

C Series Low ESL Flipped Type

Type: C0510 [EIA CC0204]

C0816 [EIA CC0306] C1220 [EIA CC0508] C1632 [EIA CC0612]

Issue date: January 2011

TDK MLCC US Catalog

Version A11

REMINDERS

Please read before using this product

SAFETY REMINDERS

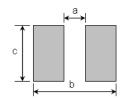
REMINDERS

- 1. If you intend to use a product listed in this catalog for a purpose that may cause loss of life or other damage, you must contact our company's sales window.
- 2. We may modify products or discontinue production of a product listed in this catalog without prior notification.
- 3. We provide "Delivery Specification" that explain precautions for the specifications and safety of each product listed in this catalog. We strongly recommend that you exchange these delivery specifications with customers that use one of these products.
- 4. If you plan to export a product listed in this catalog, keep in mind that it may be a restricted item according to the "Foreign Exchange and Foreign Trade Control Law". In such cases, it is necessary to acquire export permission in harmony with this law.
- 5. Any reproduction or transferring of the contents of this catalog is prohibited without prior permission from our company.
- 6. We are not responsible for problems that occur related to the intellectual property rights or other rights of our company or a third party when you use a product listed in this catalog. We do not grant license of these rights.
- 7. This catalog only applies to products purchased through our company or one of our company's official agencies. This catalog does not apply to products that are purchased through other third parties.

C Series

Low ESL Flipped Type

Type: C0510, C0816, C1220, C1632

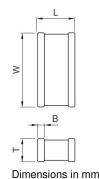

Features

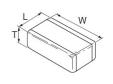
- · Positioning the electrodes along the length of the chip device, reduces ESR and ESL components over conventional products.
- · Provides high frequency noise suppression effect because the resonating frequency is high.
- · Flipped geometry provides low inductance (less than
- · Provides stabilization of power line voltage.
- · Suitable for IC decoupling application.

PC Board Pattern

Case	Dimensions (mm)					
Size	а	b	С			
C0510	0.2	0.6	1.0			
C0816	0.3	1.0	1.6			
C1220	0.5	1.6	2.0			
C1632	0.75	2.2	3.2			

Applications


Shape &



- · Decoupling CPU power line
- · Bias line in CPU
- · High speed digital IC/decoupling
- PC, cell phones, camcorders, etc.

Dimensions

Body Length W Body Width Body Height Terminal Width

Part Number

Construction

			С	1632	X5R	0J	106	МТ	XXXX
Series Name -		<u>'</u>	J			Т	T	Τī	
Dimensions L x	W (mm) —								
Case Code	Length	Width							
C0510	0.52 ± 0.05	1.00 ± 0.05							
C0816 (C < 1µF)	0.80 ± 0.10	1.60 ± 0.10							
C0816 (C ≥ 1µF)	0.80 ± 0.15	1.60 ± 0.20							
C1220	1.25 ± 0.20	2.00 ± 0.20							
C1632	1.60 ± 0.20	3.20 ± 0.20							

•	remperature orial acteristic								
Temperature		Capacitance	Temperature						
	Characteristics	Change	Range						
	X5R	±15%	-55 to +85°C						
	X6S	±22%	-55 to +105ºC						
	X7R	±15%	-55 to +125ºC						
	X7S	+22%	-55 to +125°C						

Rated Voltage (DC)

Voltage Code	Voltage(DC)
0G	4V
0J	6.3V
1A	10V
1C	16V
1E	25V
1H	50V

Internal Codes

Packaging Style Packaging Code

i lape and Reel							
Capacitance Tolerance							
Tolerance Code	Tolerance						
K	± 10%						
M	+ 20%						

Nominal Capacitance (pF)

The capacitance is expressed in three digit codes and in units of pico Farads (pF). The first and second digits identify the first and second significant figures of the capacitance. The third digit identifies the multiplier. R designates a decimal point.

Capacitance Code Capacitance

oupucitaries oous	Oupucitarioc
0R5	0.5pF
010	1pF
102	1,000pF (1nF)
105	1,000,000pF (1µF)

[·] All specifications are subject to change without notice. Please read the precautions before using the product.

