157±0.004)	(0.031max)
BKP0402(01005)	0.2 (0.008)	0.25 ± 0.04	0.45 ± 0.04	2.0 ± 0.05	0.36max
		(0.010±0.002)	(0.018±0.002)	(0.079±0.002)	(0.014max)
BKP0603(0201)	0.3 (0.012)	0.40 ± 0.06	0.70 ± 0.06	2.0 ± 0.05	0.45max
		(0.016±0.002)	(0.028±0.002)	(0.079±0.002)	(0.018max)
BKP1005(0402)	0.5 (0.020)	0.65 ± 0.1	1.15 ± 0.1	2.0 ± 0.05	0.8max
		(0.026 ± 0.004)	(0.045 ± 0.004)	(0.079 ± 0.002)	(0.031max)
BKP1608(0603)	0.8 (0.031)	1.0 ± 0.2	1.8 ± 0.2	4.0 ± 0.1	1.1max (0.042max)
		(0.039 ± 0.008)	(0.071 ± 0.008)	(0.157 ± 0.004)	(0.043max)
BKP2125(0805)	0.85(0.033)	1.5 ± 0.2	2.3 ± 0.2	4.0 ± 0.1	1.1max
		(0.059 ± 0.008)	(0.091 ± 0.008)	(0.157 ± 0.004)	(0.043max)
BKH0603(0201)	0.3 (0.012)	0.40 ± 0.06	0.70 ± 0.06	2.0 ± 0.05	0.45max
		(0.016±0.002)	(0.028±0.002)	(0.079 ± 0.002)	(0.018max)
BKH1005(0402)	0.5 (0.020)	0.65 ± 0.1	1.15 ± 0.1	2.0 ± 0.05	0.8max
	· •	(0.026±0.004)	(0.045±0.004)	(0.079±0.002)	(0.031max)
MCF0605(0202)	0.3 (0.012)	0.62 ± 0.03	0.77±0.03	2.0 ± 0.05	0.45max
,	,	(0.024±0.001)	(0.030 ± 0.001)	(0.079±0.002)	(0.018max)
MCFK1608(0603)	0.6 (0.024)	1.1±0.05	1.9±0.05	4.0±0.1	0.72max
	·	(0.043±0.002)	(0.075 ± 0.002)	(0.157±0.004)	(0.028max)
MCFE1608(0603)	0.65(0.026)	1.1±0.05	1.9±0.05	4.0±0.1	0.9max
MCFE1608(0603)		(0.043 ± 0.002)	(0.075±0.002)	(0.157±0.004)	(0.035max)
			0.01.00		0.0
MCHK2012(0805)	0.8 (0.031)	1.55 ± 0.2 (0.061 ± 0.008)	2.3 ± 0.2 (0.091 ± 0.008)	4.0 ± 0.1 (0.157 ± 0.004)	0.9max (0.035max)

