

International **IR** Rectifier

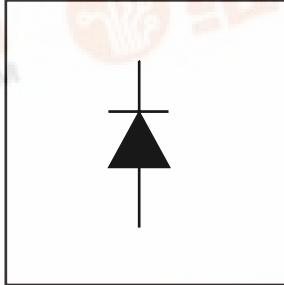
HEXFRED™

PD -2.339

HFA25TB60

Ultrafast, Soft Recovery Diode

Features


- Ultrafast Recovery
- Ultrasoft Recovery
- Very Low I_{RRM}
- Very Low Q_{rr}
- Guaranteed Avalanche
- Specified at Operating Conditions

Benefits

- Reduced RFI and EMI
- Reduced Power Loss in Diode and Switching Transistor
- Higher Frequency Operation
- Reduced Snubbing
- Reduced Parts Count

Description

International Rectifier's HFA25TB60 is a state of the art ultra fast recovery diode. Employing the latest in epitaxial construction and advanced processing techniques it features a superb combination of characteristics which result in performance which is unsurpassed by any rectifier previously available. With basic ratings of 600 volts and 25 amps continuous current, the HFA25TB60 is especially well suited for use as the companion diode for IGBTs and MOSFETs. In addition to ultra fast recovery time, the HEXFRED product line features extremely low values of peak recovery current (I_{RRM}) and does not exhibit any tendency to "snap-off" during the t_b portion of recovery. The HEXFRED features combine to offer designers a rectifier with lower noise and significantly lower switching losses in both the diode and the switching transistor. These HEXFRED advantages can help to significantly reduce snubbing, component count and heatsink sizes. The HEXFRED HFA25TB60 is ideally suited for applications in power supplies and power conversion systems (such as inverters), motor drives, and many other similar applications where high speed, high efficiency is needed.

$V_R = 600V$
$V_F(\text{typ.})^* = 1.3V$
$I_{F(AV)} = 25A$
$Q_{rr}(\text{typ.}) = 112nC$
$I_{RRM} = 10A$
$t_{rr}(\text{typ.}) = 23ns$
$di_{(rec)M}/dt(\text{typ.}) = 250A/\mu s$

TO-220AC

Absolute Maximum Ratings

	Parameter	Max.	Units
V_R	Cathode-to-Anode Voltage	600	V
$I_F @ T_C = 25^\circ C$	Continuous Forward Current		
$I_F @ T_C = 100^\circ C$	Continuous Forward Current	25	A
I_{FSM}	Single Pulse Forward Current	225	
I_{FRM}	Maximum Repetitive Forward Current	100	
$I_{AR} \text{①}$	Maximum Repetitive Avalanche Current	2.0	
$P_D @ T_C = 25^\circ C$	Maximum Power Dissipation	125	
$P_D @ T_C = 100^\circ C$	Maximum Power Dissipation	50	
T_J T_{STG}	Operating Junction and Storage Temperature Range	-55 to +150	C

* $125^\circ C$

HFA25TB60

International
ICR Rectifier

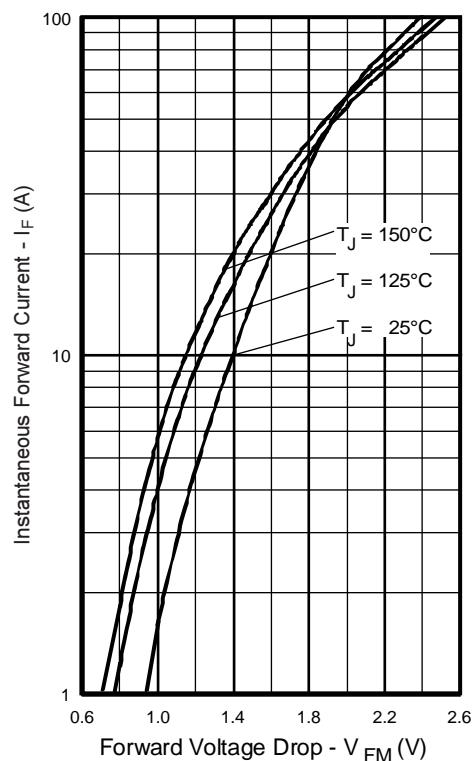
Electrical Characteristics @ $T_J = 25^\circ\text{C}$ (unless otherwise specified)