C0510 [EIA CC0204]

Capacitance Range Chart

Temperature Characteristics: X6S (± 22%)

Rated Voltage: 4V (0G)

Capacitance (pF)	Cap Code	Tolerance	X6S 0G (4V)
10,000	103	M: ± 20%	
22,000	223		
47,000	473		
100,000	104		
220,000	224		
470,000	474		
1,000,000	105		
2,200,000	225		

Standard Thickness

0.30 ± 0.05 mm

Class 2 (Temperature Stable)

Temperature Characteristics: X6S (± 22%)

TDK Part Number (Ordering Code)	Temperature Characteristics	Rated Voltage	Capacitance (pF)	Capacitance Tolerance	Thickness (mm)
C0510X6S0G104M	X6S	4V	100,000	± 20%	0.30 ± 0.05
C0510X6S0G224M	X6S	4V	220,000	± 20%	0.30 ± 0.05
C0510X6S0G474M	X6S	4V	470,000	± 20%	0.30 ± 0.05

C0816 [EIA CC0306]

Capacitance Range Chart

Temperature Characteristics: X7R, (± 15%), X7S (± 22%), X5R (± 15%), X6S (± 22%) Rated Voltage: 16V (1C), 10V (1A), 6.3V (0J), 4V (0G)

Canacitanas	Con		X	7R	X7S	Х	5R	X6S	
Capacitance (pF)	Cap Code	Tolerance	1C (16V)	0J (6.3V)	0G (4V)	1A (10V)	0J (6.3V)	0G (4V)	
10,000	103	K: ± 10%							
22,000	223	M: ± 20%							
47,000	473								
100,000	104								
220,000	224								
470,000	474								04
1,000,000	105								Standard 7
2,200,000	225								

Standard Thickness
0.50 ± 0.10 mm

Capacitance Range Table

Class 2 (Temperature Stable)

TDK Part Number	Temperature	Rated	Capacitance	Capacitance	Thickness
(Ordering Code)	Characteristics	Voltage	(pF)	Tolerance	(mm)
C0816X7R1C103K	X7R	16V	10,000	± 10%	0.50 ± 0.10
C0816X7R1C223K	X7R	16V	22,000	± 10%	0.50 ± 0.10
C0816X7R1C473K	X7R	16V	47,000	± 10%	0.50 ± 0.10
C0816X7R1C104K	X7R	16V	100,000	± 10%	0.50 ± 0.10
C0816X7R0J224K	X7R	6.3V	220,000	± 10%	0.50 ± 0.10
C0816X7S0G474K	X7S	4V	470,000	± 10%	0.50 ± 0.10
C0816X7S0G105M	X7S	4V	1,000,000	± 20%	0.50 ± 0.10
C0816X7S0G225M	X7S	4V	2,200,000	± 20%	0.50 ± 0.10
C0816X6S0G474M	X6S	4V	470,000	± 20%	0.50 ± 0.10
C0816X5R1A224K	X5R	10V	220,000	± 10%	0.50 ± 0.10
C0816X5R1A474K	X5R	10V	470,000	± 10%	0.50 ± 0.10
C0816X5R0J474K	X5R	6.3V	470,000	± 10%	0.50 ± 0.10
C0816X5R0J105M	X5R	6.3V	1,000,000	± 20%	0.50 ± 0.10
C0816X5R0J225M	X5R	6.3V	2,200,000	± 20%	0.50 ± 0.10

C1220 [EIA CC0508]

Capacitance Range Chart

Temperature Characteristics: X7R, (± 15%), X5R (± 15%) Rated Voltage: 50V (1H), 25V (1E), 16V (1C), 10V (1A), 6.3V (0J)

Consoitones	000			X7R			
Capacitance (pF)	Cap Code	Tolerance	1H (50V)	1E (25V)	1C (16V)	0J (6.3V)	1A (10V)
10,000	103	K: ± 10%					
22,000	223	M: ± 20%					
47,000	473						
100,000	104						
220,000	224						
470,000	474						
1,000,000	105						