Τ	Thickness	Chip	cavity	Insertion Pitch	Tape Thickness		
Туре	mm(inch)	A	В	F	К	Т	
OK3125(0905)	1.25(0.049)	1.5±0.2	2.3±0.2	4.0±0.1	2.0	0.3	
CK2125(0805)	1.25(0.049)	(0.059 ± 0.008)	(0.091 ± 0.008)	(0.157 ± 0.004)	(0.079)	(0.012)	
	1.05(0.040)	1.5±0.2	2.3±0.2	4.0±0.1	2.0	0.3	
CKS2125(0805)	1.25(0.049)	(0.059 ± 0.008)	(0.091 ± 0.008)	(0.157 ± 0.004)	(0.079)	(0.012)	
CKP2012(0805)	0.9 (0.035)	1.55±0.2	2.3±0.2	4.0±0.1	1.3	0.3	
GKF2012(0803)	0.9 (0.035)	(0.061 ± 0.008)	(0.091 ± 0.008)	(0.157 ± 0.004)	(0.051)	(0.012)	
CKP2016(0806)	0.9 (0.035)	1.8±0.1	2.2±0.1	4.0±0.1	1.3	0.25	
GKF2010(0800)	0.9 (0.035)	(0.071 ± 0.004)	(0.087 ± 0.004)	(0.157 ± 0.004)	(0.051)	(0.01)	
	0.7 (0.028)				1.4		
	0.7 (0.028)				(0.055)		
CKP2520(1008)	0.9 (0.035)	2.3 ± 0.1	2.8 ± 0.1	4.0±0.1	1.4	0.3	
011 2020 (1000)	0.3 (0.000)	(0.091 ± 0.004)	(0.110 ± 0.004)	(0.157 ± 0.004)	(0.055)	(0.012)	
	1.1 (0.043)				1.7		
	1.1 (0.040)				(0.067)		
NM2012(0805)	0.9 (0.035)	1.55 ± 0.2	2.3 ± 0.2	4.0±0.1	1.3	0.3	
111112012 (0000)	0.3 (0.000)	(0.061 ± 0.008)	(0.091 ± 0.008)	(0.157±0.004)	(0.051)	(0.012)	
NM2520(1008)	0.9 (0.035)				1.4		
	0.0 (0.000)	2.3±0.1	2.8 ± 0.1	4.0±0.1	(0.055)	0.3	
	1.1 (0.043)	(0.091 ± 0.004)	(0.110 ± 0.004)	(0.157 ± 0.004)	1.7	(0.012)	
	1.1 (0.040)				(0.067)		
LK2125(0805) 1.2	1.25(0.049)	1.5 ± 0.2	2.3 ± 0.2	4.0±0.1	2.0	0.3	
EI(2123 (0003)	1.23(0.049)	(0.059 ± 0.008)	(0.091±0.008)	(0.157±0.004)	(0.079)	(0.012)	
	0.85(0.033)				1.5		
HK2125(0805)	0.03 (0.0337	1.5±0.2	2.3 ± 0.2	4.0±0.1	(0.059)	0.3	
111(2120(0000)	1.0 (0.039)	(0.059 ± 0.008)	(0.091 ± 0.008)	(0.157 ± 0.004)	2.0	(0.012)	
	1.0 (0.000)				(0.079)		
BK2125(0805)	1.25(0.049)	1.5 ± 0.2	2.3 ± 0.2	4.0±0.1	2.0	0.3	
BI(2120 (0000)	1.20 (0.040)	(0.059 ± 0.008)	(0.091±0.008)	(0.157±0.004)	(0.079)	(0.012)	
BK3216(1206)	0.8(0.031)	1.9 ± 0.1	3.5 ± 0.1	4.0±0.1	1.4	0.3	
B1(0210(1200)	0.0 (0.001)	(0.075 ± 0.004)	(0.138 ± 0.004)	(0.157±0.004)	(0.055)	(0.012)	
MCF0806(0302)	0.4 (0.016)	0.75 ± 0.05	0.95 ± 0.05	2.0 ± 0.05	0.55	0.3	
WO1 0000 (0002)	0.4 (0.010)	(0.030 ± 0.002)	(0.037±0.002)	(0.079±0.002)	(0.022)	(0.012)	
MCF1210(0504)	0.55(0.022)	1.15 ± 0.05	1.40 ± 0.05	4.0±0.1	0.65	0.3	
101 1210 (0004)	0.00 (0.022)	(0.045±0.002)	(0.055±0.002)	(0.157±0.004)	(0.026)	(0.012)	
MCF2010(0804)	0.45(0.018)	1.1 ± 0.1	2.3 ± 0.1	4.0±0.1	0.85	0.3	
	0.70 (0.010)	(0.043 ± 0.004)	(0.091±0.004)	(0.157±0.004)	(0.033)	(0.012)	
MCKK1608(0603)	1.0 (0.039)	1.1 ± 0.1	1.95 ± 0.1	4.0±0.1	1.4	0.25	
	1.0 (0.000)	(0.043 ± 0.004)	(±0.004)	(0.157±0.004)	(0.055)	(0.01)	
MCKK2012(0805)	10 (0039)	1.55 ± 0.2	2.3 ± 0.2	4.0±0.1	1.35	0.25	
	1.0 (0.039)	(0.061 ± 0.008)	(0.091 ± 0.008)	(0.157 ± 0.004)	(0.053)	(0.010)	