	Parameter	Min.	Typ.	Max.	Units	Test Conditions
V_{BR}	Cathode Anode Breakdown Voltage	600	---	---	V	$I_R = 100\mu\text{A}$
V_{FM}	Max Forward Voltage	---	1.3	1.7	V	$I_F = 25\text{A}$
		---	1.5	2.0		$I_F = 50\text{A}$
		---	1.3	1.7		$I_F = 25\text{A}, T_J = 125^\circ\text{C}$
I_{RM}	Max Reverse Leakage Current	---	1.5	20	μA	$V_R = V_R$ Rated
		---	600	2000		$T_J = 125^\circ\text{C}, V_R = 0.8 \times V_R$ Rated
C_T	Junction Capacitance	---	55	100	pF	$V_R = 200\text{V}$
L_s	Series Inductance	---	8.0	---	nH	Measured lead to lead 5mm from package body

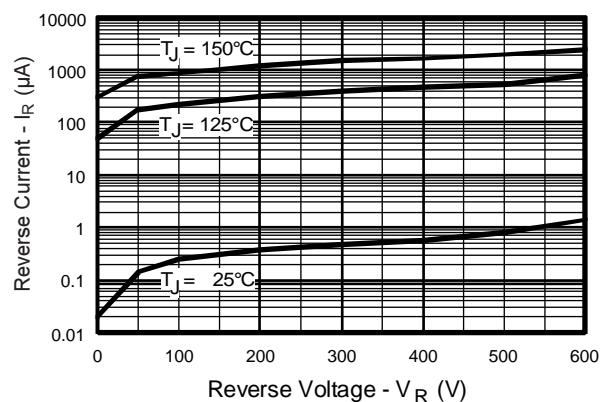
Dynamic Recovery Characteristics @ $T_J = 25^\circ\text{C}$ (unless otherwise specified)

	Parameter	Min.	Typ.	Max.	Units	Test Conditions
t_{rr} See Fig. 5, 6 & 16	Reverse Recovery Time	---	23	---	ns	$I_F = 1.0\text{A}, dI/dt = 200\text{A}/\mu\text{s}, V_R = 30\text{V}$
	---	---	50	75		$T_J = 25^\circ\text{C}$
	---	---	105	160		$T_J = 125^\circ\text{C}$
I_{RRM1} See Fig. 7 & 8	Peak Recovery Current	---	4.5	10	A	$T_J = 25^\circ\text{C}$
	---	---	8.0	15		$T_J = 125^\circ\text{C}$
	---	---	112	375		$T_J = 25^\circ\text{C}$
Q_{rr1} See Fig. 9 & 10	Reverse Recovery Charge	---	420	1200	nC	$T_J = 125^\circ\text{C}$
	---	---	250	—		$T_J = 25^\circ\text{C}$
	Peak Rate of Fall of Recovery Current During t_b	---	160	—		$dI/dt = 200\text{A}/\mu\text{s}$

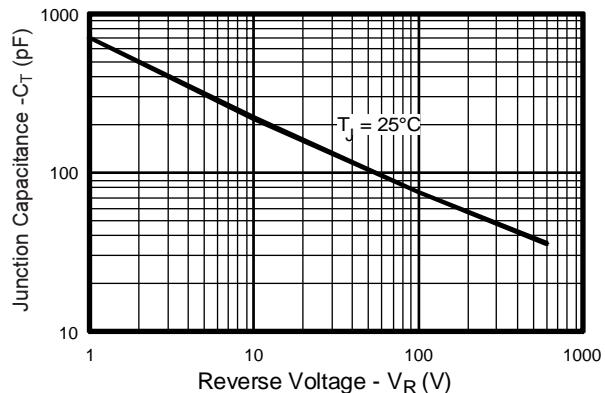
Thermal - Mechanical Characteristics


	Parameter	Min.	Typ.	Max.	Units
T_{lead} ^②	Lead Temperature	---	---	300	°C
$R_{\theta JC}$	Thermal Resistance, Junction to Case	---	---	1.0	K/W
$R_{\theta JA}$ ^③	Thermal Resistance, Junction to Ambient	---	---	80	
$R_{\theta CS}$ ^④	Thermal Resistance, Case to Heat Sink	---	0.5	---	g (oz)
Wt	Weight	---	2.0	---	
		---	0.07	---	
	Mounting Torque	6.0	---	12	Kg-cm
		5.0	---	10	lbf-in