Standard Thickness

0.85 ± 0.15 mm

Class 2 (Temperature Stable)

Temperature Characteristics: X7R (± 15%), X5R (± 15%)

TDK Part Number (Ordering Code)	Temperature Characteristics	Rated Voltage	Capacitance (pF)	Capacitance Tolerance	Thickness (mm)
C1220X7R1H103K	X7R	50V	10,000	± 10%	0.85 ± 0.15
C1220X7R1H223K	X7R	50V	22,000	± 10%	0.85 ± 0.15
C1220X7R1H473K	X7R	50V	47,000	± 10%	0.85 ± 0.15
C1220X7R1E104K	X7R	25V	100,000	± 10%	0.85 ± 0.15
C1220X7R1C224K	X7R	16V	220,000	± 10%	0.85 ± 0.15
C1220X7R0J474K	X7R	6.3V	470,000	± 10%	0.85 ± 0.15
C1220X7R0J105M	X7R	6.3V	1,000,000	± 20%	0.85 ± 0.15
C1220X5R1A474K	X5R	10V	470,000	± 10%	0.85 ± 0.15
C1220X5R1A105M	X5R	10V	1,000,000	± 20%	0.85 ± 0.15

C1632 [EIA CC0612]

Capacitance Range Chart

Temperature Characteristics: X7R, (± 15%), X7S (± 22%), X5R (± 15%) Rated Voltage: 50V (1H), 25V (1E), 16V (1C), 10V (1A), 6.3 (0J), 4V (0G)

Consoitance	Con		X7R				X7S	X5	5R
Capacitance (pF)	Cap Code	Tolerance	1H (50V)	1E (25V)	1C (16V)	0J (6.3V)	0G (4V)	1A (10V)	0J (6.3V)
10,000	103	K: ± 10%							
22,000	223	M: ± 20%							
47,000	473								
100,000	104								
220,000	224								
470,000	474								
1,000,000	105								
2,200,000	225								
4,700,000	475								
10,000,000	106								

Standard Thickness

 $0.70 \pm 0.10 \text{ mm}$ $1.15 \pm 0.15 \text{ mm}$ $1.30 \pm 0.15 \text{ mm}$

Class 2 (Temperature Stable)

Temperature Characteristics: X7R, (± 15%), X7S (± 22%), X5R (± 15%)

TDK Part Number (Ordering Code)	Temperature Characteristics	Rated Voltage	Capacitance (pF)	Capacitance Tolerance	Thickness (mm)
C1632X7R1H103K	X7R	50V	10,000	± 10%	0.70 ± 0.10
C1632X7R1H223K	X7R	50V	22,000	± 10%	0.70 ± 0.10
C1632X7R1H473K	X7R	50V	47,000	± 10%	0.70 ± 0.10
C1632X7R1H104K	X7R	50V	100,000	± 10%	0.70 ± 0.10
C1632X7R1H224K	X7R	50V	220,000	± 10%	1.15 ± 0.15
C1632X7R1E224K	X7R	25V	220,000	± 10%	0.70 ± 0.10
C1632X7R1E474K	X7R	25V	470,000	± 10%	1.15 ± 0.15
C1632X7R1C474K	X7R	16V	470,000	± 10%	0.70 ± 0.10
C1632X7R1C105K	X7R	16V	1,000,000	± 10%	1.15 ± 0.15
C1632X7R0J105M	X7R	6.3V	1,000,000	± 20%	0.70 ± 0.10
C1632X7R0J225M	X7R	6.3V	2,200,000	± 20%	1.15 ± 0.15
C1632X7S0G475M	X7S	4V	4,700,000	± 20%	1.30 ± 0.15
C1632X7S0G106M	X7S	4V	10,000,000	± 20%	1.30 ± 0.15
C1632X5R1A105M	X5R	10V	1,000,000	± 20%	0.70 ± 0.10
C1632X5R1A225M	X5R	10V	2,200,000	± 20%	1.15 ± 0.15
C1632X5R0J475M	X5R	6.3V	4,700,000	± 20%	1.30 ± 0.15
C1632X5R0J106M	X5R	6.3V	10,000,000	± 20%	1.30 ± 0.15

[•] All specifications are subject to change without notice. Please read the precautions before using the product.