Unit : mm(inch)

Embossed Tape (4mm wide)

Time		Chip	cavity	Insertion Pitch	Tape Thickness	
Туре	mm(inch)	А	В	F	К	Т
HKQ0402(01005)	0.2 (0.008)	0.23	0.43	1.0 ± 0.02	0.5max.	0.25max.
					Unit	: mm

4LEADER AND BLANK PORTION

 $\textcircled{5} \mathsf{Reel Size}$

	t	W
4mm width tape	1.5max.	5±1.0
8mm width tape	2.5max.	10 ± 1.5

(Unit : mm)

R

1.0

6 Top tape strength

The top tape requires a peel-off force of $0.1 \sim 0.7 N$ in the direction of the arrow as illustrated below.

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

D

 ϕ 21.0±0.8

Е

 2.0 ± 0.5

RELIABILITY DATA

1. Operating Tempe	1. Operating Temperature Range					
	BK1005	−55~+125°C				
Specified Value	BKP1005	-55 ~ $+125^{\circ}$ C (Including self-generated heat)				
Specified value	LK1005	-40~+85°C				
	HK1005	−55~+125°C				

2. Storage Tempera	2. Storage Temperature Range						
	BK1005	−55~+125°C					
Specified Value	BKP1005	−55~+125°C					
Specified value	LK1005	-40~+85°C					
	HK1005	−55~+125°C					

3. Rated Current

Specified Value	BK1005	150~750mA DC		
	BKP1005	0.8~2.0A DC		
Specified value	LK1005	20~25mA DC		
	HK1005	110~300mA DC (-55~+125°C), 200~900mA DC (-55~+85°C)		

Definition of rated current:

•In the BK Series, the rated current is the value of current at which the temperature of the element is increased within 20°C.

•In the BK Series P type the rated current is the value of current at which the temperature of the element is increased within 40°C.

•In the LK and HK Series, the rated current is either the DC value at which the internal L value is decreased within 5% with the application of DC bias,

or the value of current at which the temperature of the element is increased within 20° C.

4. Impedance	4. Impedance						
	BK1005		$10 \sim 1800 \Omega \pm 25\%$				
Specified Value	BKP1005		$10 \sim 220 \Omega \pm 25\%$				
Specified Value	LK1005						
	HK1005		_				
Test Methods and Remarks	Measuring frequency Measuring equipment	: 100±1MHz : 4291A(or its eo	quivalent)				

	Measuring equipment	: 4291A(or its equivalent)
lemarks	Measuring jig	: 16192A(or its equivalent), 16193A(or its equivalent)

5. Inductance		
	BK1005	
O = = = : E = = \/=	BKP1005	_
Specified Value	LK1005	$0.12 \sim 2.2 \mu\text{H}$: $\pm 10 \text{ or } \pm 20\%$
	HK1005	1.0~6.2nH: ±0.3nH 6.8~270nH: ±5%
Test Methods and Remarks	Measuring current : 1mA r HK Series Measuring frequency : 100MH	+ 16193A (or its equivalent) ms

6. Q		
	BK1005	
0 10 10/1	BKP1005	—
Specified Value	LK1005	10~20 min.
	HK1005	8 min.
Test Methods and Remarks	LK Series Measuring frequency : 10~25MHz Measuring equipment /jig : 4291A+1619 Measuring current : 1mA rms HK Series Measuring frequency : 100MHz Measuring equipment /jig : 4291A+16193A	3A(or its equivalent) \(or its equivalent)