① $L=100\mu\text{H}$, duty cycle limited by max T_J


② 0.063 in. from Case (1.6mm) for 10 sec

③ Typical Socket Mount


④ Mounting Surface, Flat, Smooth and Greased

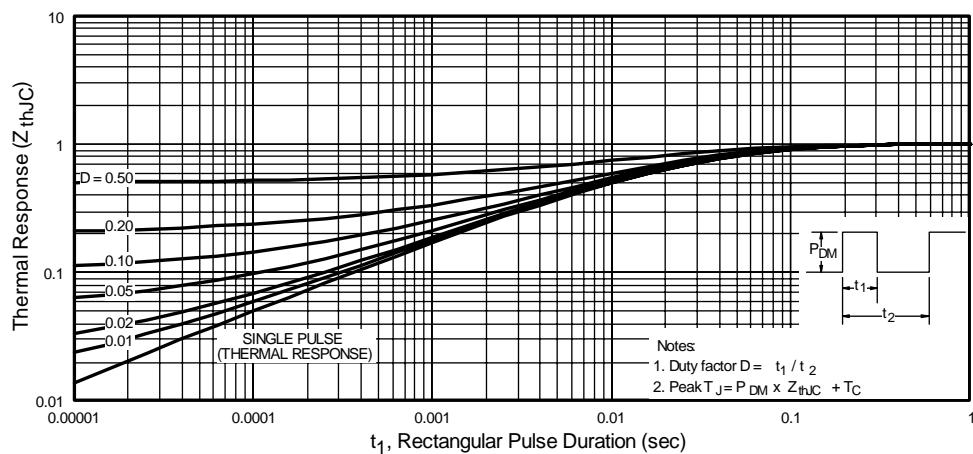

Fig. 1 - Maximum Forward Voltage Drop
vs. Instantaneous Forward Current

Fig. 2 - Typical Reverse Current vs. Reverse Voltage

Fig. 3 - Typical Junction Capacitance vs.
Reverse Voltage

Fig. 4 - Maximum Thermal Impedance Z_{thJC} Characteristics

HFA25TB60