C Series – Low ESL Flipped Type

No.	Item	Performance Test or Inspection Method			od				
1	External Appearance	No def perforr		hich may af	fect	Inspect	with m	agnifying glas	s (3×).
2	Insulation Resistance	10,000M Ω or 500M $\Omega \bullet \mu$ F min. (whichever smaller). As for the capacitor of rated voltage 16, 10, 6.3 and 4V DC, 100M $\Omega \bullet \mu$ F min.			for the e 16, 10, 6.3	Apply ra	ited vo	ltage for 60s.	
3	Voltage Proof			st voltage w eakdown or	ithout other damage.			ed voltage for arge current s	1 ~ 5s. shall not exceed 50mA.
4	Capacitance	Within	the sp	ecified toler	ance.	Meası Frequ	_	Rated Voltage	Measuring Voltage
						11/11-1	100/	50V ~ 6.3V	1.0±0.2 V _{rms}
						1kHz±10%		4V	0.5 - 5 V _{rms}
5	Dissipation	T.C.	Rate	d Voltage	D.F.	See No.	4 in th	is table for me	easuring condition.
	Factor	X7R	+	25V DC	0.03 max.				Ü
	(Class 2)	X7R X5R	16V, DC	10V, 6.3V	0.05 max.				
		X7S X6S X5S	4V D	С	0.12 max.				
6	Temperature Characteristics	•		Change (%))				red by the steps shown mal equilibrium is obtaine
	of Capacitance	No Voltage Applied T.C. Δ C Percen		ent	for each	step.		•	
	(Class 2)	X5				∆C be ca	alculat	ed ref. STEP3	3 reading
		X7	'R	±15%		Step	Tem	oerature (ºC)	
		X5					+	rence temp. \pm :	
		X6		±22%			_	operating temp.	
		X7	5			3		rence temp. ± 2	
						4	iviax.	operating temp	. ± 2
7	Robustness of Terminations	No sign of termination coming off, breakage of ceramic, or other abnormal signs.			ix 1) aı	nd apply a pus	on P.C. board (shown in shing force of 5N (C0510		
								Capacitors	- 5N (2N for C0510) P.C.Board

[•] All specifications are subject to change without notice. Please read the precautions before using the product.

C Series – Low ESL Flipped Type

No.	Item	Performa	nce		Test or Inspection Method		
8	Bending	ding No mechanical damage.			Reflow solder the capacitor on P.C. board (shown in Appendix 2) and bend it for 1mm.		
					50 F R230 Unit: mm		
9	Solderability	New solder termination		er over 75% of	Completely soak both terminations in solder at 235 \pm 5°C for 2 \pm 0.5s.		
				holes or rough spots ed in one spot.	Solder: H63A (JIS Z 3282)		
		Ceramic surface of "A sections" shall not be exposed due to melting or shifting of termination material.			Flux: Isopropyl alcohol (JIS K 8839) Rosin (JIS K 5902) 25% solid solution.		
			_	A section			
10	Resistance to solder heat				Completely soak both terminations in solder at 260 \pm 5°C for 5 \pm 1s.		
	External appearance			wed and terminations t least 60% with new	Preheating condition Temp.: 150 ± 10°C		
	Capacitance	Character	ristics	Change from the value before test	Time: 1 ~ 2min. Flux:		
		Class 2	X7R X7S X5R	± 7.5 %	Isopropyl alcohol (JIS K 8839) Rosin (JIS K 5902) 25% solid solution.		
			X6S		Solder : H63A (JIS Z 3282)		
	D.F. (Class 2)	Meet the initial spec.			Leave the capacitor in ambient conditions for 24 \pm 2h		
	Insulation Resistance	Meet the initial spec.			before measurement.		
	Voltage proof	No insulation breakdown or other damage.			-		