7 00 0- 11			
7. DC Resistance	DK1005	0.03~0.90 Ω max.	
	BK1005	0.03~0.90Ω max.	
Specified Value	BKP1005		
	LK1005 HK1005	0.41~1.16Ω max. 0.08~4.8Ω max.	
Test Methods and	HK 1005	0.08~4.8 \cdot max.	
Remarks	Measuring equipment: VOAC-7412, VOAC-75	512, VOAC-7521 (made by Iwasaki Tsushinki)	
Remarks			
8. Self Resonance F	Frequency(SRF)		
	BK1005		
	BKP1005	-	
Specified Value	LK1005	40~180MHz min.	
	HK1005	400~10000MHz min.	
	LK Series		
	Measuring equipment : 4195A (or its	equivalent)	
Test Methods and		2A(or its equivalent)	
Remarks	HK Series :		
	Measuring equipment : 8719C(or its eq	uuivalent)	
		· · ·	
9. Temperature Cha	aracteristic		
	BK1005		
	BKP1005	_	
Specified Value	LK1005		
	HK1005	Inductance change:Within ±10%	
Test Methods and	Temperature range $: -30 \sim +85^{\circ}$ C		
Remarks	Reference temperature : +20°C		
10. Resistance to F	lexure of Substrate		
	BK1005		
Specified Value	BKP1005	No mechanical damage.	
	LK1005		
	HK1005		
	Warp : 2mm		
	Testing board : glass epoxy-resin substrat	ie de la constant de	
	Thickness : 0.8mm		
	20		
Test Methods and	R-230		
Remarks	Board Warp		
	<→ <		
	(Unit:mm)		
11. Solderability			
	BK1005		
Specified Value	BKP1005	At least 90% of terminal electrode is covered by new solder.	
	LK1005	,	
1	HK1005		

Specified value	LK1005		At least 30 % of terminal electrode is covered by new solder.
	HK1005		
Test Methods and	Solder temperature	:230±5°C (JIS Z	3282 H60A or H63A)
Remarks	Solder temperature	:245±3°C (Sn/3.0	0Ag/0.5Cu)
Remarks	Duration	:4±1 sec.	

12. Resistance to S	oldering		
	BK1005		Appearance:No significant abnormality
	BKP1005		Impedance change:Within $\pm 30\%$
Specified Value	LK1005		Appearance:No significant abnormality
Specified value			Inductance change: Within $\pm 15\%$
	HK1005		Appearance:No significant abnormality
			Inductance change: Within $\pm 5\%$
	Solder temperature :260±5°C		
	Duration $:10\pm0.5$ sec.		
Test Methods and			
Remarks			
	Flux :Immersion int		o methanol solution with colophony for 3 to 5 sec.
Recovery		:2 to 3 hrs of i	recovery under the standard condition after the test.(See Note 1)