International
ICR Rectifier

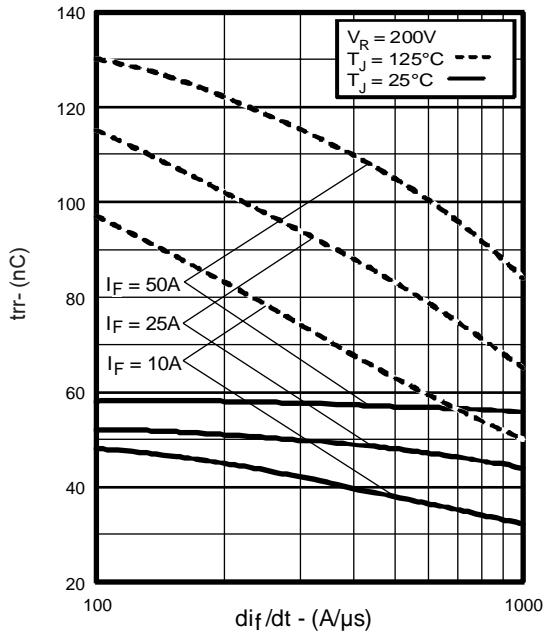


Fig. 5 - Typical Reverse Recovery vs. di_f/dt

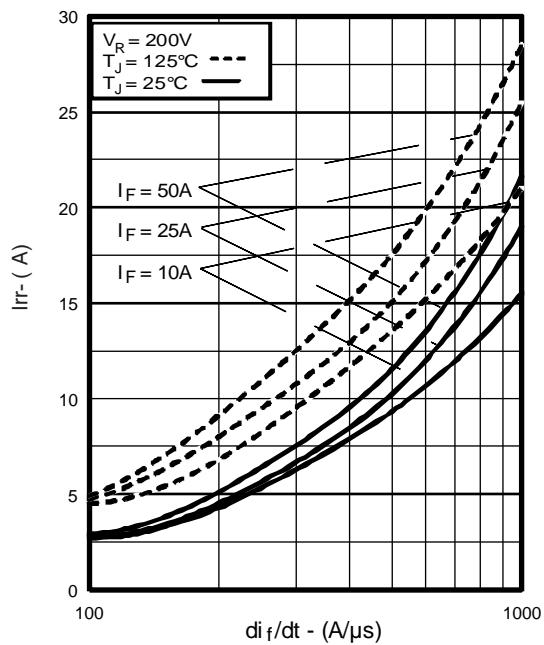


Fig. 6 - Typical Recovery Current vs. di_f/dt

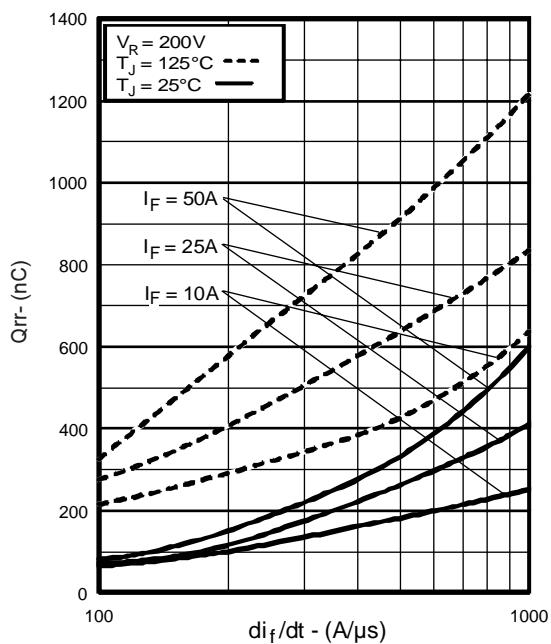


Fig. 7 - Typical Stored Charge vs. di_f/dt

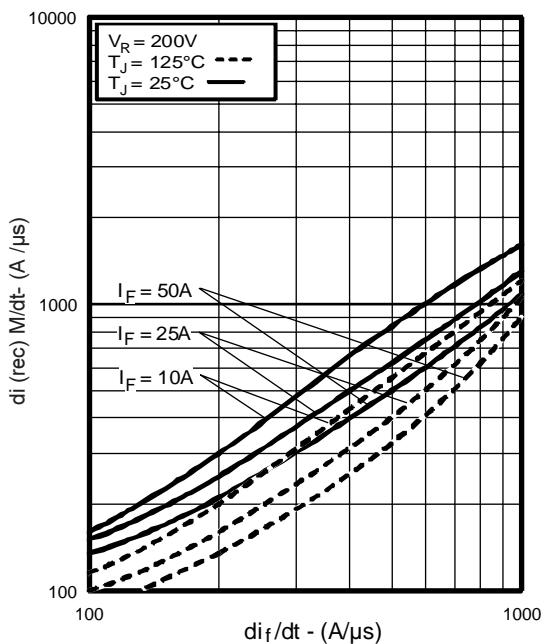
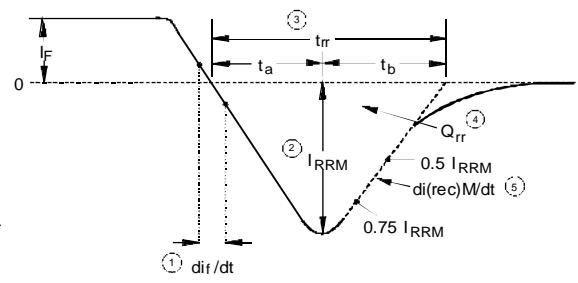
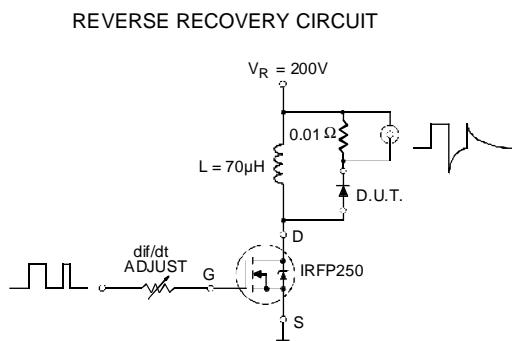
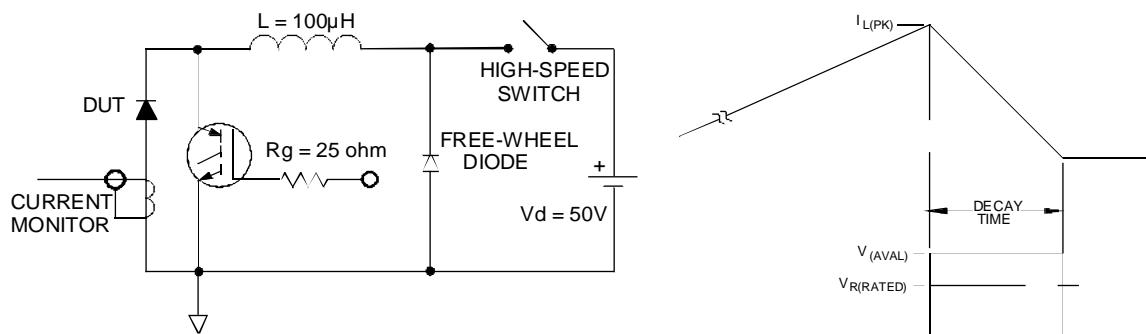