C Series – Low ESL Flipped Type

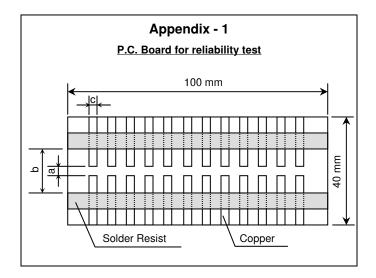
No.	Item	Performance			Test or Inspection Method			
11	Vibration External appearance	No mecha	nical da	mage.	Solder the capacitors on P.C. board (shown in Appendix 1) before testing. Vibrate the capacitor with amplitude of 1.5mm P-P			
	Capacitance	Characteri	stics	Change from the value before test	to 10Hz	g the frequencies from 10H in about 1min.		
		Class 2	X7R X7S X5R X6S	± 7.5 %	Repeat	this for 2h each in 3 perpen	dicular directions.	
	D.F. (Class 2)	Meet the ir	nitial spe	PC.	=			
12	Temperature cycle	9				he capacitors on P.C. board	d (shown in	
	External appearance	No mecha	nical da	mage.	Expose	ix 1) before testing. the capacitor in the conditional formula to the capacitor in the conditional formula to the capacitation of the capacitatio	ons step1 through 4	
	Capacitance	Characteristics Change from the value before test			 and repeat 5 times consecutively. Leave the capacitor in ambient conditions for 24 ± before measurement. 			
		010	X7R X7S	± 7.5 %	Step	Temperature (ºC)	Time (min.)	
		Class 2	X5R	± 7.5 %	1	Min. operating temp. ±3	30 ± 3	
			X6S		_ 2	Reference Temp.	2-5	
-	D.F. (Class 2)	Meet the initial spec.			3	Max. operating temp. \pm 2	30 ± 2	
	Insulation Resistance	1,000M Ω or 50M Ω • μ F min. whichever smaller.			- 4	Reference Temp.	2 - 5	
	Voltage Proof	No insulati damage.	on brea	kdown or other				
13	Moisture Resistan	ce (Steady	State)		Solder t	he capacitor on P.C. board	l (shown in	
	External appearance	No mecha	nical da	mage.	Appendix 1) before testing. Leave at temperature $40 \pm 2^{\circ}$ C, 90 to 95%RH for 500 +24, 0h. Leave the capacitor in ambient conditions for 24 ± 2 h before measurement.			
	Capacitance	Characteri	stics	Change from the value before test				
		Class 2	X7R X7S X5R X6S	± 12.5 %	Belove	neasurement.		
	D.F. (Class 2)	Characteristics X7R: 200% of initial spec. max. X7S: 200% of initial spec. max. X5R: 200% of initial spec. max. X6S: 200% of initial spec. max. X6S: 200% of initial spec. max. 1,000M Ω or 50M Ω • μ F min. (whichever smaller). As for the capacitor of rated voltage 16, 10, 6.3 and 4V DC, 10M Ω • μ F min.			_			
	Insulation Resistance				_			

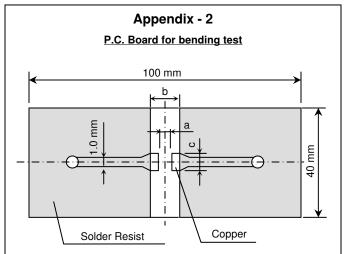
• All specifications are subject to change without notice. Please read the precautions before using the product.