13. Thermal Shock					
	BK1005		Appearance:No s	significant abnormality	
	BKP1005		Impedance chang	ge: Within ±30%	
Specified Value	LK1005		Appearance:No s	significant abnormality	
			Inductance chang	ge: Within $\pm 10\%$ Q change: Within $\pm 30\%$	
	HK1005		Appearance:No s	significant abnormality	
	111(1005		Inductance chang	ge: Within $\pm 10\%$ Q change: Within $\pm 20\%$	
	BK, BKP, HK S	eries			
	Conditions for 1	•			
	Step	temperature(°C)		time(min.)	
	1	-40°C +0/-3		30±3	
	2	Room temperature)	2~3	
	3	+125°C +3/-0		30±3	
	4	Room temperature)	2~3	
	Number of cycle				
Test Methods and	Recovery: 2 to 3	hrs of recovery under the st	tandard condition a	fter the test.(See Note 1)	
Remarks					
	LK Series				
	Conditions for 1				
	Step	temperature(°C)		time (min.)	
	1	-40°C +0/-3		30±3	
	2	Room temperature		2~3	
	3	+85°C +3/-0		30±3	
	4	Room temperature)	2~3	
	Number of cycle				
/··· ··· ··· ·		hrs of recovery under the st			
(Note 1) When there	e are questions co	ncerning measurement result	; measurement sha	all be made after 48 ±2 hrs of recovery under the standard conditio	
14 D					
14. Damp Heat(St	-			· · · · · · · · · · · · · · · · · · ·	
	BK1005			significant abnormality	
	BKP1005			re: Within ±30%	
Specified Value	LK1005		Appearance:No significant abnormality Inductance change: Within $\pm 10\%$ Q change: Within $\pm 30\%$		
	HK1005		Appearance:No significant abnormality Inductance change: Within $\pm 10\%$ Q change: Within $\pm 20\%$		
			inductance change	ge: within ±10% Q change: within ±20%	
	Temperature	:85±2°C			
Test Methods and	Humidity	:80 to 85%RH			
Remarks	Duration	1000 + 24/-0 hrs			
	Recovery		er the standard cor	ndition after the removal from test chamber.(See Note 1)	
	1				
15. Loading under D	amp Heat				
	BK1005		Appearance:No s	significant abnormality	
	BKP1005		Impedance chang	re: Within ±30%	
0	1.144.005			significant abnormality	
Specified Value	LK1005				

	HK1005		Appearance: No significant abnormality		
			Inductance change: Within $\pm 10\%$ Q change: Within $\pm 20\%$		
Test Methods and Remarks	Temperature Humidity Applied current Duration Recovery	:85±2°C :80 to 85%RH :Rated current :1000+24/-0 hrs :2 to 3 hrs of recovery	y under the standard condition after the removal from test chamber.(See Note 1)		

Inductance change: Within $\pm 10\%$ Q change: Within $\pm 30\%$

Note on standard condition: "standard condition" referred to herein is defined as follows:

5 to 35 $^\circ\!C$ of temperature, 45 to 85% relative humidity, and 86 to 106kPa of air pressure.

When there are questions concerning measurement results:

In order to provide correlation data, the test shall be conducted under condition of $20\pm2^{\circ}C$ of temperature, 60 to 70% relative humidity, and 86 to 106kPa of air pressure.

Unless otherwise specified, all the tests are conducted under the "standard condition."

(Note 1) Measurement shall be made after 48 ± 2 hrs of recovery under the standard condition.

16. Loading at High	16. Loading at High Temperature			
	BK1005	Appearance:No significant abnormality		
	BKP1005	Impedance change: Within $\pm 30\%$		
Specified Value	LK1005	Appearance:No significant abnormality		
Specified value	LK1005	Inductance change: Within $\pm 10\%$ Q change: Within $\pm 30\%$		
	HK1005	Appearance:No significant abnormality		
		Inductance change: Within $\pm 10\%$ Q change: Within $\pm 20\%$		
Test Methods and Remarks	Temperature : Maximum operating Temperature Applied current : Rated current Duration : 1000+24/-0 hrs Recovery : 2 to 3 hrs of recovery under the standard condition after the removal from test chamber.(See Note 1)			

Note on standard condition: "standard condition" referred to herein is defined as follows:

5 to 35 $^\circ\!C$ of temperature, 45 to 85% relative humidity, and 86 to 106kPa of air pressure.

When there are questions concerning measurement results:

In order to provide correlation data, the test shall be conducted under condition of $20\pm2^{\circ}$ C of temperature, 60 to 70% relative humidity, and 86 to 106kPa of air pressure. Unless otherwise specified, all the tests are conducted under the "standard condition."

(Note 1) Measurement shall be made after 48 ± 2 hrs of recovery under the standard condition.

PRECAUTIONS

1. Circuit Design	
Precautions	 Verification of operating environment, electrical rating and performance A malfunction in medical equipment, spacecraft, nuclear reactors, etc. may cause serious harm to human life or have severe social ramifications. As such, any inductors to be used in such equipment may require higher safety and/or reliability considerations and should be clearly differentiated from components used in general purpose applications. Operating Current(Verification of Rated current) The operating current for inductors must always be lower than their rated values. Do not apply current in excess of the rated value because the inductance may be reduced due to the magnetic saturation effect.