Fig. 8 - Typical $di_{(rec)M}/dt$ vs. di_f/dt



1. $\frac{di}{dt}$ - Rate of change of current through zero crossing
2. I_{RRM} - Peak reverse recovery current
3. t_{rr} - Reverse recovery time measured from zero crossing point of negative going I_r to point where a line passing through $0.75 I_{RRM}$ and $0.50 I_{RRM}$ extrapolated to zero current
4. Q_{rr} - Area under curve defined by t_{rr} and I_{RRM}
5. $\frac{di_{(rec)}M}{dt}$ - Peak rate of change of current during t_b portion of t_{rr}

$$Q_{rr} = \frac{t_{rr} \times I_{RRM}}{2}$$

Fig. 9 - Reverse Recovery Parameter Test Circuit

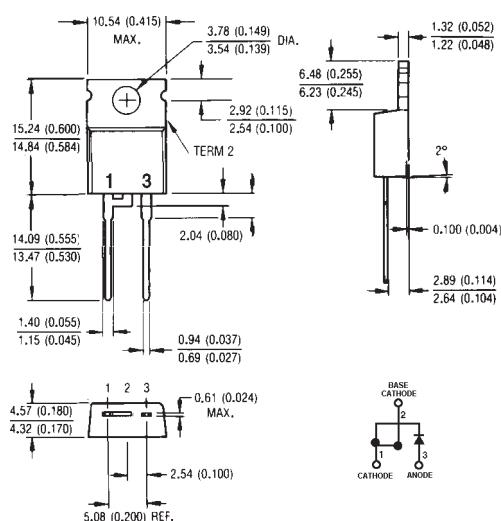

Fig. 10 - Reverse Recovery Waveform and Definitions

Fig. 11 - Avalanche Test Circuit and Waveforms

HFA25TB60

International
IR Rectifier

Conforms to JEDEC Outline TO-220AC
Dimensions in millimeters and inches

International
IR Rectifier

WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331

EUROPEAN HEADQUARTERS: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020

IR CANADA: 7321 Victoria Park Ave., Suite 201, Markham, Ontario L3R 2Z8, Tel: (905) 475 1897

IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590

IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111

IR FAR EAST: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo Japan 171 Tel: 81 3 3983 0086

IR SOUTHEAST ASIA: 315 Outram Road, #10-02 Tan Boon Liat Building, Singapore 0316 Tel: 65 221 8371

<http://www.irf.com/> Data and specifications subject to change without notice. 4/97