US Catalog // C Series – Flipped Type // Version A11

C Series – Low ESL Flipped Type

No.	Item	Performa	nce		Test or Inspection Method
14	Moisture Resista External appearance	No mecha	nical da	mage.	Solder the capacitors on P.C. board (shown in Appendix 1) before testing. Apply the rated voltage at temperature 40 \pm 2°C and
	D.F. (Class 2) Insulation Resistance	$ \begin{array}{ c c c c } \hline \textbf{Characteristics} & \textbf{value before test} \\ \hline & & X7R \\ X7S \\ X5R \\ X6S \\ \hline \\ \hline \textbf{D.F. (Class 2)} & \textbf{Characteristics} \\ \hline & X7R: 200\% \text{ of initial spec. max.} \\ \hline & X7S: 200\% \text{ of initial spec. max.} \\ \hline & X5R: 200\% \text{ of initial spec. max.} \\ \hline & X5R: 200\% \text{ of initial spec. max.} \\ \hline & X6S: 200\% \text{ of initial spec. max.} \\ \hline & X6S: 200\% \text{ of initial spec. max.} \\ \hline & & X6S: 200\% \text{ of initial spec. max.} \\ \hline & & X6S: 200\% \text{ of initial spec. max.} \\ \hline & & X6S: 200\% \text{ of initial spec. max.} \\ \hline & & X6S: 200\% \text{ of initial spec. max.} \\ \hline & & X6S: 200\% \text{ of initial spec. max.} \\ \hline & & X6S: 200\% \text{ of initial spec. max.} \\ \hline & & X6S: 200\% \text{ of initial spec. max.} \\ \hline & & X6S: 200\% \text{ of initial spec. max.} \\ \hline & & X6S: 200\% \text{ of initial spec. max.} \\ \hline & X6S: 200\% \text{ of initial spec. max.} \\ \hline & X6S: 200\% \text{ of initial spec. max.} \\ \hline & X6S: 200\% \text{ of initial spec. max.} \\ \hline & X6S: 200\% \text{ of initial spec. max.} \\ \hline & X6S: 200\% \text{ of initial spec. max.} \\ \hline & X6S: 200\% \text{ of initial spec. max.} \\ \hline & X6S: 200\% \text{ of initial spec. max.} \\ \hline & X6S: 200\% \text{ of initial spec. max.} \\ \hline & X6S: 200\% \text{ of initial spec. max.} \\ \hline & X6S: 200\% \text{ of initial spec. max.} \\ \hline & X6S: 200\% \text{ of initial spec. max.} \\ \hline & X6S: 200\% \text{ of initial spec. max.} \\ \hline & X6S: 200\% \text{ of initial spec. max.} \\ \hline & X6S: 200\% \text{ of initial spec. max.} \\ \hline & X6S: 200\% \text{ of initial spec. max.} \\ \hline & X6S: 200\% \text{ of initial spec. max.} \\ \hline & X6S: 200\% \text{ of initial spec. max.} \\ \hline & X6S: 200\% \text{ of initial spec. max.} \\ \hline & X6S: 200\% \text{ of initial spec.} \\ \hline & X6S: 200\% \text{ of initial spec.} \\ \hline & X6S: 200\% \text{ of initial spec.} \\ \hline & X6S: 200\% \text{ of initial spec.} \\ \hline & X6S: 200\% \text{ of initial spec.} \\ \hline & X6S: 200\% \text{ of initial spec.} \\ \hline & X6S: 200\% \text{ of initial spec.} \\ \hline & X6S: 200\% \text{ of initial spec.} \\ \hline & X6S: 200\% \text{ of initial spec.} \\ \hline & X6S: 200\% \text{ of initial spec.} \\ \hline & X6S: 200\% \text{ of initial spec.} \\ \hline & X6S: 200\% \text{ of initial spec.} \\ \hline & X6S: 200\% \text{ of initial spec.} \\ \hline & X6S: 200\% of in$			 90 to 95%RH for 500 +24, 0h. Charge/discharge current shall not exceed 50mA. Leave the capacitor in ambient conditions for 48 ± 4h before measurement. Voltage conditioning: Voltage treats the capacitor under testing temperature and voltage for 1hour. Leave the capacitor in ambient conditions for 24 ± 2h before measurement. Use this measurement for initial value.
15	Life External appearance	5M Ω • μ F min. No mechanical damage.			Reflow Solder the capacitor on P.C. board (shown in Appendix 1) before testing. Apply rated voltage at maximum operating temperature
	Capacitance	Characteristics Change from the value before test Class 2 X7R X7S X5R X6S ± 15 %		value before test	 ± 2°C for 1,000 +48, 0h. Charge/discharge current shall not exceed 50mA. Leave the capacitor in ambient conditions for 24 ± 2h before measurement. Voltage conditioning:
	D.F. (Class 2)	X7S: 200% X5R: 200%	% of initia % of initia % of initia	al spec. max. al spec. max. al spec. max. al spec. max.	Voltage treats the capacitor under testing temperature and voltage for 1hour. Leave the capacitor in ambient conditions for 48 ± 4h before measurement. Use this measurement for initial value.
	Insulation Resistance	1,000M Ω or 50M $\Omega \bullet \mu$ F min. whichever smaller. As for the capacitor of rated voltage 16, 10, 6.3 and 4V DC, 10M $\Omega \bullet \mu$ F min.			