2. PCB Design						
	◆Pattern configurations(Design of Land-patterns)					
	1. When inductors are mounted on a PCB, the size of land patterns and the amount of solder used (size of fillet) can directly affect inductor					
	performance.					
	Therefore, the following items must be carefully considered in the design of solder land patterns:					
	(1) The amount of solder applied can affect the ability of chips to withstand mechanical stresses which may lead to breaking or					
	cracking. Therefore, when designing land-patterns it is necessary to consider the appropriate size and configuration of the solder					
	pads which in turn determines the amount of solder necessary to form the fillets.					
Precautions	(2) When more than one part is jointly soldered onto the same land or pad, the pad must be designed so that each component's					
	soldering point is separated by solder-resist. (3) The larger size of land patterns and amount of solder, the smaller Q value after mounting on PCB. It makes higher the Q value to					
	design land patterns smaller than terminal electrode of chips.					
	Pattern configurations (Inductor layout on panelized[breakaway] PC boards)					
	1. After inductors have been mounted on the boards, chips can be subjected to mechanical stresses in subsequent manufacturing					
	processes (PCB cutting, board inspection, mounting of additional parts, assembly into the chassis, wave soldering the reflow soldered					
	boards etc.) For this reason, planning pattern configurations and the position of SMD inductors should be carefully performed to					
	minimize stress.					
	◆Pattern configurations(Design of Land-patterns)					
	1. The following diagrams and tables show some examples of recommended patterns to prevent excessive solder amounts (larger fillets					
	which extend above the component end terminations). Examples of improper pattern designs are also shown.					
	(1) Recommended land dimensions for a typical chip inductor land patterns for PCBs					
	Land pattern					
	Chip inductor					
	Recommended land dimensions for wave-soldering (Unit:mm)					
	Type 1608 2125					
	Size W 0.8 1.25					
	A 0.8~1.0 1.0~1.4					
Technical	B 0.5~0.8 0.8~1.5					
considerations	C 0.6~0.8 0.9~1.2					
considerations						
	Recommended land dimensions for reflow-soldering (Unit:mm)					
	Type 1005 1608 2125					
	Size L 1.0 2.0 1.6					
	W 0.5 1.25 0.8					
	A 0.45~0.55 0.8~1.0 0.8~1.2					
	B 0.40~0.50 0.6~0.8 0.8~1.2					
	C $0.45 \sim 0.55$ $0.6 \sim 0.8$ $0.9 \sim 1.6$					
	Evenes addee on effect the children fiction to without and machanical stranges. Therefore, places take preserving where desirving					
	Excess solder can affect the ability of chips to withstand mechanical stresses. Therefore, please take proper precautions when designing land-patterns.					

	for automatic placement			
	2. The maintenance and inspection	not be imposed on the inductors when mo on of the mounter should be conducted pe		
Precautions	 Selection of Adhesives Mounting inductors with adhesives in preliminary assembly, before the soldering stage, may lead to degraded indu unless the following factors are appropriately checked; the size of land patterns, type of adhesive, amount 			
	temperature and hardening p amounts of adhesive to use.	period. Therefore, it is imperative to con	isult the manufacturer of the adhesives on proper usage an	
	following points should be cor (1) The lower limit of the pick board. (2) The pick-up pressure sho (3) To reduce the amount of o	nsidered before lowering the pick-up nozz (-up nozzle should be adjusted to the sur- uld be adjusted between 1 and 3N static deflection of the board caused by impact of	face level of the PC board after correcting for deflection of th	
	Item	Improper method	Proper method	
	Single-sided mounting	chipping or crackin	ng supporting pins - or back-up pins	
	Double-sided mounting	chipping _/ or cracking	supporting pins or back-up pins	
Technical considerations	 impact on the inductors. To a inspection and replacement of Selection of Adhesives Some adhesives may cause reaction the inductors may result in suboard may adversely affect of (1) Required adhesive charaction a. The adhesive charaction a. The adhesive should b. The adhesive should c. The adhesive should d. The adhesive should f. The adhesive should f. The adhesive should f. The adhesive should f. The adhesive should h. The adhesive should h. The adhesive should h. The adhesive should h. The adhesive should f. The adhe	void this, the monitoring of the width betw f the pin should be conducted periodically duced insulation resistance. The difference tresses on the inductors and lead to crac omponent placement, so the following pre- teristics be strong enough to hold parts on the bo- have sufficient strength at high temperatu- have good coating and thickness consiste be used during its prescribed shelf life. harden rapidly. bt be contaminated. have excellent insulation characteristics. not be toxic and have no emission of toxi mount inductors on a PCB, inappropria Too little adhesive may cause the induct fective soldering due excessive flow of ad	e between the shrinkage percentage of the adhesive and that cking. Moreover, too little or too much adhesive applied to th cautions should be noted in the application of adhesives. ard during the mounting & solder process. ures. ency. ic gasses. ate amounts of adhesive on the board may adversely affe tors to fall off the board during the solder process. Too muc	

4. Soldering	
Precautions	 Selection of Flux Since flux may have a significant effect on the performance of inductors, it is necessary to verify the following conditions prior to use; Flux used should be with less than or equal to 0.1 wt% Chlorine conversion method) of halogenated content. Flux having a strong acidity content should not be applied. When soldering inductors on the board, the amount of flux applied should be controlled at the optimum level. When using water-soluble flux, special care should be taken to properly clean the boards. Soldering Temperature, time, amount of solder, etc. are specified in accordance with the following recommended conditions, and please contact us about peak temperature when you use lead-free paste.

Selection of Flux

- 1-1. When too much halogenated substance (Chlorine, etc.) content is used to activate the flux, or highly acidic flux is used, an excessive amount of residue after soldering may lead to corrosion of the terminal electrodes or degradation of insulation resistance on the surface of the Inductor.
- 1-2. Flux is used to increase solderability in flow soldering, but if too much is applied, a large amount of flux gas may be emitted and may detrimentally affect solderability. To minimize the amount of flux applied, it is recommended to use a flux-bubbling system.
- 1-3. Since the residue of water-soluble flux is easily dissolved by water content in the air, the residue on the surface of Inductor in high humidity conditions may cause a degradation of insulation resistance and therefore affect the reliability of the components. The cleaning methods and the capability of the machines used should also be considered carefully when selecting water-soluble flux.

◆ Soldering

1-1. Preheating when soldering

Heating: Chip inductor components should be preheated to within 100 to 130°C of the soldering. Cooling: The temperature difference between the components and cleaning process should not be greater than 100°C.

Chip inductors are susceptible to thermal shock when exposed to rapid or concentrated heating or rapid cooling. Therefore, the soldering process must be conducted with a great care so as to prevent malfunction of the components due to excessive thermal shock.

[Reflow soldering]

[Recommended conditions for eutectic soldering]

 $\% Ceramic chip components should be preheated to within 100 to 130 <math display="inline">^{\circ}\mathrm{C}$ of the soldering.

XAssured to be reflow soldering for 2 times.

Caution

1. The ideal condition is to have solder mass(fillet)controlled to 1/2 to 1/3 of the thickness of the inductor, as shown below:

2. Because excessive dwell times can detrimentally affect solderability, soldering duration should be kept as close to recommended times as possible.

Technical considerations

[Recommended condition for Pb-free soldering]

%Ceramic chip components should be preheated to within 100 to 130 $^{\circ}\mathrm{C}$ of the

soldering. $\ensuremath{\bigotimes}\xspace Assured to be wave soldering for 1 time.$

℅Except for reflow soldering type.