^{*}As for the initial measurement of capacitors on number 6, 10, 11, 12 and 13, leave capacitor at 150 -10, 0°C for 1h and measure the value after leaving capacitor for 24 ± 2h in ambient condition.

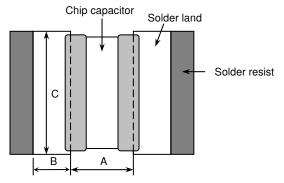

[•] All specifications are subject to change without notice. Please read the precautions before using the product.

C Series – Low ESL Flipped Type

Material : Glass Epoxy (As per JIS C6484 GE4)

P.C. Board thickness: Appendix 1,2 1.6mm

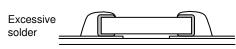
Copper (thickness 0.035mm)


Solder resist

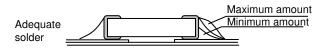
Case	Code	Dimensions (mm)			
JIS	JIS EIA		b	С	
C0510	CC0204	0.2	0.6	1.0	
C0816	CC0306	0.3	1.0	1.6	
C1220	CC0508	0.5	1.6	2.0	
C1632	CC0612	0.75	2.2	3.2	

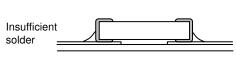
C Series – Low ESL Flipped Type

Recommended Soldering Land Pattern

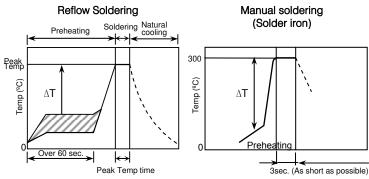


Reflow Soldering


Unit: mm


Type Symbol	C0510 [CC0204]	C0816 [CC0306]	C1220 [CC0508]	C1632 [CC0612]
A	0.20	0.30	0.50	0.75
В	0.20	0.35	0.55	0.725
С	1.00	1.60	2.00	3.20

Recommended Solder Amount


Higher tensile force on the chip capacitor may cause cracking.

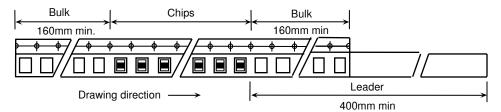
Small solder fillet may cause contact failure or failure to hold the chip capacitor to the P.C. board.

• Recommended Soldering Profile

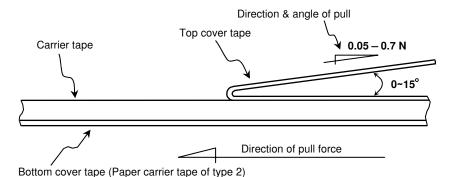
Recommended soldering duration

Temp./	Reflow S	Soldering
Dura. Solder	Peak temp (°C)	Duration (sec.)
Sn-Pb Solder	230 max.	20 max.
Lead-Free Solder	d-Free Solder 260 max.	

Recommended solder compositions Sn-37Pb (Sn-Pb solder) Sn-3.0Ag-0.5Cu (Lead Free Solder)