Caution

1. Make sure the inductors are preheated sufficiently.

- 2. The temperature difference between the inductor and melted solder should not be greater than 100 to 130°C.
- 3. Cooling after soldering should be as gradual as possible.

4. Wave soldering must not be applied to the inductors designated as for reflow soldering only.

[Hand soldering]

[Recommended conditions for eutectic soldering]

[Recommended condition for Pb-free soldering]

 $\% It is recommended to use 20W soldering iron and the tip is 1 <math display="inline">\phi$ or less. % The soldering iron should not directly touch the components.

- XAssured to be soldering iron for 1 time.
- Note: The above profiles are the maximum allowable soldering condition, therefore these profiles are not always recommended.

 Caution
1. Use a 20W soldering iron with a maximum tip diameter of 1.0 mm.
2. The soldering iron should not directly touch the inductor.

5. Cleaning	
Precautions	 Cleaning conditions 1. When cleaning the PC board after the Inductors are all mounted, select the appropriate cleaning solution according to the type of flux used and purpose of the cleaning (e.g. to remove soldering flux or other materials from the production process.) 2. Cleaning conditions should be determined after verifying, through a test run, that the cleaning process does not affect the inductor's characteristics.
Technical considerations	 Cleaning conditions The use of inappropriate solutions can cause foreign substances such as flux residue to adhere to the inductor, resulting in a degradation of the inductor's electrical properties (especially insulation resistance). Inappropriate cleaning conditions (insufficient or excessive cleaning) may detrimentally affect the performance of the inductors.

Precautions	 Application of resin coatings, moldings, etc. to the PCB and components. 1. With some type of resins a decomposition gas or chemical reaction vapor may remain inside the resin during the hardening period or while left under normal storage conditions resulting in the deterioration of the inductor's performance. 2. When a resin's hardening temperature is higher than the inductor's operating temperature, the stresses generated by the excess hear may lead to inductor damage or destruction. 3. Stress caused by a resin's temperature generated expansion and contraction may damage inductors. The use of such resins, molding materials etc. is not recommended. When inductors are coated/molded with resin, please check
	effects on the inductors by analyzing them in actual applications prior to use.

7. Handling	
Precautions	 Breakaway PC boards (splitting along perforations) 1. When splitting the PC board after mounting inductors and other components, care is required so as not to give any stresses of deflection or twisting to the board. 2. Board separation should not be done manually, but by using the appropriate devices. General handling precautions 1. Always wear static control bands to protect against ESD. 2. Keep the inductors away from all magnets and magnetic objects. 3. Use non-magnetic tweezers when handling inductors. 4. Any devices used with the inductors (soldering irons, measuring instruments) should be properly grounded. 5. Keep bare hands and metal products (i.e., metal desk) away from chip electrodes or conductive areas that lead to chip electrodes. 6. Keep inductors away from items that generate magnetic fields such as speakers or coils. Mechanical considerations 1. Be careful not to subject the inductors to excessive mechanical shocks. (1) If inductors are dropped on the floor or a hard surface they should not be used. (2) When handling the mounted boards, be careful that the mounted components do not come in contact with or bump against other boards or components.

8. Storage conditions	
Precautions	 Storage 1. To maintain the solderability of terminal electrodes and to keep the packaging material in good condition, care must be taken to control temperature and humidity in the storage area. Humidity should especially be kept as low as possible. Recommended conditions Ambient temperature: Below 30°C Humidity: Below 70% RH The ambient temperature must be kept below 40°C. Even under ideal storage conditions, solderability of inductor is deteriorated as time passes, so inductors should be used within 6 months from the time of delivery. Inductor should be kept where no chlorine or sulfur exists in the air.
Technical considerations	 Storage 1. If the parts are stocked in a high temperature and humidity environment, problems such as reduced solderability caused by oxidation of terminal electrodes and deterioration of taping/packaging materials may take place. For this reason, components should be used within 6 months from the time of delivery. If exceeding the above period, please check solderability before using the inductors.