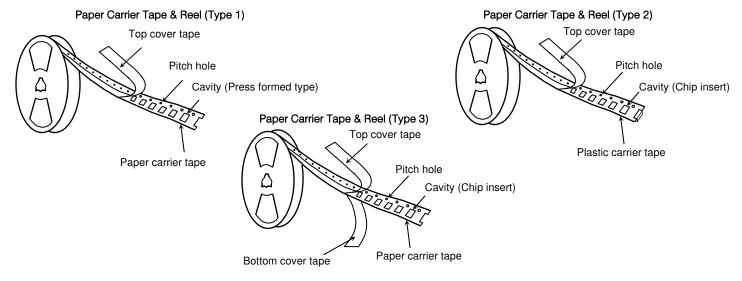

Preheating Condition

Soldering	Temp. (ºC)
Reflow soldering	ΔT ≤ 150
Manual soldering	ΔT ≤ 150



C Series – Low ESL Flipped Type

• Carrier Tape Configuration

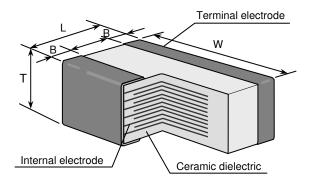


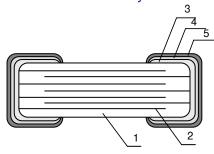
• Peel Back Force (Top Tape)

- Carrier tape shall be flexible enough to be wound around a minimum radius of 30mm with components in tape.
- \bullet The missing of components shall be less than 0.1%
- · Components shall not stick to the cover tape.
- The cover tape shall not protrude beyond the edges of the carrier tape not shall cover the sprocket holes.

• Chip Quantity Per Reel and Structure of Reel (Paper & Plastic)

Case Code		Chip Taping Material		Chip quantity (pcs.)		
JIS	EIA	Thickness	raping material	φ178mm (7") reel	φ330mm (13") reel	
C0510	CC0204	0.50 mm	Paper (Type 1)	15,000	50,000	
C0816	CC0306	0.80 mm	Plastic (Type 3)	4,000	10,000	
C1220	CC0508	0.85 mm	Paper (Type 2)	4,000	10,000	
		0.70 mm		4,000		
C1632	CC0612	1.15 mm	Plastic (Type 3)	2.000	10,000	
		1.30 mm		2,000		


[•] All specifications are subject to change without notice. Please read the precautions before using the product.


C Series – Low ESL Flipped Type

Shape & Dimensions

Cas	e Code	Dimensions (mm)						
JIS	EIA	L	W	T	В	G		
C0510	CC0204	0.52	1.00	0.50	0.10 min.	0.09 min.		
C0816	CC0306	0.80	1.60	0.80	0.10 min.	-		
C1220	CC0508	1.25	2.00	0.85	0.20 min.	0.40 min.		
				0.70				
C1632	CC0612	1.60	3.20	1.15	0.20 min.	0.50 min.		
				1.30				

Inside Structure & Material System

No.	NAME	MATERIAL
		Class 2
(1)	Ceramic Dielectric	BaTiO ₃
(2)	Internal Electrode	Nickel (Ni)
(3)		Copper (Cu)
(4)	Termination	Nickel (Ni)
(5)		Tin (Sn)

Environmental Information

TDK Corporation established internal product environmental assurance standards that include the six hazardous substances banned by the EU RoHS Directive¹ enforced on July 1, 2006 along with additional substances independently banned by TDK and has successfully completed making general purpose electronic components conform to the RoHS Directive².

- Abbreviation for Restriction on Hazardous Substances, which refers to the regulation EU Directive 2002/95/EC on hazardous substances by the European Union (EU) effective from July 1, 2006. The Directive bans the use of six specific hazardous substances in electric and electronic devices and products handled within the EU. The six substances are lead, mercury, cadmium, hexavalent chromium, PBB (polybrominated biphenyls), and PBDE (polybrominated diphenyl ethers).
- This means that, in conformity with the EU Directive 2002/95/EC, lead, cadmium, mercury, hexavalent chromium, and specific bromine-based flame retardants, PBB and PBDE, have not been used, except for exempted applications.

For REACH (SVHC: 15 substances according to ECHA / October 2008): All TDK MLCC do not contain these 15 substances.

For European Directive 2000/53/CE and 2005/673/CE:
Cadmium, Hexavalent Chromium, Mercury, Lead are not contained in all TDK MLCC.

For European Directive 2003/11/CE: Pentabromodiphenyl-ether, Octabromodiphenyl-ether are not contained in all TDK MLCC.